1
|
Ghitti E, Rolli E, Vergani L, Borin S. Flavonoids influence key rhizocompetence traits for early root colonization and PCB degradation potential of Paraburkholderia xenovorans LB400. FRONTIERS IN PLANT SCIENCE 2024; 15:1325048. [PMID: 38371405 PMCID: PMC10869545 DOI: 10.3389/fpls.2024.1325048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024]
Abstract
Introduction Flavonoids are among the main plant root exudation components, and, in addition to their role in symbiosis, they can broadly affect the functionality of plant-associated microbes: in polluted environments, for instance, flavonoids can induce the expression of the enzymatic degradative machinery to clean-up soils from xenobiotics like polychlorinated biphenyls (PCBs). However, their involvement in root community recruitment and assembly involving non-symbiotic beneficial interactions remains understudied and may be crucial to sustain the holobiont fitness under PCB stress. Methods By using a set of model pure flavonoid molecules and a natural blend of root exudates (REs) with altered flavonoid composition produced by Arabidopsis mutant lines affected in flavonoid biosynthesis and abundance (null mutant tt4, flavonoid aglycones hyperproducer tt8, and flavonoid conjugates hyperaccumulator ttg), we investigated flavonoid contribution in stimulating rhizocompetence traits and the catabolic potential of the model bacterial strain for PCB degradation Paraburkholderia xenovorans LB400. Results Flavonoids influenced the traits involved in bacterial recruitment in the rhizoplane by improving chemotaxis and motility responses, by increasing biofilm formation and by promoting the growth and activation of the PCB-degradative pathway of strain LB400, being thus potentially exploited as carbon sources, stimulating factors and chemoattractant molecules. Indeed, early rhizoplane colonization was favored in plantlets of the tt8 Arabidopsis mutant and reduced in the ttg line. Bacterial growth was promoted by the REs of mutant lines tt4 and tt8 under control conditions and reduced upon PCB-18 stress, showing no significant differences compared with the WT and ttg, indicating that unidentified plant metabolites could be involved. PCB stress presumably altered the Arabidopsis root exudation profile, although a sudden "cry-for-help" response to recruit strain LB400 was excluded and flavonoids appeared not to be the main determinants. In the in vitro plant-microbe interaction assays, plant growth promotion and PCB resistance promoted by strain LB400 seemed to act through flavonoid-independent mechanisms without altering bacterial colonization efficiency and root adhesion pattern. Discussions This study further contributes to elucidate the vast array of functions provided by flavonoids in orchestrating the early events of PCB-degrading strain LB400 recruitment in the rhizosphere and to support the holobiont fitness by stimulating the catabolic machinery involved in xenobiotics decomposition and removal.
Collapse
Affiliation(s)
| | - Eleonora Rolli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | | | | |
Collapse
|
2
|
Parker GD, Hanley L, Yu XY. Mass Spectral Imaging to Map Plant-Microbe Interactions. Microorganisms 2023; 11:2045. [PMID: 37630605 PMCID: PMC10459445 DOI: 10.3390/microorganisms11082045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/23/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Plant-microbe interactions are of rising interest in plant sustainability, biomass production, plant biology, and systems biology. These interactions have been a challenge to detect until recent advancements in mass spectrometry imaging. Plants and microbes interact in four main regions within the plant, the rhizosphere, endosphere, phyllosphere, and spermosphere. This mini review covers the challenges within investigations of plant and microbe interactions. We highlight the importance of sample preparation and comparisons among time-of-flight secondary ion mass spectroscopy (ToF-SIMS), matrix-assisted laser desorption/ionization (MALDI), laser desorption ionization (LDI/LDPI), and desorption electrospray ionization (DESI) techniques used for the analysis of these interactions. Using mass spectral imaging (MSI) to study plants and microbes offers advantages in understanding microbe and host interactions at the molecular level with single-cell and community communication information. More research utilizing MSI has emerged in the past several years. We first introduce the principles of major MSI techniques that have been employed in the research of microorganisms. An overview of proper sample preparation methods is offered as a prerequisite for successful MSI analysis. Traditionally, dried or cryogenically prepared, frozen samples have been used; however, they do not provide a true representation of the bacterial biofilms compared to living cell analysis and chemical imaging. New developments such as microfluidic devices that can be used under a vacuum are highly desirable for the application of MSI techniques, such as ToF-SIMS, because they have a subcellular spatial resolution to map and image plant and microbe interactions, including the potential to elucidate metabolic pathways and cell-to-cell interactions. Promising results due to recent MSI advancements in the past five years are selected and highlighted. The latest developments utilizing machine learning are captured as an important outlook for maximal output using MSI to study microorganisms.
