1
|
Ponchai J, Sangkhun W, Phawa C, Punklahan N, Chankhanittha T, Khemthong P, Chakthranont P, Youngjan S, Phanthasri J, Butburee T. Facilitating Charge Separation and CO 2 Adsorption in g-C 3N 4 by Fe Single Atoms on 2D Nitro-Oxygeneous Carbon for Efficient Artificial Photosynthesis. Chem Asian J 2025; 20:e202401487. [PMID: 39887909 DOI: 10.1002/asia.202401487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/01/2025]
Abstract
Photocatalytic reduction of carbon dioxide (CO2), so-called artificial photosynthesis, has been regarded as the future technology with high potential to sustainably address global warming. However, the efficiency and stability of the catalysts used in this frontier technology are substantially lower than the requirement for practical application and need to be further improved, especially for gas-phase reactions. In this work, the composites of iron single-atom catalysts (Fe-SACs) supported on N/O-doped carbon and graphitic carbon nitride (g-C3N4) were fabricated to promote the gas-solid phase photocatalytic CO2 reduction under the simulated sunlight. Insightful characterizations reveal that g-C3N4 could function as a CO2 capture and light-absorber, while the Fe-SACs act as a promotor for charge-carrier separation. Hence, the catalytic performance was greatly increased compared to that of the individual component. For example, the individual thin g-C3N4 (T-CN) and Fe-SAC can generate total reduced CO2 products of 5.06 and 0.75 μmol.h-1g-1, respectively. On the other hand, the reduced CO2 products were increased by more than doubled (14.62 μmol.h-1g-1) when the composite of T-CN/Fe-SAC was used as a catalyst. The photocatalytic enhancement could be attributed to the synergistic effects between Fe-SAC/T-CN which possess the stronger CO2 adsorption ability and charge separation capability and the increased number of active sites, resulting in the improved overall performance.
Collapse
Affiliation(s)
- Jitprabhat Ponchai
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 106, Taiwan
| | - Weradesh Sangkhun
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Chaiyasit Phawa
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Nutthawadee Punklahan
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Tammanoon Chankhanittha
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
- Materials Chemistry Research Center (MCRC), Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Pongtanawat Khemthong
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Pongkarn Chakthranont
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Saran Youngjan
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Jakkapop Phanthasri
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Teera Butburee
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| |
Collapse
|
2
|
Li SL, Chen Y, Tian G, Kou L, Qiao L, Zhao Y, Gan LY. High catalytic activity and abundant active sites in M 2C 12 monolayer for nitrogen reduction reaction. J Colloid Interface Sci 2024; 675:411-418. [PMID: 38976967 DOI: 10.1016/j.jcis.2024.06.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Developing highly efficient single-atom catalysts (SACs) for the nitrogen reduction reaction (NRR) to ammonia production has garnered significant attention in the scientific community. However, achieving high activity and selectivity remains challenging due to the lack of innate activity in most existing catalysts or insufficient active site density. This study delves into the potential of M2C12 materials (M = Cr, Ir, Mn, Mo, Os, Re, Rh, Ru, W, Fe, Cu, and Ti) with high transition metal coverage as SACs for NRR using first-principles calculations. Among these materials, Os2C12 exhibited superior catalytic activity for NRR, with a low overpotential of 0.39 V and an Os coverage of up to 72.53 wt%. To further boost its catalytic activity, a nonmetal (NM) atom doping (NM = B, N, O, and S) and C vacancy modification were explored in Os2C12. It is found that the introduction of O enables exceptional catalytic activity, selectivity, and stability, with an even lower overpotential of 0.07 V. Incorporating the O atom disrupted the charge balance of its coordinating C atoms, effectively increasing the positive charge density of the Os-d-orbit-related electronic structure. This promoted strong d-π* coupling between Os and N2H, enhancing N2H adsorption and facilitating NRR processes. This comprehensive study provides valuable insights into NRR catalyst design for sustainable ammonia production and offers a reference for exploring alternative materials in other catalytic reactions.
