1
|
Dong Y, Jiao J, Wang Y, Yu J, Mu S. Hollow Structure Derived Phosphide Nanosheets for Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406105. [PMID: 39212643 DOI: 10.1002/smll.202406105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Avoiding the stacking of active sites in catalyst structural design is a promising route for realizing active oxygen evolution reaction (OER). Herein, using a CoFe Prussian blue analoge cube with hollow structure (C-CoFe PBA) as a derived support, a highly effective Ni2P-FeP4-Co2P catalyst with a larger specific surface area is reported. Benefiting from the abundant active sites and fast charge transfer capability of the phosphide nanosheets, the Ni2P-FeP4-Co2P catalyst in 1 m KOH requires only overpotentials of 248 and 277 mV to reach current density of 10 and 50 mA cm-2 and outperforms the commercial catalyst RuO2 and most reported non-noble metal OER catalysts. In addition, the two-electrode system consisting of Ni2P-FeP4-Co2P and Pt/C is able to achieve a current density of 10 and 50 mA cm-2 at 1.529 and 1.65 V. This work provides more ideas and directions for synthesizing transition metal catalysts for efficient OER performance.
Collapse
Affiliation(s)
- Ying Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jixiang Jiao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Yadong Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Jun Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
2
|
Ren D, Jiang D, Huang Y, Jin Y, Zeng C, Zhou K, Wang H. Well-defined ternary metal phosphide nanowires with stabilized Pt nanoclusters to boost alkaline hydrogen evolution reaction. J Colloid Interface Sci 2024; 665:510-517. [PMID: 38547632 DOI: 10.1016/j.jcis.2024.03.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 04/17/2024]
Abstract
Designing low-content and high-activity Pt-based catalysts with the high durability for the electrochemical hydrogen production remains a challenge. In this study, a ternary metal phosphide (NiCoP) with 1D nanowire (NW) and 2D nanosheet (NS) morphologies incorporating Pt clusters (denoted as Ptcluster-NiCoP@NF NWs and Ptcluster-NiCoP@NF NSs, respectively) was prepared using a hydrothermal-phosphorization-electrodeposition method. Based on the "tip effect" of NWs and a high electrochemical surface area, the as-prepared Ptcluster-NiCoP@NF NWs display better hydrogen evolution reaction (HER) performance, with a low overpotential of 65 mV at a high current density of 100 mA cm-2 and a low Tafel slope of 38.86 mV dec-1, than the Ptcluster-NiCoP@NF NSs, with an overportential of 95 mV at 42.53 mV dec-1. This indicates that the NiCoP NW-based support exhibits faster HER kinetics. The mass activity (11.47 A mgPt-1) of the Ptcluster-NiCoP@NF NWs is higher than that of commercial Pt/C catalysts. Significantly, the Ptcluster-NiCoP@NF NWs display excellent cyclic stability with negligible losses for 5000 cycles and 30-h tests at a high current of 500 mA cm-2.
Collapse
Affiliation(s)
- Dayong Ren
- Key Laboratory for New Functional Materials of Ministry of Education, Institution of Advanced Energy Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Daiyan Jiang
- Key Laboratory for New Functional Materials of Ministry of Education, Institution of Advanced Energy Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Yueshuang Huang
- Key Laboratory for New Functional Materials of Ministry of Education, Institution of Advanced Energy Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Yuhon Jin
- Key Laboratory for New Functional Materials of Ministry of Education, Institution of Advanced Energy Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China.