Collapse
Affiliation(s)
- Gabriel D. Parker
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Luke Hanley
- Department of Chemistry, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Xiao-Ying Yu
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| |
Collapse
|
3
|
Shinde R, Shahi DK, Mahapatra P, Naik SK, Thombare N, Singh AK. Potential of lignocellulose degrading microorganisms for agricultural residue decomposition in soil: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 320:115843. [PMID: 36056484 DOI: 10.1016/j.jenvman.2022.115843] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Lignocellulosic crop residues (LCCRs) hold a significant share of the terrestrial biomass, estimated at 5 billion Mg per annum globally. A massive amount of these LCCRs are burnt in many countries resulting in immense environmental pollution; hence, its proper disposal in a cost-effective and eco-friendly manner is a significant challenge. Among the different options for management of LCCRs, the use of lignocellulose degrading microorganisms (LCDMOs), like fungi and bacteria, has emerged as an eco-friendly and effective way for its on-site disposal. LCDMOs achieve degradation through various mechanisms, including multiple supportive enzymes, causing oxidative attacks by which recalcitrance of lignocellulose material is reduced, paving the way to further activity by depolymerizing enzymes. This improves the physical properties of soil, recycles plant nutrients, promotes plant growth and thus helps improve productivity. Rapid and proper microbial degradation may be achieved through the correct combination of the LCDMOs, supplementing nutrients and controlling different factors affecting microbial activity in the field. The review is a critical discussion of previous studies revealing the potential of individuals or a set of LCDMOs, factors controlling the rate of degradation and the key researchable areas for better understanding of the role of these decomposers for future use.
Collapse
Affiliation(s)
- Reshma Shinde
- ICAR- Research Complex for Eastern Region, Farming System Research Centre for Hill and Plateau Region, Ranchi, 834010, Jharkhand, India.
| | | | | | - Sushanta Kumar Naik
- ICAR- Research Complex for Eastern Region, Farming System Research Centre for Hill and Plateau Region, Ranchi, 834010, Jharkhand, India
| | - Nandkishore Thombare
- ICAR- Indian Institute of Natural Resin and Gums, Ranchi, 834010, Jharkhand, India
| | - Arun Kumar Singh
- ICAR- Research Complex for Eastern Region, Farming System Research Centre for Hill and Plateau Region, Ranchi, 834010, Jharkhand, India
| |
Collapse
|
4
|
Franchi E, Cardaci A, Pietrini I, Fusini D, Conte A, De Folly D’Auris A, Grifoni M, Pedron F, Barbafieri M, Petruzzelli G, Vocciante M. Nature-Based Solutions for Restoring an Agricultural Area Contaminated by an Oil Spill. PLANTS (BASEL, SWITZERLAND) 2022; 11:2250. [PMID: 36079632 PMCID: PMC9459758 DOI: 10.3390/plants11172250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
A feasibility study is presented for a bioremediation intervention to restore agricultural activity in a field hit by a diesel oil spill from an oil pipeline. The analysis of the real contaminated soil was conducted following two approaches. The first concerned the assessment of the biodegradative capacity of the indigenous microbial community through laboratory-scale experimentation with different treatments (natural attenuation, landfarming, landfarming + bioaugmentation). The second consisted of testing the effectiveness of phytoremediation with three plant species: Zea mays (corn), Lupinus albus (lupine) and Medicago sativa (alfalfa). With the first approach, after 180 days, the different treatments led to biodegradation percentages between 83 and 96% for linear hydrocarbons and between 76 and 83% for branched ones. In case of contamination by petroleum products, the main action of plants is to favor the degradation of hydrocarbons in the soil by stimulating microbial activity thanks to root exudates. The results obtained in this experiment confirm that the presence of plants favors a decrease in the hydrocarbon content, resulting in an improved degradation of up to 18% compared with non-vegetated soils. The addition of plant growth-promoting bacteria (PGPB) isolated from the contaminated soil also promoted the growth of the tested plants. In particular, an increase in biomass of over 50% was found for lupine. Finally, the metagenomic analysis of the contaminated soil allowed for evaluating the evolution of the composition of the microbial communities during the experimentation, with a focus on hydrocarbon- oxidizing bacteria.
