1
|
Arndt T, Breugst M. Iodine-Catalyzed Carbonyl-Alkyne Metathesis Reactions. Chemistry 2024; 30:e202402424. [PMID: 39037953 DOI: 10.1002/chem.202402424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 07/24/2024]
Abstract
The reaction between aldehydes or ketones and alkynes-the carbonyl-alkyne metathesis-constitutes a very useful strategy for the synthesis of α,β-unsaturated carbonyls. We now demonstrate that iodine is a highly efficient catalyst for both the intra- and intermolecular metathesis reaction in very small concentrations (0.1-1 mol %). Our protocol outperforms other catalytic systems, is operationally very simple, cheap, metal-free, and tolerates a large variety of functional groups (e. g., -CN, -CO2Me, -Br, -OH) at very low catalyst loadings. We can furthermore show that iodine-catalyzed carbonyl-alkyne metatheses can be combined with other iodine-catalyzed reactions in one-pot procedures to afford larger and more complex molecular structures. Finally, our mechanistic studies indicate that the iodonium ion is the active catalyst under the reaction conditions.
Collapse
Affiliation(s)
- Thiemo Arndt
- Institut für Chemie, TU Chemnitz, Straße der Nationen 62, 09111, Chemnitz, Germany
| | - Martin Breugst
- Institut für Chemie, TU Chemnitz, Straße der Nationen 62, 09111, Chemnitz, Germany
| |
Collapse
|
2
|
Li Y, Zhao C, Wang Z, Zeng Y. Halogen Bond Catalysis: A Physical Chemistry Perspective. J Phys Chem A 2024; 128:507-527. [PMID: 38214658 DOI: 10.1021/acs.jpca.3c06363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
As important noncovalent interactions, halogen bonds have been widely used in material science, supramolecular chemistry, medicinal chemistry, organocatalysis, and other fields. In the past 15 years, halogen bond catalysis has become a developed field in organocatalysis for the catalysts' advantages of being environmentally friendly, inexpensive, and recyclable. Halogen bonds can induce various organic reactions, and halogen bond catalysis has become a powerful alternative to the fully explored hydrogen bond catalysis. From a physical chemistry view, this perspective provides an overview of the latest progress and key examples of halogen bond catalysis via activation of the lone pair systems of organic functional group, π systems, and metal complexes. The research progresses in halogen bond catalysis by our group were also introduced.
Collapse
Affiliation(s)
- Ying Li
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Chang Zhao
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhuo Wang
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Yanli Zeng
- College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
3
|
Arndt T, Raina A, Breugst M. Iodine-Catalyzed Claisen-Rearrangements of Allyl Aryl Ethers and Subsequent Iodocyclizations. Chem Asian J 2023; 18:e202201279. [PMID: 36626351 DOI: 10.1002/asia.202201279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Iodine can be considered as the simplest halogen-bond donor. Previous investigations have revealed its remarkable catalytic effect in various reactions. The catalytic activity of iodine can often even compete with that of traditional Lewis acids. So far, iodine was typically used to activate carbonyl derivatives like Michael acceptors. We now demonstrate that iodine can also be used to activate allyl aryl ethers in Claisen rearrangements. The formed ortho-allylic phenols rapidly undergo iodocyclizations to afford dihydrobenzofurans, which are important building blocks for medicinal applications. A comparison with different catalysts further highlights the potential of iodine catalysis for this reaction. Computational and mechanistic investigations provide deeper insights into the underlying non-covalent interactions and their role for the catalysis.
Collapse
Affiliation(s)
- Thiemo Arndt
- Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111, Chemnitz, Germany.,Department für Chemie, Universität zu Köln, Greinstraße 4, 50939, Köln, Germany
| | - Abhinav Raina
- Department für Chemie, Universität zu Köln, Greinstraße 4, 50939, Köln, Germany
| | - Martin Breugst
- Institut für Chemie, Technische Universität Chemnitz, Straße der Nationen 62, 09111, Chemnitz, Germany.,Department für Chemie, Universität zu Köln, Greinstraße 4, 50939, Köln, Germany
| |
Collapse
|
4
|
Chen T, Gong F, Nagaraju S, Liu J, Yang S, Chen X, Fang X. Oxa-Nazarov Cyclization-Michael Addition Sequence for the Rapid Construction of Dihydrofuranones. Org Lett 2022; 24:8837-8842. [PMID: 36417711 DOI: 10.1021/acs.orglett.2c03601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Nazarov cyclization has been established as a powerful tool in constructing cyclopentenone skeletons. In sharp contrast, oxa-Nazarov cyclization that affords dihydrofuranones, a new type of product, has been less explored. In this work, we report the I2-catalyzed oxa-Nazarov cyclization-Michael addition cascade between vinyl α-diketones and enones. The protocol allows access to a range of functionalized dihydrofuranones with good to high yields, and diverse further transformations on the products have been achieved. Furthermore, the mechanistic studies reveal that the 1,2-hydride shift occurs simultaneously during the dihydrofuranone formation.
