1
|
Gui Y, Liu Z, Feng X, Jia Y, Zhang Y, Zhang Y, Yang H, Zhang Y, Li M, Liang L, Shi JW. One-step electrodeposition synthesis of NiFePS on carbon cloth as self-supported electrodes for electrochemical overall water splitting. J Colloid Interface Sci 2024; 673:444-452. [PMID: 38878378 DOI: 10.1016/j.jcis.2024.06.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 07/26/2024]
Abstract
Electrocatalytic water splitting (EWS) for hydrogen production is considered an ideal strategy for utilizing renewable energy, reducing fossil fuel consumption, and addressing environmental pollution issues. Traditional noble metal electrocatalysts have excellent performance, but their cost is high. Developing efficient, stable, and relatively inexpensive dual functional electrocatalysts is crucial for promoting large-scale EWS hydrogen production processes. Herein, a simple one-step electrodeposition method was used to grow nickel-iron phosphorus-sulfides (NiFePS) on the surface of hydrophilic treated carbon cloth (CC). The resultant NiFePS/CC with a phosphorus to sulfur ratio of 1:4 exhibited the best electrocatalytic performance, requiring only -91 mV and 216 mV overpotentials to generate the current densities of 10 mA·cm-2 in hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. When it was used as a bifunctional electrocatalyst to overall water splitting (OWS), a voltage of 1.536 V can generate a current density of 10 mA·cm-2. The excellent electrocatalytic performance can be ascribed to two factors: 1) the CC with excellent conductivity serves as a growth substrate, reducing the impedance of charge transfer from the electrode to the electrolyte and accelerating the electron transfer rate; 2) The large number of ultra-thin nanosheets formed on the surface of the catalyst increase the electrochemical specific surface area, expose more reaction sites, and thus improve the electrocatalytic reaction performance. This work provides a new approach for designing efficient non-noble metal electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Yuwei Gui
- Technological Institute of Materials & Energy Science (TIMES), Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, China; State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Zhetong Liu
- Technological Institute of Materials & Energy Science (TIMES), Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, China; State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Xiangbo Feng
- Technological Institute of Materials & Energy Science (TIMES), Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, China.
| | - Yufei Jia
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Yimeng Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Yongming Zhang
- Technological Institute of Materials & Energy Science (TIMES), Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, China
| | - Haiyan Yang
- Technological Institute of Materials & Energy Science (TIMES), Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, China
| | - Yi Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Mingyang Li
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Liang Liang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Jian-Wen Shi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| |
Collapse
|
2
|
Saeed M, Shahzad U, Marwani HM, Asiri AM, Ur Rehman S, Althomali RH, Rahman MM. Recent Advancements on Sustainable Electrochemical Water Splitting Hydrogen Energy Applications Based on Nanoscale Transition Metal Oxide (TMO) Substrates. Chem Asian J 2024; 19:e202301107. [PMID: 38419386 DOI: 10.1002/asia.202301107] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 03/02/2024]
Abstract
The development of green hydrogen generation technologies is increasingly crucial to meeting the growing energy demand for sustainable and environmentally acceptable resources. Many obstacles in the advancement of electrodes prevented water electrolysis, long thought to be an eco-friendly method of producing hydrogen gas with no carbon emissions, from coming to fruition. Because of their great electrical conductivity, maximum supporting capacity, ease of modification in valence states, durability in hard environments, and high redox characteristics, transition metal oxides (TMOs) have recently captured a lot of interest as potential cathodes and anodes. Electrochemical water splitting is the subject of this investigation, namely the role of transition metal oxides as both active and supportive sites. It has suggested various approaches for the logical development of electrode materials based on TMOs. These include adjusting the electronic state, altering the surface structure to control its resistance to air and water, improving the flow of energy and matter, and ensuring the stability of the electrocatalyst in challenging conditions. In this comprehensive review, it has been covered the latest findings in electrocatalysis of the Oxygen Evolution Reaction (OER) and Hydrogen Evaluation Reaction (HER), as well as some of the specific difficulties, opportunities, and current research prospects in this field.