Collapse
Affiliation(s)
- Shu-Long Li
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China; School of Physics, University of Electronic Science and Technology of China, Chengdu 611700, China; Western Superconducting Technologies Co, Ltd., Xi'an 710018, China
| | - Yutao Chen
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Guo Tian
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Liangzhi Kou
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Liang Qiao
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611700, China.
| | - Yong Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China; College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China.
| | - Li-Yong Gan
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
3
|
Butburee T, Prasert A, Rungtaweevoranit B, Khemthong P, Mano P, Youngjan S, Phanthasri J, Namuangruk S, Faungnawakij K, Zhang L, Jin P, Liu H, Wang F. Engineering Lewis-Acid Defects on ZnO Quantum Dots by Trace Transition-Metal Single Atoms for High Glycerol-to-Glycerol Carbonate Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403661. [PMID: 38994824 DOI: 10.1002/smll.202403661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/02/2024] [Indexed: 07/13/2024]
Abstract
Efficient conversion of biomass wastes into valuable chemicals has been regarded as a sustainable approach for green and circular economy. Herein, a highly efficient catalytic conversion of glycerol (Gly) into glycerol carbonate (GlyC) by carbonylation with the commercially available urea is presented using low-cost transition metal single atoms supported on zinc oxide quantum dots (M1-ZnO QDs) as a catalyst without using any solvent. A facile one-step wet chemical synthesis allows various types of metal single atoms to simultaneously dope and introduce Lewis-acid defects in the ZnO QD structure. It is found that doping with a trace amount of isolated metal atoms greatly boosts the catalytic activity with Gly conversion of 90.7%, GlyC selectivity of 100.0%, and GlyC yield of 90.6%. Congruential results from both Density Functional Theory (DFT) and in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (in situ DRIFTS) studies reveal that the superior catalytic performance can be attributed to the enriched Lewis acid sites that endow optimal adsorption, formation of the intermediate for coupling between urea and Gly, and desorption of GlyC. Moreover, the tiny size of ZnO QDs efficiently promotes the accessibility of these active sites to the reactants.
Collapse
Affiliation(s)
- Teera Butburee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani, 12120, Thailand
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), 239 Zhangheng Rd., New Pudong District, Shanghai, 201204, P. R. China
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Ampawan Prasert
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Bunyarat Rungtaweevoranit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Pongtanawat Khemthong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Poobodin Mano
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Saran Youngjan
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Jakkapop Phanthasri
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Supawadee Namuangruk
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Kajornsak Faungnawakij
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Lijuan Zhang
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), 239 Zhangheng Rd., New Pudong District, Shanghai, 201204, P. R. China
| | - Ping Jin
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Huifang Liu
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Feng Wang
- State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences (CAS), 457 Zhongshan Road, Dalian, 116023, P. R. China
| |
Collapse
|
4
|
Zhang F, Zhang H, Jia Z, Chen S, Li S, Li J, Zan WY, Wang Q, Li Y. Nickel Single Atom Density-Dependent CO 2 Efficient Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308080. [PMID: 38032165 DOI: 10.1002/smll.202308080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/07/2023] [Indexed: 12/01/2023]
Abstract
The transition metal-nitrogen-carbon (M─N─C) with MNx sites has shown great potential in CO2 electroreduction (CO2RR) for producing high value-added C1 products. However, a comprehensive and profound understanding of the intrinsic relationship between the density of metal single atoms and the CO2RR performance is still lacking. Herein, a series of Ni single-atom catalysts is deliberately designed and prepared, anchored on layered N-doped graphene-like carbon (x Ni1@NG-900, where x represents the Ni loading, 900 refers to the temperature). By modulating the precursor, the density of Ni single atoms (DNi) can be finely tuned from 0.01 to 1.19 atoms nm-2. The CO2RR results demonstrate that the CO faradaic efficiency (FECO) predominantly increases from 13.4% to 96.2% as the DNi increased from 0 to 0.068 atoms nm-2. Then the FECO showed a slow increase from 96.2% to 98.2% at -0.82 V versus reversible hydrogen electrode (RHE) when DNi increased from 0.068 to 1.19 atoms nm-2. The theoretical calculations are in good agreement with experimental results, indicating a trade-off relationship between DNi and CO2RR performance. These findings reveal the crucial role of the density of Ni single atoms in determining the CO2RR performance of M─N─C catalysts.
