1
|
Souza FL, Rodríguez-Gutiérrez I, Souza JB, Leite ER. Revisiting strategies to improve the performance of hematite photoanodes for water photoelectrolysis. Phys Chem Chem Phys 2025; 27:642-654. [PMID: 39665590 DOI: 10.1039/d4cp02922d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Photoelectrochemical (PEC) water splitting is emerging as a sustainable approach for producing green hydrogen. The design of efficient photoanodes is the key for the step forward technological application in which morphology optimization and defect engineering play central roles. In this perspective, the intricate interplay between morphology optimization, band engineering and chemical modifications is critically discussed. First, a brief introduction of the relevant aspects of semiconductors applied in PEC devices is provided. Then, a critical analysis of the influence of morphology and chemical modifications is presented, with hematite employed as a model system. Lastly, insights into future directions and outlooks for existing challenges on the development of photoelectrochemical devices for water splitting are displayed.
Collapse
Affiliation(s)
- Flavio L Souza
- Brazilian Nanotechnology National Laboratory (LNNANO), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Brazil.
- Centro de Ciências Naturais e Humanas (CCNH), Federal University of ABC (UFABC), Santo André 09210580, Brazil
- Institute of Chemistry, University of Campinas (UNICAMP), PO Box 6154, Campinas, São Paulo, Brazil
| | - Ingrid Rodríguez-Gutiérrez
- Brazilian Nanotechnology National Laboratory (LNNANO), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Brazil.
| | - João Batista Souza
- Brazilian Nanotechnology National Laboratory (LNNANO), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Brazil.
- Institute of Chemistry, University of Campinas (UNICAMP), PO Box 6154, Campinas, São Paulo, Brazil
| | - Edson R Leite
- Brazilian Nanotechnology National Laboratory (LNNANO), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Brazil.
- Departamento de Química, Universidade Federal de São Carlos, São Carlo, 13565-905, Brazil
| |
Collapse
|
2
|
Idei T, Nagai Y, Pan Z, Katayama K. Tailoring Hematite Photoanodes for Improved PEC Performance: The Role of Alcohol Species Revealed by SHAP Analysis. ACS OMEGA 2024; 9:44837-44845. [PMID: 39524675 PMCID: PMC11541531 DOI: 10.1021/acsomega.4c08633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
We explore the synergistic effects of TiO2 underlayers and varied alcohol species in the precursor solutions on the photoelectrochemical (PEC) performance of hematite photoanodes. Utilizing a robust machine learning (ML) framework combined with comprehensive analytical data sets, we systematically investigate how these modifications influence key physical and chemical properties, directly impacting the efficiency of water splitting processes. Our approach employs an ML model that integrates SHapley Additive exPlanations (SHAP) to quantitatively assess the impact of each dominant descriptor selected in the analytical data on the PEC performance, and they were combined with the SHAP values' dependence on the experimental operations. Specifically, we focus on the type of alcohol (methanol, ethanol, butanol, and 2-ethyl-1-butanol) used in the precursor solutions as the experimental operation, examining their effects on the dominant descriptors selected in the analytical data. The results from the SHAP analysis reveal that different alcohol species significantly alter the physicochemical properties at the hematite/TiO2 interface and in bulk hematite. These changes are primarily manifested in the modulation of the density of states and resistance to promote the charge carrier transport. For example, ethanol and butanol were found to enhance the electron density of states at the interface, which correlates with higher photocurrent outputs and improved PEC activity. In contrast, methanol showed a less pronounced effect, suggesting a nuanced interaction between the alcohol molecular structure and hematite surface chemistry. These findings not only underscore the importance of tailored precursor solution chemistry for enhancing PEC performance but also highlight the power of ML tools in uncovering the underlying physical and chemical mechanisms that govern the behavior of complex material systems. This study sets a foundational approach where ML can bridge the gap between empirical observations and theoretical understanding, leading to the rational design of energy materials.