Collapse
Affiliation(s)
- Mohsin Saeed
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Umer Shahzad
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Hadi M Marwani
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdullah M Asiri
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Shujah Ur Rehman
- Institute of Energy & Environmental Engineering, University of the Punjab New Campus, Lahore, Pakistan
| | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir, 11991, Saudi Arabia
| | - Mohammed M Rahman
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
3
|
Feidenhans’l A, Regmi YN, Wei C, Xia D, Kibsgaard J, King LA. Precious Metal Free Hydrogen Evolution Catalyst Design and Application. Chem Rev 2024; 124:5617-5667. [PMID: 38661498 PMCID: PMC11082907 DOI: 10.1021/acs.chemrev.3c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/26/2024]
Abstract
The quest to identify precious metal free hydrogen evolution reaction catalysts has received unprecedented attention in the past decade. In this Review, we focus our attention to recent developments in precious metal free hydrogen evolution reactions in acidic and alkaline electrolyte owing to their relevance to commercial and near-commercial low-temperature electrolyzers. We provide a detailed review and critical analysis of catalyst activity and stability performance measurements and metrics commonly deployed in the literature, as well as review best practices for experimental measurements (both in half-cell three-electrode configurations and in two-electrode device testing). In particular, we discuss the transition from laboratory-scale hydrogen evolution reaction (HER) catalyst measurements to those in single cells, which is a critical aspect crucial for scaling up from laboratory to industrial settings but often overlooked. Furthermore, we review the numerous catalyst design strategies deployed across the precious metal free HER literature. Subsequently, we showcase some of the most commonly investigated families of precious metal free HER catalysts; molybdenum disulfide-based, transition metal phosphides, and transition metal carbides for acidic electrolyte; nickel molybdenum and transition metal phosphides for alkaline. This includes a comprehensive analysis comparing the HER activity between several families of materials highlighting the recent stagnation with regards to enhancing the intrinsic activity of precious metal free hydrogen evolution reaction catalysts. Finally, we summarize future directions and provide recommendations for the field in this area of electrocatalysis.
Collapse
Affiliation(s)
| | - Yagya N. Regmi
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| | - Chao Wei
- Department
of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Dong Xia
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| | - Jakob Kibsgaard
- Department
of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Laurie A. King
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| |
Collapse
|
4
|
Ou W, Zhang W, Qin H, Zhou W, Tang Y, Gao Q. Enhancing anti-chlorine corrosion of Ni 3S 2 by Mo-doping for mimic seawater electrolysis. J Colloid Interface Sci 2024; 655:852-862. [PMID: 37979291 DOI: 10.1016/j.jcis.2023.11.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/20/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
Designing highly active electrocatalysts that can resist chloride ion (Cl-) corrosion during seawater electrolysis is still a challenge. Here, Mo-doping is introduced to synchronously improve the electrocatalytic activity and anti-chlorine corrosion of Ni3S2 toward the efficient overall seawater splitting. With commercial nickel-molybdenum foam (NMF) as the reactive substrates, Mo-doped Ni3S2 columnar arrays (Mo-Ni3S2/NMF) are fabricated via a one-step hydrothermal process, which expose abundant active sites with the ameliorated surface electronic configurations toward the enhanced binding with *OH (* denotes an active site) but the weakened one with *Cl. As expected, they afford the excellent bi-functionality for both oxygen and hydrogen evolution reactions (OER and HER), with the remarkably improved anti-corrosion to Cl- at anode as compared to pristine Ni3S2. In alkaline mimic seawater (1.0 M NaOH + 0.5 M NaCl), Mo-Ni3S2/NMF requires 330 mV (for OER) and 209 mV (for HER) overpotentials at the current density of ±100 mA cm-2, and a low cell voltage of 1.52 V at 10 mA cm-2 for overall seawater splitting. This work highlights a feasible strategy to explore highly active and stable electrocatalysts for sustainable H2 production.
Collapse
Affiliation(s)
- Wanjun Ou
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632, PR China
| | - Wenbiao Zhang
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632, PR China; Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, PR China
| | - Haoran Qin
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632, PR China
| | - Weijia Zhou
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yi Tang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, PR China
| | - Qingsheng Gao
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University Guangzhou 510632, PR China.