| | - Chuitao Zeng
- Key Laboratory for New Functional Materials of Ministry of Education, Institution of Advanced Energy Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Kailing Zhou
- Key Laboratory for New Functional Materials of Ministry of Education, Institution of Advanced Energy Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Hao Wang
- Key Laboratory for New Functional Materials of Ministry of Education, Institution of Advanced Energy Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
3
|
Mo-doped CoFeP/nitrogen doped carbon porous nanocubes for alkaline hydrogen production. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
4
|
Deshmukh MA, Park SJ, Thorat HN, Bodkhe GA, Ramanavicius A, Ramanavicius S, Shirsat MD, Ha TJ. Advanced Energy Materials: Current Trends and Challenges in Electro- and Photo-Catalysts for H2O Splitting. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Kang L, Li J, Wang Y, Gao W, Hao P, Lei F, Xie J, Tang B. Dual-oxidation-induced lattice disordering in a Prussian blue analog for ultrastable oxygen evolution reaction performance. J Colloid Interface Sci 2022; 630:257-265. [DOI: 10.1016/j.jcis.2022.09.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/18/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022]
|
6
|
Enhanced Electrochemical Water Oxidation Activity by Structural Engineered Prussian Blue Analogue/rGO Heterostructure. Molecules 2022; 27:molecules27175472. [PMID: 36080240 PMCID: PMC9458107 DOI: 10.3390/molecules27175472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022] Open
Abstract
Prussian blue analogue (PBA), with a three-dimensional open skeleton and abundant unsaturated surface coordination atoms, attracts extensive research interest in electrochemical energy-related fields due to facile preparation, low cost, and adjustable components. However, it remains a challenge to directly employ PBA as an electrocatalyst for water splitting owing to their poor charge transport ability and electrochemical stability. Herein, the PBA/rGO heterostructure is constructed based on structural engineering. Graphene not only improves the charge transfer efficiency of the compound material but also provides confined growth sites for PBA. Furthermore, the charge transfer interaction between the heterostructure interfaces facilitates the electrocatalytic oxygen evolution reaction of the composite, which is confirmed by the results of the electrochemical measurements. The overpotential of the PBA/rGO material is only 331.5 mV at a current density of 30 mA cm−2 in 1.0 M KOH electrolyte with a small Tafel slope of 57.9 mV dec−1, and the compound material exhibits high durability lasting for 40 h.
Collapse
|
7
|
Yu H, Xie S, Yang J, Lv J, Tan W, Yin J, Wang J, Zhao M, Wang C, Zhang M, He G, Yang L. Co3Fe7/Mo2C co-embedded in N-codoped porous carbon with accelerated kinetics for OER and HER. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Fu R, Jiao Q, Feng X, Zhu H, Yang C, Feng C, Li H, Zhang Y, Shi D, Wu Q, Zhao Y. Metal - organic frameworks derived Ni 5P 4/NC@CoFeP/NC composites for highly efficient oxygen evolution reaction. J Colloid Interface Sci 2022; 617:585-593. [PMID: 35303642 DOI: 10.1016/j.jcis.2022.02.105] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 01/06/2023]
Abstract
As an efficient non-precious metal catalyst for the oxygen evolution reaction (OER), phosphides suffer from poor electrical conductivity, so it is still a challenge to reasonably design their structures to further improve their conductivity and OER performances. Here, we present a novel Ni5P4/N-doped carbon@CoFeP/N-doped carbon composite (Ni5P4/NC@CoFeP/NC) as electrocatalysts for OER. This elaborate structure consists of Ni5P4/NC derived from Ni-MOF and CoFeP/NC derived from CoFe-Prussian blue analog MOF (Co-Fe PBA). The cube-like CoFeP/NC are scattered and uniformly coated on the sheet of Ni5P4/NC flowers. Among them, NC can enhance the conductivity of phosphides, while CoFeP/NC can increase the electrochemical active area, which benefit the properties of Ni5P4/NC@CoFeP/NC. Notably, the Ni5P4/NC@CoFeP/NC catalyst possesses outstanding OER performances with a low overpotential of 260 and 303 mV at a current density of 10 and 100 mA·cm-2, an ultra-low Tafel slope of 31.1 mV·dec-1 and excellent stability in 1 M KOH. XPS analysis shows that proper chemical composition promotes the oxidation of transition metal species and the chemisorption of OH-, thus accelerating the OER kinetics. Therefore, this work provides a hopeful method for designing and preparing transition metal phosphide/carbon composite as OER electrocatalysts.