Collapse
Affiliation(s)
- Elisabetta Franchi
- Eni S.p.A, Research & Development, Environmental & Biological Laboratories, Via Maritano 26, 20097 S. Donato Milanese, Italy
| | - Anna Cardaci
- Eni S.p.A, Research & Development, Environmental & Biological Laboratories, Via Maritano 26, 20097 S. Donato Milanese, Italy
| | - Ilaria Pietrini
- Eni S.p.A, Research & Development, Environmental & Biological Laboratories, Via Maritano 26, 20097 S. Donato Milanese, Italy
| | - Danilo Fusini
- Eni S.p.A, Research & Development, Environmental & Biological Laboratories, Via Maritano 26, 20097 S. Donato Milanese, Italy
| | - Alessandro Conte
- Eni S.p.A, Research & Development, Environmental & Biological Laboratories, Via Maritano 26, 20097 S. Donato Milanese, Italy
| | - Alessandra De Folly D’Auris
- Eni S.p.A, Research & Development, Environmental & Biological Laboratories, Via Maritano 26, 20097 S. Donato Milanese, Italy
| | - Martina Grifoni
- Institute of Research on Terrestrial Ecosystem, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy
| | - Francesca Pedron
- Institute of Research on Terrestrial Ecosystem, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy
| | - Meri Barbafieri
- Institute of Research on Terrestrial Ecosystem, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy
| | - Gianniantonio Petruzzelli
- Institute of Research on Terrestrial Ecosystem, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy
| | - Marco Vocciante
- Department of Chemistry and Industrial Chemistry, Università Degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| |
Collapse
|
5
|
The Role of Plant Growth-Promoting Rhizobacteria (PGPR) in Mitigating Plant’s Environmental Stresses. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031231] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Phytoremediation is a cost-effective and sustainable technology used to clean up pollutants from soils and waters through the use of plant species. Indeed, plants are naturally capable of absorbing metals and degrading organic molecules. However, in several cases, the presence of contaminants causes plant suffering and limited growth. In such situations, thanks to the production of specific root exudates, plants can engage the most suitable bacteria able to support their growth according to the particular environmental stress. These plant growth-promoting rhizobacteria (PGPR) may facilitate plant growth and development with several beneficial effects, even more evident when plants are grown in critical environmental conditions, such as the presence of toxic contaminants. For instance, PGPR may alleviate metal phytotoxicity by altering metal bioavailability in soil and increasing metal translocation within the plant. Since many of the PGPR are also hydrocarbon oxidizers, they are also able to support and enhance plant biodegradation activity. Besides, PGPR in agriculture can be an excellent support to counter the devastating effects of abiotic stress, such as excessive salinity and drought, replacing expensive inorganic fertilizers that hurt the environment. A better and in-depth understanding of the function and interactions of plants and associated microorganisms directly in the matrix of interest, especially in the presence of persistent contamination, could provide new opportunities for phytoremediation.
Collapse
|
6
|
Endophytic and rhizospheric bacterial communities are affected differently by the host plant species and environmental contamination. Symbiosis 2021. [DOI: 10.1007/s13199-021-00804-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Conte A, Chiaberge S, Pedron F, Barbafieri M, Petruzzelli G, Vocciante M, Franchi E, Pietrini I. Dealing with complex contamination: A novel approach with a combined bio-phytoremediation strategy and effective analytical techniques. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112381. [PMID: 33823438 DOI: 10.1016/j.jenvman.2021.112381] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/08/2021] [Accepted: 03/11/2021] [Indexed: 05/16/2023]
Abstract
Phytoremediation is a sustainable technology capable of efficiently removing low or moderate contamination. However, complex pollution conditions can drastically reduce efficiency, as plants can show themselves sensitive to organic contaminants, growing slowly and thus impairing metals' absorption. In cases where the action of indigenous bacteria degrading hydrocarbons and promoting plant growth is not sufficient, more sophisticated strategies are necessary. This investigation aims to evaluate the effectiveness of a train of technologies that sees advanced phytoremediation in combination with other biological approaches to remediate soil from a disused industrial area contaminated by N-containing compounds, alkyl aromatic hydrocarbons, copper, and nickel. In particular, a stepwise procedure was used with a pre-treatment (landfarming and bioaugmentation), significantly affecting the soil's fertility, increasing germinability up to 85%, and allowing the plants to extract the metals adequately. Furthermore, with EDTA as a mobilizing agent, nickel absorption has increased up to 36% in Helianthus annuus and up to 88% in Zea mays. For copper, an increase of up to 262% in Helianthus annuus and up to 202% in Zea Mays was obtained. Analysis through Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry highlighted the biodegradation of some of the N-containing compounds recording, after phytoremediation, a decrease of up to almost 90%. Metagenomic analysis of the soil showed a typical microbial population of oxidizing hydrocarbon strains with a prevalence of the Nocardiaceae family (43%). The results obtained appear to confirm the usefulness of the approach developed, and the employed cutting-edge analytical techniques allowed a top-notch characterization of the remediation scenario.