| |
Collapse
|
5
|
Wang P, Yan Y, Qin B, Ye Z, Cai W, Zheng X. Carbon nanotubes encapsulating Pt/MoN heterostructures for superior hydrogen evolution. J Colloid Interface Sci 2023; 650:1174-1181. [PMID: 37473477 DOI: 10.1016/j.jcis.2023.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
Achieving efficient hydrogen evolution reaction (HER) catalysts to scale up electrochemical water splitting is desirable but remains a major challenge. Here, nitrogen-doped carbon nanotubes (NCNTs) loaded with PtNi/MoN electrocatalyst (PtNi/MoN@C) is synthesized by a simple strategy to obtain stronger interphase effects and significantly improve HER activity. The surface morphology of the materials is altered by Pt doping and the electronic structure of MoN is changed, which optimizing the electronic environment of the materials, shifting the binding energy and giving the materials a higher electrical conductivity, this ultimately leads to faster proton and electron transfer processes. The synergistic effect of Pt nanoparticles, MoN and the good combination with carbon leads to a high HER activity of 18 mV to reach 10 mA cm-2 in alkaline solution, outperforming that of the commercial Pt/C. Theoretical studies show that the heterostructures can efficiently enhance the electron transport and reduce the △GH*.
Collapse
Affiliation(s)
- Peijia Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yaotian Yan
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Bin Qin
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhenyu Ye
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Wei Cai
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaohang Zheng
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
6
|
Che K, Zhao M, Sun Y, Pan J. In Situ Synthesis of NiFeLDH/A-CBp from Pyrolytic Carbon as High-Performance Oxygen Evolution Reaction Catalyst for Water Splitting and Zinc Hydrometallurgy. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16113997. [PMID: 37297131 DOI: 10.3390/ma16113997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/09/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Nickel-iron-layered double hydroxide (NiFeLDH) is one of the promising catalysts for the oxygen evolution reaction (OER) in alkaline electrolytes, but its conductivity limits its large-scale application. The focus of current work is to explore low-cost, conductive substrates for large-scale production and combine them with NiFeLDH to improve its conductivity. In this work, purified and activated pyrolytic carbon black (CBp) is combined with NiFeLDH to form an NiFeLDH/A-CBp catalyst for OER. CBp not only improves the conductivity of the catalyst but also greatly reduces the size of NiFeLDH nanosheets to increase the activated surface area. In addition, ascorbic acid (AA) is introduced to enhance the coupling between NiFeLDH and A-CBp, which can be evidenced by the increase of Fe-O-Ni peak intensity in FTIR measurement. Thus, a lower overvoltage of 227 mV and larger active surface area of 43.26 mF·cm-2 are achieved in 1 M KOH solution for NiFeLDH/A-CBp. In addition, NiFeLDH/A-CBp shows good catalytic performance and stability as the anode catalyst for water splitting and Zn electrowinning in alkaline electrolytes. In Zn electrowinning with NiFeLDH/A-CBp, the low cell voltage of 2.08 V at 1000 A·m-2 results in lower energy consumption of 1.78 kW h/KgZn, which is nearly half of the 3.40 kW h/KgZn of industrial electrowinning. This work demonstrates the new application of high-value-added CBp in hydrogen production from electrolytic water and zinc hydrometallurgy to realize the recycling of waste carbon resources and reduce the consumption of fossil resources.
Collapse
Affiliation(s)
- Kai Che
- State Key Laboratory of Chemical Resources Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Man Zhao
- State Key Laboratory of Chemical Resources Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanzhi Sun
- State Key Laboratory of Chemical Resources Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junqing Pan
- State Key Laboratory of Chemical Resources Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
7
|
Dong Y, Ji S, Wang H, Linkov V, Wang R. In-site hydrogen bubble template method to prepare Ni coated metal meshes as effective bi-functional electrodes for water splitting. Dalton Trans 2022; 51:9681-9688. [PMID: 35695272 DOI: 10.1039/d2dt00886f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal substrates are frequently used as current collectors and supports for electrochemically active materials, but their effect on the physical and electrochemical performance of electrocatalysts is rarely investigated. In this study, the electrodeposition method was used to coat four different metal meshes with three-dimensional nickel porous structures using hydrogen bubbles as a template. The significant influence of the metal substrates on the morphology of deposited nickel was demonstrated. 3D porous structures formed on nickel, iron, copper, and titanium meshes via the hydrogen bubble template method varied significantly. It was found that differences in the physical adsorption of hydrogen and electrochemical hydrogen evolution on metal substrates are the fundamental reasons behind the diverse morphology of the coatings. Lattice matching of the substrate and the active material also plays an important role during the electrodeposition process. Electrocatalytic performance of the newly prepared materials in water electrolysis was evaluated using the hydrogen and oxygen evolution reactions (HER and OER). The results demonstrate the high electrocatalytic activity of Ni/FeM in the OER and HER, and the good stability of Ni/TiM in HER.