Collapse
Affiliation(s)
- Ruru Fu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Qingze Jiao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China; School of Materials and Environment, Beijing Institute of Technology, Zhuhai, Guangdong 519085, PR China
| | - Xueting Feng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Huanhuan Zhu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Chao Yang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Caihong Feng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Hansheng Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yaoyuan Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Daxin Shi
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Qin Wu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yun Zhao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
9
|
A Cu3P@NiFe-MOF Hybrid as an Efficient Electrocatalyst for Hydrogen and Oxygen Evolution Reactions. Catal Letters 2022. [DOI: 10.1007/s10562-021-03865-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
10
|
Zhou J, Hu Y, Chang YC, Hu Z, Huang YC, Fan Y, Lin HJ, Pao CW, Dong CL, Lee JF, Chen CT, Wang JQ, Zhang L. In Situ Exploring of the Origin of the Enhanced Oxygen Evolution Reaction Efficiency of Metal(Co/Fe)–Organic Framework Catalysts Via Postprocessing. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jing Zhou
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yitian Hu
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yu-Chung Chang
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan 30076, R. O. C
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Dresden 01187, Germany
| | - Yu-Cheng Huang
- Tamkang University, Tamsui, New Taipei, Taiwan 25137, R. O. C
| | - YaLei Fan
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Hong-Ji Lin
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan 30076, R. O. C
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan 30076, R. O. C
| | - Chung-Li Dong
- Tamkang University, Tamsui, New Taipei, Taiwan 25137, R. O. C
| | - Jyh-Fu Lee
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan 30076, R. O. C
| | - Chien-Te Chen
- National Synchrotron Radiation Research Center, Hsinchu, Taiwan 30076, R. O. C
| | - Jian-Qiang Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Dalian National Laboratory for Clean Energy, Dalian, Liaoning 116023, China
| | - Linjuan Zhang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Dalian National Laboratory for Clean Energy, Dalian, Liaoning 116023, China
| |
Collapse
|
11
|
Ying J, Wang H. Strategies for Developing Transition Metal Phosphides in Electrochemical Water Splitting. Front Chem 2021; 9:700020. [PMID: 34805087 PMCID: PMC8595924 DOI: 10.3389/fchem.2021.700020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Electrochemical water splitting involving hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is a greatly promising technology to generate sustainable and renewable energy resources, which relies on the exploration regarding the design of electrocatalysts with high efficiency, high stability, and low cost. Transition metal phosphides (TMPs), as nonprecious metallic electrocatalysts, have been extensively investigated and proved to be high-efficient electrocatalysts in both HER and OER. In this minireview, a general overview of recent progress in developing high-performance TMP electrocatalysts for electrochemical water splitting has been presented. Design strategies including composition engineering by element doping, hybridization, and tuning the molar ratio, structure engineering by porous structures, nanoarray structures, and amorphous structures, and surface/interface engineering by tuning surface wetting states, facet control, and novel substrate are summarized. Key scientific problems and prospective research directions are also briefly discussed.
Collapse
Affiliation(s)
- Jie Ying
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, China
| | - Huan Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
12
|
Wang H, Ai T, Bao W, Zhang J, Wang Y, Kou L, Li W, Deng Z, Song J, Li M. Regulating the electronic structure of Ni3S2 nanorods by heteroatom vanadium doping for high electrocatalytic performance. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Hollow and substrate-supported Prussian blue, its analogs, and their derivatives for green water splitting. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63833-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Song X, Song S, Wang D, Zhang H. Prussian Blue Analogs and Their Derived Nanomaterials for Electrochemical Energy Storage and Electrocatalysis. SMALL METHODS 2021; 5:e2001000. [PMID: 34927855 DOI: 10.1002/smtd.202001000] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/14/2020] [Indexed: 05/27/2023]
Abstract
Prussian blue analogs (PBAs), the oldest artificial cyanide-based coordination polymers, possess open framework structures, large specific surface areas, uniform metal active sites, and tunable composition, showing significant perspective in electrochemical energy storage. These electrochemically active materials have also been converted to various functional metal containing nanomaterials, including carbon encapsulated metals/metal alloys, metal oxides, metal sulfides, metal phosphides, etc. originating from the multi-element compositions as well as elaborate structure design. In this paper, a comprehensive review will be presented on the recent progresses in the development of PBA frameworks and their derivatives based electrode materials and electrocatalysts for electrochemical energy storage and conversion. In particular, it will focus on the synthesis of representative nanostructures, the structure design, and figure out the correlation between nanomaterials structure and electrochemical performance. Lastly, critical scientific challenges in this research area are also discussed and perspective directions for the future research in this field are provided, in order to provide a brand new vision into the further development of novel active materials for the next-generation advanced electrochemical devices.
Collapse
Affiliation(s)
- Xuezhi Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Panjin Campus, Panjin, 124221, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Changchun, 130022, China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Changchun, 130022, China
| | - Dan Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Changchun, 130022, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|