Collapse
Affiliation(s)
- Takumi Idei
- Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan
| | - Yuya Nagai
- Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan
| | - Zhenhua Pan
- Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan
| | - Kenji Katayama
- Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan
| |
Collapse
|
3
|
Idei T, Pan Z, Katayama K. Combined Effect of Underlayer and Deposition Solution to Optimize the Alignment of Hematite Photoanodes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11526-11533. [PMID: 38767843 DOI: 10.1021/acs.langmuir.4c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
This study investigates the optimization of hematite (α-Fe2O3) photoanodes for enhanced photoelectrochemical (PEC) performance and reproducibility, which are crucial for photocatalytic applications. Despite hematite's potential, hindered by inherent limitations, significant improvements were realized by introducing a titanium dioxide (TiO2) underlayer and ethanol-modified deposition. The influence of the deposition methods was understood by potential-dependent photoelectrochemical impedance spectroscopy analysis. The introduction of the TiO2 underlayer effectively increased the density of states, preferable for the electron transport in the bulk hematite, and the ethanol deposition on a TiO2 underlayer led to a stable surface state formation (S1 state) for the photoexcited hole transfer. This analysis illuminated the intricate interplay between electron transport in the bulk and photogenerated hole transfer at the solution interface, thereby facilitating smoother charge transfer. These findings underscore the viability of surface engineering and meticulous process optimization in addressing critical challenges in photocatalyst development.
Collapse
Affiliation(s)
- Takumi Idei
- Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan
| | - Zhenhua Pan
- Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan
| | - Kenji Katayama
- Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan
| |
Collapse
|
4
|
Chang Y, Han M, Ding Y, Wei H, Zhang D, Luo H, Li X, Yan X. Interface Engineering of CoFe-LDH Modified Ti: α-Fe 2O 3 Photoanode for Enhanced Photoelectrochemical Water Oxidation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2579. [PMID: 37764609 PMCID: PMC10536217 DOI: 10.3390/nano13182579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Effectively regulating and promoting the charge separation and transfer of photoanodes is a key and challenging aspect of photoelectrochemical (PEC) water oxidation. Herein, a Ti-doped hematite photoanode with a CoFe-LDH cocatalyst loaded on the surface was prepared through a series of processes, including hydrothermal treatment, annealing and electrodeposition. The prepared CoFe-LDH/Ti:α-Fe2O3 photoanode exhibited an outstanding photocurrent density of 3.06 mA/cm2 at 1.23 VRHE, which is five times higher than that of α-Fe2O3 alone. CoFe-LDH modification and Ti doping on hematite can boost the surface charge transfer efficiency, which is mainly attributed to the interface interaction between CoFe-LDH and Ti:α-Fe2O3. Furthermore, we investigated the role of Ti doping in enhancing the PEC performance of CoFe-LDH/Ti:α-Fe2O3. A series of characterizations and theoretical calculations revealed that, in addition to improving the electronic conductivity of the bulk material, Ti doping also further enhances the interface coupling of CoFe-LDH/α-Fe2O3 and finely regulates the interfacial electronic structure. These changes promote the rapid extraction of holes from hematite and facilitate charge separation and transfer. The informative findings presented in this work provide valuable insights for the design and construction of hematite photoanodes, offering guidance for achieving excellent performance in photoelectrochemical (PEC) water oxidation.
Collapse
Affiliation(s)
- Yue Chang
- Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- National Materials Corrosion and Protection Data Center, University of Science and Technology Beijing, Beijing 100083, China
- BRI Southeast Asia Network for Corrosion and Protection (MOE), Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
| | - Minmin Han
- National Engineering Research Center for Intelligent Electrical Vehicle Power System, College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Yehui Ding
- Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Huiyun Wei
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Dawei Zhang
- Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- National Materials Corrosion and Protection Data Center, University of Science and Technology Beijing, Beijing 100083, China
- BRI Southeast Asia Network for Corrosion and Protection (MOE), Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
| | - Hong Luo
- Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- National Materials Corrosion and Protection Data Center, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaogang Li
- Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- National Materials Corrosion and Protection Data Center, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiongbo Yan
- Beijing Advanced Innovation Center Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
5
|
Chertkova VP, Iskortseva AN, Pazhetnov EM, Arkharova NA, Ryazantsev SV, Levin EE, Nikitina VA. Evaluation of the Efficiency of Photoelectrochemical Activity Enhancement for the Nanostructured LaFeO 3 Photocathode by Surface Passivation and Co-Catalyst Deposition. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234327. [PMID: 36500950 PMCID: PMC9741200 DOI: 10.3390/nano12234327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/01/2023]
Abstract
Perovskite-type lanthanum iron oxide, LaFeO3, is a promising photocathode material that can achieve water splitting under visible light. However, the performance of this photoelectrode material is limited by significant electron-hole recombination. In this work, we explore different strategies to optimize the activity of a nanostructured porous LaFeO3 film, which demonstrates enhanced photoelectrocatalytic activity due to the reduced diffusion length of the charge carriers. We found that surface passivation is not an efficient approach for enhancing the photoelectrochemical performance of LaFeO3, as it is sufficiently stable under photoelectrocatalytic conditions. Instead, the deposition of a Pt co-catalyst was shown to be essential for maximizing the photoelectrochemical activity both in hydrogen evolution and oxygen reduction reactions. Illumination-induced band edge unpinning was found to be a major challenge for the further development of LaFeO3 photocathodes for water-splitting applications.