Collapse
Affiliation(s)
- Yucheng Dong
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Shan Ji
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China.
| | - Hui Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Vladimir Linkov
- South African Institute for Advanced Material Chemistry, University of the Western Cape, Cape Town, 7535, South Africa
| | - Rongfang Wang
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
8
|
Xiang R, Wang X. Advanced Self‐Standing Electrodes for Water Electrolysis: A Mini‐review on Strategies for Further Performance Enhancement. ChemElectroChem 2022. [DOI: 10.1002/celc.202200029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rui Xiang
- Chongqing University of Science and Technology - New Campus: Chongqing University of Science and Technology Chemisty and Chemical Engneering No. 20, East University town road, Shapingba district 401331 Chongqing CHINA
| | - Xingyu Wang
- Chongqing University of Science and Technology - New Campus: Chongqing University of Science and Technology Chemisty and Chemcal Engneering CHINA
| |
Collapse
|
9
|
Thiyagarajan GB, Mukkavilli RS, Graf D, Fischer T, Wilhelm M, Christiansen S, Mathur S, Kumar R. Self-supported amorphous TaN x(O y)/nickel foam thin film as an advanced electrocatalyst for hydrogen evolution reaction. Chem Commun (Camb) 2022; 58:3310-3313. [PMID: 35179160 DOI: 10.1039/d2cc00151a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chemical vapor deposited (CVD) amorphous tantalum-oxy nitride film on porous three-dimensional (3D) nickel foam (TaNx(Oy)/NF) utilizing tantalum precursor, tris(diethylamino)(ethylimino)tantalum(V), ([Ta(NEt)(NEt2)3]) with preformed Ta-N bonds is reported as a potential self-supported electrocatalyst for hydrogen evolution reaction (HER). The morphological analyses revealed the formation of thin film of core-shell structured TaNx(Oy) coating (ca. 236 nm) on NF. In 0.5 M H2SO4, TaNx(Oy)/NF exhibited enhanced HER activity with a low onset potential as compared to the bare NF (-50 mV vs. -166 mV). The TaNx(Oy)/NF samples also displayed higher current density (-11.08 mA cm-2vs. -3.36 mA cm-2 at 400 mV), lower Tafel slope (151 mV dec-1vs. 179 mV dec-1) and lower charge transfer resistance exemplifying the advantage of TaNx(Oy) coating towards enhanced HER performance. The enhanced HER catalytic activity is attributed to the synergistic effect between the amorphous TaNx(Oy) film and the nickel foam.
Collapse
Affiliation(s)
- Ganesh Babu Thiyagarajan
- Laboratory for High Performance Ceramics, Department of Metallurgical and Materials Engineering, Indian Institute of Technology-Madras (IIT Madras), Chennai 600036, India. .,Ceramic Technologies Group-Center of Excellence in Materials and Manufacturing for Futuristic Mobility, Indian Institute of Technology-Madras (IIT Madras), Chennai 600036, India
| | - Raghunath Sharma Mukkavilli
- Laboratory for High Performance Ceramics, Department of Metallurgical and Materials Engineering, Indian Institute of Technology-Madras (IIT Madras), Chennai 600036, India.
| | - David Graf
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, 50939 Cologne, Germany.
| | - Thomas Fischer
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, 50939 Cologne, Germany.
| | - Michael Wilhelm
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, 50939 Cologne, Germany.
| | - Silke Christiansen
- Department Correlative Microscopy and Materials Data, Fraunhofer Institute for Ceramic Technologies and Systems (IKTS), Forchheim, Germany.,Physics Department, Freie Universität Berlin (FU), Berlin, Germany
| | - Sanjay Mathur
- Laboratory for High Performance Ceramics, Department of Metallurgical and Materials Engineering, Indian Institute of Technology-Madras (IIT Madras), Chennai 600036, India. .,Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, 50939 Cologne, Germany.