Collapse
Affiliation(s)
- Fengwei Zhang
- Institute of Crystalline Materials, Institute of Molecular Science, Key Lab of Materials for Energy Conversion and Storage of Shanxi Province, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Han Zhang
- Institute of Crystalline Materials, Institute of Molecular Science, Key Lab of Materials for Energy Conversion and Storage of Shanxi Province, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Zhenhe Jia
- Department of Power Engineering, School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding, 071003, P. R. China
| | - Shuai Chen
- National Key Laboratory of High Efficiency and Low Carbon Utilization of Coal, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Siming Li
- Institute of Crystalline Materials, Institute of Molecular Science, Key Lab of Materials for Energy Conversion and Storage of Shanxi Province, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Jijie Li
- Institute of Crystalline Materials, Institute of Molecular Science, Key Lab of Materials for Energy Conversion and Storage of Shanxi Province, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Wen-Yan Zan
- Institute of Crystalline Materials, Institute of Molecular Science, Key Lab of Materials for Energy Conversion and Storage of Shanxi Province, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| | - Qiang Wang
- National Key Laboratory of High Efficiency and Low Carbon Utilization of Coal, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Yawei Li
- Institute of Crystalline Materials, Institute of Molecular Science, Key Lab of Materials for Energy Conversion and Storage of Shanxi Province, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, P. R. China
| |
Collapse
|
5
|
Butburee T, Ponchai J, Khemthong P, Mano P, Chakthranont P, Youngjan S, Phanthasri J, Namuangruk S, Faungnawakij K, Wang X, Chen Y, Zhang L. General Pyrolysis for High-Loading Transition Metal Single Atoms on 2D-Nitro-Oxygeneous Carbon as Efficient ORR Electrocatalysts. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10227-10237. [PMID: 38367256 PMCID: PMC10910467 DOI: 10.1021/acsami.3c18548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/19/2024]
Abstract
Single-atom catalysts (SACs) possess the potential to involve the merits of both homogeneous and heterogeneous catalysts altogether and thus have gained considerable attention. However, the large-scale synthesis of SACs with rich isolate-metal sites by simple and low-cost strategies has remained challenging. In this work, we report a facile one-step pyrolysis that automatically produces SACs with high metal loading (5.2-15.9 wt %) supported on two-dimensional nitro-oxygenated carbon (M1-2D-NOC) without using any solvents and sacrificial templates. The method is also generic to various transition metals and can be scaled up to several grams based on the capacity of the containers and furnaces. The high density of active sites with N/O coordination geometry endows them with impressive catalytic activities and stability, as demonstrated in the oxygen reduction reaction (ORR). For example, Fe1-2D-NOC exhibits an onset potential of 0.985 V vs RHE, a half-wave potential of 0.826 V, and a Tafel slope of -40.860 mV/dec. Combining the theoretical and experimental studies, the high ORR activity could be attributed its unique FeO-N3O structure, which facilitates effective charge transfer between the surface and the intermediates along the reaction, and uniform dispersion of this active site on thin 2D nanocarbon supports that maximize the exposure to the reactants.
Collapse
Affiliation(s)
- Teera Butburee
- National
Science and Technology Development Agency, National Nanotechnology Center, 111 Thailand Science Park, Pathum Thani 12120, Thailand
- Shanghai
Synchrotron Radiation Facility, Shanghai
Advanced Research Institute, Chinese Academy of Sciences (CAS), No. 239, Zhangheng Rd., New Pudong District, Shanghai 201204, P.R. China
| | - Jitprabhat Ponchai
- National
Science and Technology Development Agency, National Nanotechnology Center, 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Pongtanawat Khemthong
- National
Science and Technology Development Agency, National Nanotechnology Center, 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Poobodin Mano
- National
Science and Technology Development Agency, National Nanotechnology Center, 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Pongkarn Chakthranont
- National
Science and Technology Development Agency, National Nanotechnology Center, 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Saran Youngjan
- National
Science and Technology Development Agency, National Nanotechnology Center, 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Jakkapop Phanthasri
- National
Science and Technology Development Agency, National Nanotechnology Center, 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Supawadee Namuangruk
- National
Science and Technology Development Agency, National Nanotechnology Center, 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Kajornsak Faungnawakij
- National
Science and Technology Development Agency, National Nanotechnology Center, 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Xingya Wang
- Shanghai
Synchrotron Radiation Facility, Shanghai
Advanced Research Institute, Chinese Academy of Sciences (CAS), No. 239, Zhangheng Rd., New Pudong District, Shanghai 201204, P.R. China
| | - Yu Chen
- Shanghai
Synchrotron Radiation Facility, Shanghai
Advanced Research Institute, Chinese Academy of Sciences (CAS), No. 239, Zhangheng Rd., New Pudong District, Shanghai 201204, P.R. China
| | - Lijuan Zhang
- Shanghai
Synchrotron Radiation Facility, Shanghai
Advanced Research Institute, Chinese Academy of Sciences (CAS), No. 239, Zhangheng Rd., New Pudong District, Shanghai 201204, P.R. China
| |
Collapse
|
6
|
