1
|
Nawaz MA, Blay-Roger R, Saif M, Meng F, Bobadilla LF, Reina TR, Odriozola JA. Redefining the Symphony of Light Aromatic Synthesis Beyond Fossil Fuels: A Journey Navigating through a Fe-Based/HZSM-5 Tandem Route for Syngas Conversion. ACS Catal 2024; 14:15150-15196. [PMID: 39444526 PMCID: PMC11494843 DOI: 10.1021/acscatal.4c03941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 10/25/2024]
Abstract
The escalating concerns about traditional reliance on fossil fuels and environmental issues associated with their exploitation have spurred efforts to explore eco-friendly alternative processes. Since then, in an era where the imperative for renewable practices is paramount, the aromatic synthesis industry has embarked on a journey to diversify its feedstock portfolio, offering a transformative pathway toward carbon neutrality stewardship. This Review delves into the dynamic landscape of aromatic synthesis, elucidating the pivotal role of renewable resources through syngas/CO2 utilization in reshaping the industry's net-zero carbon narrative. Through a meticulous examination of recent advancements, the current Review navigates the trajectory toward admissible aromatics production, highlighting the emergence of Fischer-Tropsch tandem catalysis as a game-changing approach. Scrutinizing the meliorated interplay of Fe-based catalysts and HZSM-5 molecular sieves would uncover the revolutionary potential of rationale design and optimization of integrated catalytic systems in driving the conversion of syngas/CO2 into aromatic hydrocarbons (especially BTX). In essence, the current Review would illuminate the path toward cutting-edge research through in-depth analysis of the transformative power of tandem catalysis and its capacity to propel carbon neutrality goals by unraveling the complexities of renewable aromatic synthesis and paving the way for a carbon-neutral and resilient tomorrow.
Collapse
Affiliation(s)
- Muhammad Asif Nawaz
- Department
of Inorganic Chemistry and Materials Sciences Institute, University of Seville-CSIC, 41092 Seville, Spain
| | - Rubén Blay-Roger
- Department
of Inorganic Chemistry and Materials Sciences Institute, University of Seville-CSIC, 41092 Seville, Spain
| | - Maria Saif
- Department
of Inorganic Chemistry and Materials Sciences Institute, University of Seville-CSIC, 41092 Seville, Spain
| | - Fanhui Meng
- State
Key Laboratory of Clean and Efficient Coal Utilization, College of
Chemical Engineering and Technology, Taiyuan
University of Technology, Taiyuan 030024, China
| | - Luis F. Bobadilla
- Department
of Inorganic Chemistry and Materials Sciences Institute, University of Seville-CSIC, 41092 Seville, Spain
| | - Tomas Ramirez Reina
- Department
of Inorganic Chemistry and Materials Sciences Institute, University of Seville-CSIC, 41092 Seville, Spain
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| | - J. A. Odriozola
- Department
of Inorganic Chemistry and Materials Sciences Institute, University of Seville-CSIC, 41092 Seville, Spain
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| |
Collapse
|
2
|
Wu X, Wang C, Zhao S, Wang Y, Zhang T, Yao J, Gao W, Zhang B, Arakawa T, He Y, Chen F, Tan M, Yang G, Tsubaki N. Dual-engine-driven realizing high-yield synthesis of Para-Xylene directly from CO 2-containing syngas. Nat Commun 2024; 15:8064. [PMID: 39277588 PMCID: PMC11401844 DOI: 10.1038/s41467-024-52482-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 09/09/2024] [Indexed: 09/17/2024] Open
Abstract
The direct synthesis of light aromatics, especially para-xylene (p-X), from syngas/CO2 is drawing strong interest, but improving the space-time yield (STY) of p-X is a significant challenge. Here, a dynamic "dual-engine-driven" (DED) catalytic system is designed by combining two partners of ZnCr and FeMn (named "dual-engine") with Z5@SiO2 capsule zeolite. The DED catalyst of 1.0%FeMn&[ZnCr&Z5@SiO2] shows an extremely higher p-X STY of 36.1 gp-x·kgcat-1·h-1, about eight times higher than that of [ZnCr&Z5]. DED manipulates ZnCr engine for methanol formation and drives FeMn engine for light olefins generation together, and then the formed methanol and light olefins are coordinately converted in situ into p-X-rich aromatics over Z5@SiO2. The DED model boosts the driving force for syngas/CO2 conversion, simultaneously concerting the cooperation of "dual-engine" for p-X generation, resulting in extremely high STY of p-X. This study achieves non-petroleum p-X production at industrial-relevant level and advances knowledge in designing innovative heterogeneous catalysts.
Collapse
Affiliation(s)
- Xuemei Wu
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, Japan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chengwei Wang
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, Japan
| | - Shengying Zhao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Wang
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, China.
| | - Tao Zhang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
| | - Jie Yao
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, Japan
| | - Weizhe Gao
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, Japan
| | - Baizhang Zhang
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, Japan
| | - Taiki Arakawa
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, Japan
| | - Yingluo He
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, Japan
| | - Fei Chen
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, Japan
| | - Minghui Tan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, China
| | - Guohui Yang
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, Japan.
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, China.
| | - Noritatsu Tsubaki
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, Japan.
| |
Collapse
|
4
|
Lin T, An Y, Yu F, Gong K, Yu H, Wang C, Sun Y, Zhong L. Advances in Selectivity Control for Fischer–Tropsch Synthesis to Fuels and Chemicals with High Carbon Efficiency. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tiejun Lin
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Yunlei An
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Fei Yu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Kun Gong
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hailing Yu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Caiqi Wang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Yuhan Sun
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Liangshu Zhong
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| |
Collapse
|
5
|
Fang Y, Sheng H, Huang Z, Yue Y, Hua W, Shen W, Xu H. High‐Efficiency and Long‐life Synergetic Dual‐Oxide/Zeolite Catalyst for Direct Conversion of Syngas into Aromatics. ChemCatChem 2022. [DOI: 10.1002/cctc.202200200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yue Fang
- Fudan University Department of Chemistry CHINA
| | | | - Zhen Huang
- Fudan University Department of Chemistry 220 Handan Rd., Yangpu District 200433 Shanghai CHINA
| | | | - Weiming Hua
- Fudan University Department of Chemistry CHINA
| | - Wei Shen
- Fudan University Department of Chemistry CHINA
| | - Hualong Xu
- Fudan University Department of Chemistry CHINA
| |
Collapse
|
6
|
Nawaz MA, Saif M, Li M, Song G, Zihao W, Liu D. Tailoring the synergistic dual-decoration of (Cu–Co) transition metal auxiliaries in Fe-oxide/zeolite composite catalyst for the direct conversion of syngas to aromatics. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01717a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tailoring the crystal lattice and multiple phase interfaces via the feasible accommodation of Cu–Co into the host (Fe) structure, expedited the surface oxygen vacancies that modulated the reduction/chemisorption behavior of active Fe species.
Collapse
Affiliation(s)
- Muhammad Asif Nawaz
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Maria Saif
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Minzhe Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guiyao Song
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wang Zihao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dianhua Liu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|