| | - Ravi Kumar
- Laboratory for High Performance Ceramics, Department of Metallurgical and Materials Engineering, Indian Institute of Technology-Madras (IIT Madras), Chennai 600036, India. .,Ceramic Technologies Group-Center of Excellence in Materials and Manufacturing for Futuristic Mobility, Indian Institute of Technology-Madras (IIT Madras), Chennai 600036, India
| |
Collapse
|
10
|
Mei Y, Cong Y, Huang S, Qian J, Ye J, Li TT. MOF-on-MOF Strategy to Construct a Nitrogen-Doped Carbon-Incorporated CoP@Fe-CoP Core-Shelled Heterostructure for High-Performance Overall Water Splitting. Inorg Chem 2021; 61:1159-1168. [PMID: 34962378 DOI: 10.1021/acs.inorgchem.1c03498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The design and preparation of efficient and low-cost catalysts for water electrolysis are crucial and highly desirable to produce eco-friendly and sustainable hydrogen fuel. Herein, we prepared nitrogen-doped carbon-incorporated CoP@Fe-CoP core-shelled nanorod arrays grown on Ni foam (CoP@Fe-CoP/NC/NF) through phosphorization of ZIF-67@Co-Fe Prussian blue analogue (ZIF-67@CoFe-PBA). The hierarchical nanorod arrays combined with the core-shelled structure offer favorable mass/electron transport capacity and maximize the active sites, thus enhancing the electrochemically active surface area. The synergistic effect of the bimetallic components and the nitrogen-doped carbon matrix endow the composite with an optimized electronic structure. Benefiting from the above superiorities of morphological and chemical compositions, this self-supported CoP@Fe-CoP/NC/NF heterostructure can drive alkaline hydrogen evolution reaction and oxygen evolution reaction with overpotentials of 97 and 270 mV to yield 100 mA cm-2, respectively. The two-electrode alkaline electrolyzer constructed by this heterostructure shows a low cell voltage of 1.58 V to yield 10 mA cm-2, superior to the precious-metal-based electrocatalyst apparatus (IrO2∥Pt/C). This study offers a feasible and facile approach to develop efficient electrocatalysts for water electrolysis, which applies to other electrochemical energy conversion and storage applications.
Collapse
Affiliation(s)
- Yan Mei
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Yikang Cong
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Shengsheng Huang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Jinjie Qian
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, China
| | - Jun Ye
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ting-Ting Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.,Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Ningbo University, Ningbo 315211, China
| |
Collapse
|
11
|
Novel components in anion exchange membrane water electrolyzers (AEMWE’s): Status, challenges and future needs. A mini review. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.107140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
12
|
Cong Y, Huang S, Mei Y, Li TT. Metal-Organic Frameworks-Derived Self-Supported Carbon-Based Composites for Electrocatalytic Water Splitting. Chemistry 2021; 27:15866-15888. [PMID: 34472663 DOI: 10.1002/chem.202102209] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 12/31/2022]
Abstract
Electrocatalytic water splitting has been considered as a promising strategy for the sustainable evolution of hydrogen energy and storage of intermittent electric energy. Efficient catalysts for electrocatalytic water splitting are urgently demanded to decrease the overpotentials and promote the sluggish reaction kinetics. Carbon-based composites, including heteroatom-doped carbon materials, metals/alloys@carbon composites, metal compounds@carbon composites, and atomically dispersed metal sites@carbon composites have been widely used as the catalysts due to their fascinating properties. However, these electrocatalysts are almost powdery form, and should be cast on the current collector by using the polymeric binder, which would result in the unsatisfied electrocatalytic performance. In comparison, a self-supported electrode architecture is highly attractive. Recently, self-supported metal-organic frameworks (MOFs) constructed by coordination of metal centers and organic ligands have been considered as suitable templates/precursors to construct free-standing carbon-based composites grown on conductive substrate. MOFs-derived carbon-based composites have various merits, such as the well-aligned array architecture and evenly distributed active sites, and easy functionalization with other species, which make them suitable alternatives to non-noble metal-included electrocatalysts. In this review, we intend to show the research progresses by employment of MOFs as precursors to prepare self-supported carbon-based composites. Focusing on these MOFs-derived carbon-based nanomaterials, the latest advances in their controllable synthesis, composition regulation, electrocatalytic performances in hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and overall water splitting (OWS) are presented. Finally, the challenges and perspectives are showed for the further developments of MOFs-derived self-supported carbon-based nanomaterials in electrocatalytic reactions.