Wang N, Mei R, Lin X, Chen L, Yang T, Liu Q, Chen Z. Cascade Anchoring Strategy for Fabricating High-Loading Pt Single Atoms as Bifunctional Catalysts for Electrocatalytic Hydrogen Evolution and Oxygen Reduction Reactions. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37300489 DOI: 10.1021/acsami.3c04602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Carbon supports containing single-atomically dispersed metal-Nx (denoted as MSAC-NxCy, x, y: coordination number) have attracted increasing attention due to their superb performance in heterogeneous catalysis. However, large-scale controllable preparation of single-atom catalysts (SACs) with high concentration of supported metal-Nx is still a big challenge because of the metal atom agglomeration during synthesis at high density and temperatures. Herein, we report a stepwise anchoring strategy from a 1,10-o-phenanthroline Pt chelate to an Nx-doped carbon (NxCy) with isolated Pt single-atom catalysts (PtSAC-NxCy) containing Pt loadings up to 5.31 wt % measured via energy-dispersive X-ray spectroscopy (EDS). The results show that 1,10-o-phenanthroline Pt chelate predominantly contributes to the formation of chelate single metal sites that bind tightly to platinum ions to prevent metal atoms from aggregating, resulting in high metal loading. The high-loading PtSAC-NxCy exhibits a low hydrogen evolution (HER) overpotential of 24 mV at 0.010 A cm-2 current density with a relatively small Tafel gradient of 60.25 mV dec-1 and excellent stable performance. In addition, the PtSAC-NxCy catalyst shows excellent oxygen reduction reaction (ORR) catalytic activity with good stability, represented by the fast ORR kinetics under high-potential conditions. Theoretical calculations show that PtSAC-NC3 (x = 1, y = 3) offers a lower H2O activation energy barrier than Pt nanoparticles. The adsorption free energy of a H atom on a Pt single-atom site is lower than that on a Pt cluster, which is easier for H2 desorption. This study provides a potentially powerful cascade anchoring strategy in the design of other stable MSAC-NxCy catalysts with high-density metal-Nx sites for the HER and ORR.
Collapse
Affiliation(s)
- Nan Wang
- Julong College, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Riguo Mei
- Julong College, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Xidong Lin
- Julong College, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Liqiong Chen
- Julong College, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Tao Yang
- Julong College, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Qingxia Liu
- Julong College, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - Zhongwei Chen
- Julong College, Shenzhen Technology University, Shenzhen 518118, P. R. China
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
7
|
Wang H, Kong Z, Wang M, Huang B, Guan L. Mn-N-C catalysts derived from metal triazole framework with hierarchical porosity for efficient oxygen reduction. NANOTECHNOLOGY 2023; 34:145403. [PMID: 36634353 DOI: 10.1088/1361-6528/acb26c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Manganese and nitrogen co-doped porous carbon (Mn-N-C) are proposed as one of the most up-and-coming non-precious metal electrocatalysts to substitute Pt-based in the oxygen reduction reaction (ORR). Herein, we chose metal triazole frameworks as carbon substrate with hierarchical porosity for trapping and anchoring Mn-containing gaseous species by a mild one-step pyrolysis method. The optimized Mn-N-C electrocatalyst with a large metal content of 1.71 wt% and a volume ratio of 0.86 mesopores pore delivers a superior ORR activity with a half-wave potential (E1/2) of 0.92 V in 0.1 M KOH and 0.78 V in 0.1 M HClO4. Moreover, the modified Mn-N-C catalyst showed superior potential cyclic stability. TheE1/2remained unchanged in 0.1 M KOH and only lost 6 mV in 0.1 M HClO4after 5000 cycles. When applied as the cathode catalyst in Zn-air battery, it exhibited a maximum peak power density of 176 mW cm-2, demonstrating great potential as a usable ORR catalyst in practical devices.
Collapse
Affiliation(s)
- Huiying Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Ziyan Kong
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Minghao Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Bing Huang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Lunhui Guan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
8
|
Zeng W, Jiang Z, Gong X, Hu C, Luo X, Lei W, Yuan C. Atomic Magnetic Heating Effect Enhanced Hydrogen Evolution Reaction of Gd@MoS 2 Single-Atom Catalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206155. [PMID: 36437043 DOI: 10.1002/smll.202206155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Atomic heating on single atoms (SAs) to maximize the catalytic efficiency of each active site would be a fascinating solution to break the bottleneck for the performance improvement of single-atom catalysts (SACs) but highly challenging task. Here, based on the Gd@MoS2 SACs synthesized by a facile laser molecular beam epitaxy method, high-frequency alternating magnetic field (AMF) technology is employed to induce atomic magnetic heating on Gd SAs that is meanwhile demonstrated to be the catalytic active center. Significant improvement in catalytic kinetics under AMF excitation (3.9 mT) is achieved, yielding a remarkable enhancement of hydrogen evolution reaction magnetothermal-current by ≈924%. Through theoretical calculations and spin-related electrochemical experiments, such promotion in catalyst activity can be attributed to spin flip (or canting) in Gd SAs leading to the atomic magnetic heating effect on catalytic active center. Together with the embodied high stability, the implement of AMF to the SAs field is demonstrated in this work, and the precisely atomic magnetic heating on specific SAs offers unprecedented thinking for further improvement of SACs performance in the future.