Collapse
Affiliation(s)
| | - Aleksandra N. Iskortseva
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Egor M. Pazhetnov
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | | | - Sergey V. Ryazantsev
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Eduard E. Levin
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- FSRC “Crystallography and Photonics” RAS, Moscow 119333, Russia
| | - Victoria A. Nikitina
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| |
Collapse
|
6
|
Thangamuthu M, Ruan Q, Ohemeng PO, Luo B, Jing D, Godin R, Tang J. Polymer Photoelectrodes for Solar Fuel Production: Progress and Challenges. Chem Rev 2022; 122:11778-11829. [PMID: 35699661 PMCID: PMC9284560 DOI: 10.1021/acs.chemrev.1c00971] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Converting solar energy to fuels has attracted substantial interest over the past decades because it has the potential to sustainably meet the increasing global energy demand. However, achieving this potential requires significant technological advances. Polymer photoelectrodes are composed of earth-abundant elements, e.g. carbon, nitrogen, oxygen, hydrogen, which promise to be more economically sustainable than their inorganic counterparts. Furthermore, the electronic structure of polymer photoelectrodes can be more easily tuned to fit the solar spectrum than inorganic counterparts, promising a feasible practical application. As a fast-moving area, in particular, over the past ten years, we have witnessed an explosion of reports on polymer materials, including photoelectrodes, cocatalysts, device architectures, and fundamental understanding experimentally and theoretically, all of which have been detailed in this review. Furthermore, the prospects of this field are discussed to highlight the future development of polymer photoelectrodes.
Collapse
Affiliation(s)
- Madasamy Thangamuthu
- Department
of Chemical Engineering, University College
London, Torrington Place, London WC1E 7JE, U.K.
| | - Qiushi Ruan
- School
of Materials Science and Engineering, Southeast
University, Nanjing 211189, China
| | - Peter Osei Ohemeng
- Department
of Chemistry, The University of British
Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| | - Bing Luo
- School
of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- International
Research Center for Renewable Energy & State Key Laboratory of
Multiphase Flow in Power Engineering, Xi’an
Jiaotong University, Xi’an 710049, China
| | - Dengwei Jing
- International
Research Center for Renewable Energy & State Key Laboratory of
Multiphase Flow in Power Engineering, Xi’an
Jiaotong University, Xi’an 710049, China
| | - Robert Godin
- Department
of Chemistry, The University of British
Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC V1V 1V7, Canada
| | - Junwang Tang
- Department
of Chemical Engineering, University College
London, Torrington Place, London WC1E 7JE, U.K.