Collapse
Affiliation(s)
- Yikang Cong
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Shengsheng Huang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Yan Mei
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China
| | - Ting-Ting Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, P. R. China.,Key Laboratory of Advanced Mass Spectrometry and, Molecular Analysis of Zhejiang Province, Ningbo University, Ningbo, 315211, P. R. China
| |
Collapse
|
13
|
Chen X, Zhao X, Wang Y, Wang S, Shang Y, Xu J, Guo F, Zhang Y. Layered Ni−Co−P Electrode Synthesized by CV Electrodeposition for Hydrogen Evolution at Large Currents. ChemCatChem 2021. [DOI: 10.1002/cctc.202100707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xiaogang Chen
- Key Laboratory of Materials Physics (Ministry of Education), School of Physics and Microelectronics Zhengzhou University Zhengzhou 450052 P. R. China
| | - Xuan Zhao
- Key Laboratory of Materials Physics (Ministry of Education), School of Physics and Microelectronics Zhengzhou University Zhengzhou 450052 P. R. China
| | - Yuanyuan Wang
- Key Laboratory of Materials Physics (Ministry of Education), School of Physics and Microelectronics Zhengzhou University Zhengzhou 450052 P. R. China
| | - Shanshan Wang
- Key Laboratory of Materials Physics (Ministry of Education), School of Physics and Microelectronics Zhengzhou University Zhengzhou 450052 P. R. China
| | - Yuanyuan Shang
- Key Laboratory of Materials Physics (Ministry of Education), School of Physics and Microelectronics Zhengzhou University Zhengzhou 450052 P. R. China
| | - Jie Xu
- Key Laboratory of Materials Physics (Ministry of Education), School of Physics and Microelectronics Zhengzhou University Zhengzhou 450052 P. R. China
| | - Fengmei Guo
- Key Laboratory of Materials Physics (Ministry of Education), School of Physics and Microelectronics Zhengzhou University Zhengzhou 450052 P. R. China
| | - Yingjiu Zhang
- Key Laboratory of Materials Physics (Ministry of Education), School of Physics and Microelectronics Zhengzhou University Zhengzhou 450052 P. R. China
| |
Collapse
|
14
|
Electrocatalysis for the Oxygen Evolution Reaction in Acidic Media: Progress and Challenges. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104320] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The oxygen evolution reaction (OER) is the efficiency-determining half-reaction process of high-demand, electricity-driven water splitting due to its sluggish four-electron transfer reaction. Tremendous effects on developing OER catalysts with high activity and strong acid-tolerance at high oxidation potentials have been made for proton-conducting polymer electrolyte membrane water electrolysis (PEMWE), which is one of the most promising future hydrogen-fuel-generating technologies. This review presents recent progress in understanding OER mechanisms in PEMWE, including the adsorbate evolution mechanism (AEM) and the lattice-oxygen-mediated mechanism (LOM). We further summarize the latest strategies to improve catalytic performance, such as surface/interface modification, catalytic site coordination construction, and electronic structure regulation of catalytic centers. Finally, challenges and prospective solutions for improving OER performance are proposed.
Collapse
|
15
|
Rational construction of 3D MoNi/NiMoOx@NiFe LDH with rapid electron transfer for efficient overall water splitting. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Taylor AK, Mou T, Sonea A, Chen J, Yee BB, Gates BD. Arrays of Microscale Linear Ridges with Self-Cleaning Functionality for the Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2399-2413. [PMID: 33405506 DOI: 10.1021/acsami.0c15240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gas management during electrocatalytic water splitting is vital for improving the efficiency of clean hydrogen production. The accumulation of gas bubbles on electrode surfaces prevents electrolyte access and passivates the electrochemically active surface area. Electrode morphologies are sought to assist in the removal of gas from surfaces to achieve higher reaction rates at operational voltages. Herein, regular arrays of linear ridges with specific microscale separations were systematically studied and correlated to the performance of the oxygen evolution reaction (OER). The dimensions of the linear ridges were proportional to the size of the oxygen bubbles, and the mass transfer processes associated with gas evolution at these ridges were monitored using a high-speed camera. Characterization of the adhered bubbles prior to detachment enabled the use of empirical methods to determine the volumetric flux of product gas and the bubble residence times. The linear ridges promoted a self-cleaning effect as one bubble would induce neighboring bubbles to simultaneously release from the electrode surfaces. The linear ridges also provided preferential bubble growth sites, which expedited the detachment of bubbles with similar diameters and shorter residence times. The linear ridges enhanced the OER in comparison to planar electrodes prepared by electrodeposition from the same high-purity nickel (Ni). Linear ridges with a separation distance of 200 μm achieved nearly a 2-fold increase in current density relative to the planar electrode at an operating voltage of 1.8 V (vs Hg/HgO). The electrodes with linear ridges having a separation distance of 200 μm also had the highest sustained current densities over a range of operating conditions for the OER. Self-cleaning surface morphologies could benefit a variety of electrocatalytic gas evolving reactions by improving the efficiency of these processes.