Collapse
Affiliation(s)
- Wei Zeng
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022, China
| | - Zhenzhen Jiang
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022, China
| | - Xunguo Gong
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022, China
| | - Ce Hu
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022, China
| | - Xingfang Luo
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022, China
| | - Wen Lei
- Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, 6009, Australia
| | - Cailei Yuan
- Jiangxi Key Laboratory of Nanomaterials and Sensors, School of Physics, Communication and Electronics, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022, China
| |
Collapse
|
9
|
Butburee T, Ponchai J, Meeporn K, Phawa C, Chakthranont P, Khemthong P, Mano P, Namuangruk S, Chinsirikul W, Faungnawakij K, Zhao X, Pennycook S. New Folding 2D-Layered Nitro-Oxygenated Carbon Containing Ultra High-Loading Copper Single Atoms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204767. [PMID: 36328759 DOI: 10.1002/smll.202204767] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The discoveries of 2D nanomaterials have made huge impacts on the scientific community. Their unique properties unlock new technologies and bring significant advances to diverse applications. Herein, an unprecedented 2D-stacked material consisting of copper (Cu) on nitro-oxygenated carbon is disclosed. Unlike any known 2D stacked structures that are usually constructed by stacking of separate 2D layers, this material forms a continuously folded 2D-stacked structure. Interestingly, advanced characterizations indicate that Cu atoms inside the structure are in an atomically-dispersed form with extraordinarily high Cu loading up to 15.9 ± 1.2 wt.%, which is among the highest reported metal loading for single-atom catalysts on 2D supports. Facile exfoliation results in thin 2D nanosheets that maximize the exposure of the unique active sites (two neighboring Cu single atoms), leading to impressive catalytic performance, as demonstrated in the electrochemical oxygen reduction reaction.
Collapse
Affiliation(s)
- Teera Butburee
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Jitprabhat Ponchai
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Keerati Meeporn
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Chaiyasit Phawa
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Pongkarn Chakthranont
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Pongtanawat Khemthong
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Poobodin Mano
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Supawadee Namuangruk
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Wannee Chinsirikul
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Kajornsak Faungnawakij
- National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Pathum Thani, 12120, Thailand
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Stephen Pennycook
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, 37916, USA
- School of Physical Sciences and CAS Key Laboratory of Vacuum Sciences, University of Chinese Academy of Sciences, Beijing, 100864, China
| |
Collapse
|
10
|
Pei Z, Lu XF, Zhang H, Li Y, Luan D, Lou XW(D. Highly Efficient Electrocatalytic Oxygen Evolution Over Atomically Dispersed Synergistic Ni/Co Dual Sites. Angew Chem Int Ed Engl 2022; 61:e202207537. [DOI: 10.1002/anie.202207537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Indexed: 01/01/2023]
Affiliation(s)
- Zhihao Pei
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Xue Feng Lu
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Huabin Zhang
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Yunxiang Li
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Deyan Luan
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Xiong Wen (David) Lou
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| |
Collapse
|
11
|
Pei Z, Lu XF, Zhang H, Li Y, Luan D, Lou XW(D. Highly Efficient Electrocatalytic Oxygen Evolution Over Atomically Dispersed Synergistic Ni/Co Dual Sites. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhihao Pei
- Nanyang Technological University School of Chemical and Biomedical Engineering SINGAPORE
| | - Xue Feng Lu
- Nanyang Technological University School of Chemical and Biomedical Engineering SINGAPORE
| | - Huabin Zhang
- King Abdullah University of Science and Technology KAUST Catalysis Center (KCC) SAUDI ARABIA
| | - Yunxiang Li
- Nanyang Technological University School of Chemical and Biomedical Engineering SINGAPORE
| | - Deyan Luan
- Nanyang Technological University School of Chemical and Biomedical Engineering SINGAPORE
| | - Xiong-Wen (David) Lou
- Nanyang Technological University School of Chemical and Biomedical Eng 62 Nanyang Drive#N1.2-B1-09 637459 Singapore SINGAPORE
| |
Collapse
|