| |
Collapse
|
7
|
Duc Quang N, Cao Van P, Majumder S, Jeong JR, Kim D, Kim C. Rational construction of S-doped FeOOH onto Fe 2O 3 nanorods for enhanced water oxidation. J Colloid Interface Sci 2022; 616:749-758. [PMID: 35247813 DOI: 10.1016/j.jcis.2022.02.117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/01/2022]
Abstract
Hematite-based photoanode (α-Fe2O3) is considered the promising candidate for photoelectrochemical (PEC) water splitting due to its relatively small optical bandgap. However, severe charge recombination in the bulk and poor surface water oxidation kinetics have limited the PEC performance of Fe2O3 photoelectrodes, which is far below the theoretical value. Herein, a new catalyst, S-doped FeOOH (S-FeOOH), has been immobilized onto the surface of the Fe2O3 nanorod (NR) array by a facile chemical bath deposition incorporated thermal sulfuration process. The grown S-FeOOH layer acts not only as an efficient catalyst layer to accelerate the water oxidation on the surface of photoelectrode but also constructs a heterojunction with the light absorption layer to facilitate the interface charge carrier separation and transfer. As expected, the modified S-FeOOH@Fe2O3 photoanode achieves a remarkable increase in PEC performance of 2.30 mA cm-2 at 1.23 V versus the reversible hydrogen electrode (VRHE) andan apparent negative shifted onset potential of 250 mV in comparison with pristine Fe2O3 (0.95 mA cm-2 at 1.23 VRHE). These results provide a simple and effective strategy to coupling oxygen evolution catalysts with photoanodes for practically high-performance PEC applications.
Collapse
Affiliation(s)
- Nguyen Duc Quang
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Phuoc Cao Van
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sutripto Majumder
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jong-Ryul Jeong
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Dojin Kim
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Chunjoong Kim
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
8
|
Rodríguez-Gutiérrez I, Bedin KC, Mouriño B, Souza Junior JB, Souza FL. Advances in Engineered Metal Oxide Thin Films by Low-Cost, Solution-Based Techniques for Green Hydrogen Production. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1957. [PMID: 35745297 PMCID: PMC9229379 DOI: 10.3390/nano12121957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023]
Abstract
Functional oxide materials have become crucial in the continuous development of various fields, including those for energy applications. In this aspect, the synthesis of nanomaterials for low-cost green hydrogen production represents a huge challenge that needs to be overcome to move toward the next generation of efficient systems and devices. This perspective presents a critical assessment of hydrothermal and polymeric precursor methods as potential approaches to designing photoelectrodes for future industrial implementation. The main conditions that can affect the photoanode's physical and chemical characteristics, such as morphology, particle size, defects chemistry, dimensionality, and crystal orientation, and how they influence the photoelectrochemical performance are highlighted in this report. Strategies to tune and engineer photoelectrode and an outlook for developing efficient solar-to-hydrogen conversion using an inexpensive and stable material will also be addressed.
Collapse
Affiliation(s)
- Ingrid Rodríguez-Gutiérrez
- Centro de Ciências Naturais e Humanas (CCNH), Federal University of ABC (UFABC), Santo André 09210-580, SP, Brazil
- Brazilian Nanotechnology National Laboratory (LNNANO), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (K.C.B.); (B.M.); (J.B.S.J.)
| | - Karen Cristina Bedin
- Brazilian Nanotechnology National Laboratory (LNNANO), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (K.C.B.); (B.M.); (J.B.S.J.)
| | - Beatriz Mouriño
- Brazilian Nanotechnology National Laboratory (LNNANO), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (K.C.B.); (B.M.); (J.B.S.J.)
| | - João Batista Souza Junior
- Brazilian Nanotechnology National Laboratory (LNNANO), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (K.C.B.); (B.M.); (J.B.S.J.)
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, Campinas 13083-970, SP, Brazil
| | - Flavio Leandro Souza
- Centro de Ciências Naturais e Humanas (CCNH), Federal University of ABC (UFABC), Santo André 09210-580, SP, Brazil
- Brazilian Nanotechnology National Laboratory (LNNANO), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, SP, Brazil; (K.C.B.); (B.M.); (J.B.S.J.)