Collapse
Affiliation(s)
- Audrey K Taylor
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Tiffany Mou
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Ana Sonea
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Jiayue Chen
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Brenden B Yee
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Byron D Gates
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
17
|
Iridium and Ruthenium Modified Polyaniline Polymer Leads to Nanostructured Electrocatalysts with High Performance Regarding Water Splitting. Polymers (Basel) 2021; 13:polym13020190. [PMID: 33430248 PMCID: PMC7825649 DOI: 10.3390/polym13020190] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/26/2020] [Accepted: 01/01/2021] [Indexed: 11/17/2022] Open
Abstract
The breakthrough in water electrolysis technology for the sustainable production of H2, considered as a future fuel, is currently hampered by the development of tough electrocatalytic materials. We report a new strategy of fabricating conducting polymer-derived nanostructured materials to accelerate the electrocatalytic hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and water splitting. Extended physical (XRD, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX)) and electrochemical (cyclic voltammetry (CV), linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS)) methods were merged to precisely characterize the as-synthesized iridium and ruthenium modified polyaniline (PANI) materials and interrogate their efficiency. The presence of Ir(+III) cations during polymerization leads to the formation of Ir metal nanoparticles, while Ru(+III) induces the formation of RuO2 oxide nanoparticles by thermal treatment; they are therefore methods for the on-demand production of oxide or metal nanostructured electrocatalysts. The findings from using 0.5 M H2SO4 highlight an ultrafast electrochemical kinetic of the material PANI-Ir for HER (36 - 0 = 36 mV overpotential to reach 10 mA cm-2 at 21 mV dec-1), and of PANI-Ru for OER (1.47 - 1.23 = 240 mV overpotential to reach 10 mA cm-2 at 47 mV dec-1), resulting in an efficient water splitting exactly at its thermoneutral cell voltage of 1.45 V, and satisfactory durability (96 h).
Collapse
|
18
|
Zhao J, Zhang JJ, Li ZY, Bu XH. Recent Progress on NiFe-Based Electrocatalysts for the Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003916. [PMID: 33244890 DOI: 10.1002/smll.202003916] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/28/2020] [Indexed: 06/11/2023]
Abstract
The seriousness of the energy crisis and the environmental impact of global anthropogenic activities have led to an urgent need to develop efficient and green fuels. Hydrogen, as a promising alternative resource that is produced in an environmentally friendly and sustainable manner by a water splitting reaction, has attracted extensive attention in recent years. However, the large-scale application of water splitting devices is hindered predominantly by the sluggish oxygen evolution reaction (OER) at the anode. Therefore, the design and exploration of high-performing OER electrocatalysts is a critical objective. Considering their low prices, abundant reserves, and intrinsic activities, NiFe-based bimetal compounds are widely studied as excellent OER electrocatalysts. Moreover, recent progress on NiFe-based OER electrocatalysts in alkaline environments is comprehensively and systematically introduced through various catalyst families including NiFe-layered hydroxides, metal-organic frameworks, NiFe-based (oxy)hydroxides, NiFe-based oxides, NiFe alloys, and NiFe-based nonoxides. This review briefly introduces the advanced NiFe-based OER materials and their corresponding reaction mechanisms. Finally, the challenges inherent to and possible strategies for producing extraordinary NiFe-based electrocatalysts are discussed.