Collapse
Affiliation(s)
- Ting Chen
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Fan Gong
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Sakkani Nagaraju
- State Key Laboratory of Structural Chemistry and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Xingkuan Chen
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Xinqiang Fang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
- State Key Laboratory of Structural Chemistry and Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
5
|
Theoretical survey of Diels-Alder between acrylic acid and isoprene catalyzed by the titanium tetrachloride and titanium tertafluoride. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
6
|
An experimental investigation into the kinetics and mechanism of the aza-Michael additions of dimethyl itaconate. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Cheng X, Wang L, Liu Y, Wan X, Xiang Z, Li R, Wan X. Molecular Iodine‐Catalysed Reductive Alkylation of Indoles: Late‐Stage Diversification for Bioactive Molecules. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xionglve Cheng
- Soochow University College of Chemistry, Chemical Engineering and Materials Science 215123 Suzhou CHINA
| | - Lili Wang
- Soochow University College of Chemistry, Chemical Engineering and Materials Science 215123 Suzhou CHINA
| | - Yide Liu
- Soochow University College of Chemistry, Chemical Engineering and Materials Science 215123 Suzhou CHINA
| | - Xiao Wan
- Soochow University College of Chemistry, Chemical Engineering and Materials Science 215123 Suzhou CHINA
| | - Zixin Xiang
- Soochow University College of Chemistry, Chemical Engineering and Materials Science 215123 Suzhou CHINA
| | - Ruyi Li
- Soochow University College of Chemistry, Chemical Engineering and Materials Science 215123 Suzhou CHINA
| | - Xiaobing Wan
- Soochow University College of Chemistry, Chemical Engineering and Materials Science Renai road 215123 Suzhou CHINA
| |
Collapse
|
8
|
Hosseinijei R, Zahedian Tejeneki H, Nikbakht A, Rominger F, Balalaie S. Synthesis of functionalized 1-aminoisoquinolines through cascade three-component reaction of ortho-alkynylbenzaldoximes, 2 H-azirines, and electrophiles. Org Biomol Chem 2022; 20:3076-3080. [PMID: 35352735 DOI: 10.1039/d2ob00275b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a new three-component approach using ortho-alkynylbenzaldoximes involving the formation of a cyclic nitrone in the presence of Br2 or ICl for the synthesis of 1-aminoisoquinolines via cascade 6-endo-cyclization, 1,3-dipolar cycloaddition reaction with 2H-azirines, and ring-opening reaction sequences. The broad range of structurally diverse products, good to high yields, high atom-economy and high bond-formation efficiency make this method an attractive alternative for the synthesis of 1-aminoisoquinolines.
Collapse
Affiliation(s)
- Reyhaneh Hosseinijei
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran.
| | - Hossein Zahedian Tejeneki
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran.
| | - Ali Nikbakht
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran.
| | - Frank Rominger
- Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran.
| |
Collapse
|
9
|
Hosseini A, Motavalizadehkakhky A, Ghobadi N, Gholamzadeh P. Aza-Diels-Alder reactions in the synthesis of tetrahydroquinoline structures. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Boelke A, Kuczmera TJ, Lork E, Nachtsheim BJ. N-Heterocyclic Iod(az)olium Salts - Potent Halogen-Bond Donors in Organocatalysis. Chemistry 2021; 27:13128-13134. [PMID: 34160859 PMCID: PMC8519039 DOI: 10.1002/chem.202101961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 01/03/2023]
Abstract
This article describes the application of N-heterocyclic iod(az)olium salts (NHISs) as highly reactive organocatalysts. A variety of mono- and dicationic NHISs are described and utilized as potent XB-donors in halogen-bond catalysis. They were benchmarked in seven diverse test reactions in which the activation of carbon- and metal-chloride bonds as well as carbonyl and nitro groups was achieved. N-methylated dicationic NHISs rendered the highest reactivity in all investigated catalytic applications with reactivities even higher than all previously described monodentate XB-donors based on iodine(I) and (III) and the strong Lewis acid BF3 .
Collapse
Affiliation(s)
- Andreas Boelke
- Institut für Organische und Analytische ChemieUniversität BremenLeobener Straße NW2C28359BremenGermany
| | - Thomas J. Kuczmera
- Institut für Organische und Analytische ChemieUniversität BremenLeobener Straße NW2C28359BremenGermany
| | - Enno Lork
- Institut für Anorganische Chemie und KristallographieUniversität BremenLeobener Straße NW2C28359BremenGermany
| | - Boris J. Nachtsheim
- Institut für Organische und Analytische ChemieUniversität BremenLeobener Straße NW2C28359BremenGermany
| |
Collapse
|