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, Campinas 13083-970, SP, Brazil
| |
Collapse
|
9
|
Berardi S, Cristino V, Bignozzi CA, Grandi S, Caramori S. Hematite-based photoelectrochemical interfaces for solar fuel production. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Lyu S, Younis MA, Liu Z, Zeng L, Peng X, Yang B, Li Z, Lei L, Hou Y. Rational design on photoelectrodes and devices to boost photoelectrochemical performance of solar-driven water splitting: a mini review. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2148-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Rong J, Wang Z, Lv J, Fan M, Chong R, Chang Z. Ni(OH)2 quantum dots as a stable cocatalyst modified α-Fe2O3 for enhanced photoelectrochemical water-splitting. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63829-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Yang L, Zhang C, Yu X, Yao Y, Li Z, Wu C, Yao W, Zou Z. Extraterrestrial artificial photosynthetic materials for in-situ resource utilization. Natl Sci Rev 2021; 8:nwab104. [PMID: 34691720 PMCID: PMC8363334 DOI: 10.1093/nsr/nwab104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/28/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
Aerospace milestones in human history, including returning to the moon and manned Martian missions, have been implemented in recent years. Space exploration has become one of the global common goals, and to ensure the survival and development of human beings in the extraterrestrial extreme environment has been becoming the basic ability and technology of manned space exploration. For the purpose of fulfilling the goal of extraterrestrial survival, researchers in Nanjing University and the China Academy of Space Technology proposed extraterrestrial artificial photosynthesis (EAP) technology. By simulating the natural photosynthesis of green plants on the Earth, EAP converts CO2/H2O into fuel and O2 in an in-situ, accelerated and controllable manner by using waste CO2 in the confined space of spacecraft, or abundant CO2 resources in extraterrestrial celestial environments, e.g. Mars. Thus, the material loading of manned spacecraft can be greatly reduced to support affordable and sustainable deep space exploration. In this paper, EAP technology is compared with existing methods of converting CO2/H2O into fuel and O2 in the aerospace field, especially the Sabatier method and Bosch reduction method. The research progress of possible EAP materials for in-situ utilization of extraterrestrial resources are also discussed in depth. Finally, this review lists the challenges that the EAP process may encounter, which need to be focused on for future implementation and application. We expect to deepen the understanding of artificial photosynthetic materials and technologies, and aim to strongly support the development of manned spaceflight.
Collapse
Affiliation(s)
- Liuqing Yang
- Eco-Materials and Renewable Energy Research Center (ERERC), Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
| | - Ce Zhang
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China
| | - Xiwen Yu
- Eco-Materials and Renewable Energy Research Center (ERERC), Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Yingfang Yao
- Eco-Materials and Renewable Energy Research Center (ERERC), Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
- KunshanInnovation Institute of Nanjing University, Suzhou 215347, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhaosheng Li
- Eco-Materials and Renewable Energy Research Center (ERERC), Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Congping Wu
- Eco-Materials and Renewable Energy Research Center (ERERC), Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
- KunshanInnovation Institute of Nanjing University, Suzhou 215347, China
| | - Wei Yao
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China
| | - Zhigang Zou
- Eco-Materials and Renewable Energy Research Center (ERERC), Jiangsu Key Laboratory for Nano Technology, National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
- Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China
- Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
- Macau Institute of Systems Engineering, Macau University of Science and Technology, Macau 999078, China
| |
Collapse
|
13
|
A hybrid CoOOH-rGO/Fe2O3 photoanode with spatial charge separation and charge transfer for efficient photoelectrochemical water oxidation. J Catal 2021. [DOI: 10.1016/j.jcat.2021.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Li H, Yin M, Li X, Mo R. Enhanced Photoelectrochemical Water Oxidation Performance in Bilayer TiO 2 /α-Fe 2 O 3 Nanorod Arrays Photoanode with Cu : NiO x as Hole Transport Layer and Co-Pi as Cocatalyst. CHEMSUSCHEM 2021; 14:2331-2340. [PMID: 33650268 DOI: 10.1002/cssc.202100363] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Efficient charge transfer and excellent surface water oxidation kinetics are key factors in determining the photoelectrochemical (PEC) water splitting performance in photoelectrodes. Herein, a bilayer TiO2 /α-Fe2 O3 nanorod (NR) arrays photoanode was prepared with deposited Cu-doped NiOx (Cu : NiOx ) hole transport layer (HTL) and Co-Pi oxygen evolution reaction (OER) cocatalyst for PEC water oxidation. The hierarchical TiO2 /α-Fe2 O3 composite obtained by a secondary hydrothermal process exhibited an inapparent bilayer structure by embedding the underlayer TiO2 NR arrays at the bottom part of the post-grown α-Fe2 O3 NR arrays. The underlayer TiO2 NRs acted as an effective shuttling pathway for transferring photoelectrons generated in the upper hematite light absorber layer. A p-type inter-Cu : NiOx HTL was introduced to form a build-in p-n electric field between Cu : NiOx and α-Fe2 O3 NRs, which improved the hole extraction from α-Fe2 O3 to Co-Pi OER catalyst. As expected, the as-engineered TiO2 /α-Fe2 O3 /Cu : NiOx /Co-Pi photoanode displayed an excellent photocurrent density of 2.43 mA cm-2 at 1.23 V versus the reversible hydrogen electrode (VRHE ), up to 4.05 and 2.23 times greater than those of the bare α-Fe2 O3 (0.60 mA cm-2 ) and TiO2 /α-Fe2 O3 , respectively. The results demonstrate that the bottom-up engineering of electron-hole transport channels and cocatalyst modification is an attractive maneuver to enhance the PEC water oxidation activity in hematite and other photoanodes.