Collapse
Affiliation(s)
- Jia Zhao
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin, 300350, P. R. China
| | - Ji-Jie Zhang
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin, 300350, P. R. China
| | - Zhao-Yang Li
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin, 300350, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, Nankai University, 38 Tongyan Road, Haihe Educational Park, Tianjin, 300350, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, P. R. China
| |
Collapse
|
19
|
Djara R, Masquelez N, Lacour M, Merzouki A, Cambedouzou J, Cornu D, Tingry S, Holade Y. Self‐Supported Electrocatalysts Derived from Nickel‐Cobalt Modified Polyaniline Polymer for H
2
‐Evolution and O
2
‐Evolution Reactions. ChemCatChem 2020. [DOI: 10.1002/cctc.202001235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Razik Djara
- Laboratoire de Physico-Chimie des Hauts Polymères (LPCHP) Université Ferhat Abbas Sétif 1 El Bez Sétif 19000 Algeria
- Institut Européen des Membranes IEM UMR 5635 Univ Montpellier, ENSCM, CNRS, Montpellier, France 300 Avenue du Professeur Emile Jeanbrau 34090 Montpellier, Cedex 5 France
| | - Nathalie Masquelez
- Institut Européen des Membranes IEM UMR 5635 Univ Montpellier, ENSCM, CNRS, Montpellier, France 300 Avenue du Professeur Emile Jeanbrau 34090 Montpellier, Cedex 5 France
| | - Marie‐Agnès Lacour
- ChemLab, Montpellier, France ENSCM 240 Avenue du Professeur Emile Jeanbrau 34296 Montpellier, Cedex 5 France
| | - Abdelhafid Merzouki
- Laboratoire de Physico-Chimie des Hauts Polymères (LPCHP) Université Ferhat Abbas Sétif 1 El Bez Sétif 19000 Algeria
| | - Julien Cambedouzou
- Institut Européen des Membranes IEM UMR 5635 Univ Montpellier, ENSCM, CNRS, Montpellier, France 300 Avenue du Professeur Emile Jeanbrau 34090 Montpellier, Cedex 5 France
| | - David Cornu
- Institut Européen des Membranes IEM UMR 5635 Univ Montpellier, ENSCM, CNRS, Montpellier, France 300 Avenue du Professeur Emile Jeanbrau 34090 Montpellier, Cedex 5 France
| | - Sophie Tingry
- Institut Européen des Membranes IEM UMR 5635 Univ Montpellier, ENSCM, CNRS, Montpellier, France 300 Avenue du Professeur Emile Jeanbrau 34090 Montpellier, Cedex 5 France
| | - Yaovi Holade
- Institut Européen des Membranes IEM UMR 5635 Univ Montpellier, ENSCM, CNRS, Montpellier, France 300 Avenue du Professeur Emile Jeanbrau 34090 Montpellier, Cedex 5 France
| |
Collapse
|
20
|
Singh B, Indra A. Designing Self‐Supported Metal‐Organic Framework Derived Catalysts for Electrochemical Water Splitting. Chem Asian J 2020; 15:607-623. [DOI: 10.1002/asia.201901810] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/30/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Baghendra Singh
- Department of ChemistryIndian Institute of Technology (BHU) Varanasi Uttar Pradesh 221005 India
| | - Arindam Indra
- Department of ChemistryIndian Institute of Technology (BHU) Varanasi Uttar Pradesh 221005 India
| |
Collapse
|
21
|
Biradha K, Goswami A, Moi R. Coordination polymers as heterogeneous catalysts in hydrogen evolution and oxygen evolution reactions. Chem Commun (Camb) 2020; 56:10824-10842. [DOI: 10.1039/d0cc04236f] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This article highlights various strategies of designing coordination polymers for catalysing water splitting reactions.
Collapse
Affiliation(s)
- Kumar Biradha
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| | - Anindita Goswami
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| | - Rajib Moi
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| |
Collapse
|
22
|
Qiao S, Liu J, Kawi S. Editorial: Electrocatalysis ‐ From Batteries to Clean Energy Conversion. ChemCatChem 2019. [DOI: 10.1002/cctc.201902214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shizhang Qiao
- School of Chemical Engineering and Advanced MaterialsThe University of Adelaide Adelaide SA 5005 Australia
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of Sciences Dalian 116023, Dalian P.R. China
- DICP-Surrey Joint Centre for Future MaterialsDepartment of Chemical and Process EngineeringUniversity of Surrey, Guildford Surrey GU2 7XH UK
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular EngineeringNational University of Singapore Singapore 117582 Singapore
| |
Collapse
|