Collapse
Affiliation(s)
- Hongxing Li
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Hunan, 411105, P. R. China
| | - Meisong Yin
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Hunan, 411105, P. R. China
| | - Xianglin Li
- Hunan First Normal University, No.1015, Fenglin Road (the 3rd), Yuelu District, Changsha, Hunan, 410205, P. R. China
| | - Rong Mo
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Hunan, 411105, P. R. China
| |
Collapse
|
15
|
Carminati SA, Rodríguez-Gutiérrez I, de Morais A, da Silva BL, Melo MA, Souza FL, Nogueira AF. Challenges and prospects about the graphene role in the design of photoelectrodes for sunlight-driven water splitting. RSC Adv 2021; 11:14374-14398. [PMID: 35424005 PMCID: PMC8698315 DOI: 10.1039/d0ra10176a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/31/2021] [Indexed: 12/02/2022] Open
Abstract
Graphene and its derivatives have emerged as potential materials for several technological applications including sunlight-driven water splitting reactions. This review critically addresses the latest achievements concerning the use of graphene as a player in the design of hybrid-photoelectrodes for photoelectrochemical cells. Insights about the charge carrier dynamics of graphene-based photocatalysts which include metal oxides and non-metal oxide semiconductors are also discussed. The concepts underpinning the continued progress in the field of graphene/photoelectrodes, including different graphene structures, architecture as well as the possible mechanisms for hydrogen and oxygen reactions are also presented. Despite several reports having demonstrated the potential of graphene-based photocatalysts, the achieved performance remains far from the targeted benchmark efficiency for commercial application. This review also highlights the challenges and opportunities related to graphene application in photoelectrochemical cells for future directions in the field.
Collapse
Affiliation(s)
- Saulo A Carminati
- Institute of Chemistry, University of Campinas (UNICAMP) PO Box 6154 Campinas São Paulo 13083-970 Brazil
| | - Ingrid Rodríguez-Gutiérrez
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC) Santo André São Paulo 09210-580 Brazil
- Brazilian Nanotechnology National Laboratory (LNNano) Campinas São Paulo 13083-970 Brazil
| | - Andreia de Morais
- Center for Information Technology Renato Archer (CTI Renato Archer) Rodovia D. Pedro I, km 143.6 13069-901 Campinas SP Brazil
| | - Bruno L da Silva
- Institute of Chemistry, University of Campinas (UNICAMP) PO Box 6154 Campinas São Paulo 13083-970 Brazil
| | - Mauricio A Melo
- Institute of Chemistry, Fluminense Federal University Outeiro de São João Batista, Campus do Valonguinho, Niterói Rio de Janeiro 24020-141 Brazil
| | - Flavio L Souza
- Institute of Chemistry, University of Campinas (UNICAMP) PO Box 6154 Campinas São Paulo 13083-970 Brazil
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC) Santo André São Paulo 09210-580 Brazil
- Brazilian Nanotechnology National Laboratory (LNNano) Campinas São Paulo 13083-970 Brazil
| | - Ana F Nogueira
- Institute of Chemistry, University of Campinas (UNICAMP) PO Box 6154 Campinas São Paulo 13083-970 Brazil
| |
Collapse
|
16
|
Enhanced Photoelectrochemical Performance of Hematite Photoanode by Decorating NiCoP Nanoparticles Through a Facile Spin Coating Method. Catal Letters 2021. [DOI: 10.1007/s10562-021-03569-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|