Collapse
Affiliation(s)
- Alessandro Conte
- Eni S.p.A, Decarbonization and Environmental R&D, Via Maritano 26, 20097, S. Donato Milanese(MI), Italy
| | - Stefano Chiaberge
- Eni S.p.A., Renewable Energy and Environmental R&D, Via Fauser 4, 28100, Novara, Italy
| | - Francesca Pedron
- Institute of Research on Terrestrial Ecosystem, National Council of Research, Via Moruzzi 1, 56124, Pisa, Italy
| | - Meri Barbafieri
- Institute of Research on Terrestrial Ecosystem, National Council of Research, Via Moruzzi 1, 56124, Pisa, Italy
| | - Gianniantonio Petruzzelli
- Institute of Research on Terrestrial Ecosystem, National Council of Research, Via Moruzzi 1, 56124, Pisa, Italy
| | - Marco Vocciante
- DCCI, Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso 31, 16146, Genova, Italy
| | - Elisabetta Franchi
- Eni S.p.A, Decarbonization and Environmental R&D, Via Maritano 26, 20097, S. Donato Milanese(MI), Italy
| | - Ilaria Pietrini
- Eni S.p.A, Decarbonization and Environmental R&D, Via Maritano 26, 20097, S. Donato Milanese(MI), Italy.
| |
Collapse
|
8
|
Hoang SA, Lamb D, Seshadri B, Sarkar B, Choppala G, Kirkham MB, Bolan NS. Rhizoremediation as a green technology for the remediation of petroleum hydrocarbon-contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123282. [PMID: 32634659 DOI: 10.1016/j.jhazmat.2020.123282] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 05/22/2023]
Abstract
Rhizoremediation is increasingly becoming a green and sustainable alternative to physico-chemical methods for remediation of contaminated environments through the utilization of symbiotic relationship between plants and their associated soil microorganisms in the root zone. The overall efficiency can be enhanced by identifying suitable plant-microbe combinations for specific contaminants and supporting the process with the application of appropriate soil amendments. This approach not only involves promoting the existing activity of plants and soil microbes, but also introduces an adequate number of microorganisms with specific catabolic activity. Here, we reviewed recent literature on the main mechanisms and key factors in the rhizoremediation process with a particular focus on soils contaminated with total petroleum hydrocarbon (TPH). We then discuss the potential of different soil amendments to accelerate the remediation efficiency based on biostimulation and bioaugmentation processes. Notwithstanding some successes in well-controlled environments, rhizoremediation of TPH under field conditions is still not widespread and considered less attractive than physico-chemical methods. We catalogued the major pitfalls of this remediation approach at the field scale in TPH-contaminated sites and, provide some applicable situations for the future successful use of in situ rhizoremediation of TPH-contaminated soils.
Collapse
Affiliation(s)
- Son A Hoang
- Global Centre for Environmental Remediation (GCER), Advanced Technology Centre (ATC) Building, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Division of Urban Infrastructural Engineering, Mien Trung University of Civil Engineering, Phu Yen 56000, Viet Nam
| | - Dane Lamb
- Global Centre for Environmental Remediation (GCER), Advanced Technology Centre (ATC) Building, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Balaji Seshadri
- Global Centre for Environmental Remediation (GCER), Advanced Technology Centre (ATC) Building, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Girish Choppala
- Global Centre for Environmental Remediation (GCER), Advanced Technology Centre (ATC) Building, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Nanthi S Bolan
- Global Centre for Environmental Remediation (GCER), Advanced Technology Centre (ATC) Building, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| |
Collapse
|
9
|
Grifoni M, Rosellini I, Angelini P, Petruzzelli G, Pezzarossa B. The effect of residual hydrocarbons in soil following oil spillages on the growth of Zea mays plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114950. [PMID: 32554092 DOI: 10.1016/j.envpol.2020.114950] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Liquid hydrocarbon pipeline accidents, including leaks due to the illegal or unauthorized collection of petroleum from oil pipelines, are a widespread phenomenon that can lead to pollution that may negatively affect soil quality and plant growth. The aim of this study is to evaluate hydrocarbon uptake and accumulation in Zea mays plants grown on soil affected by spills of fossil fuels. The experiments were conducted in microcosm, mesocosm and field tests. The potential transfer of contaminants from soil to plant and their effects on plant growth were investigated. The results from both the laboratory and field experiments showed that the plants grew better in the uncontaminated soil than in the soil polluted by hydrocarbons. Despite their significantly lower aerial biomass, plants grown in contaminated soil did not show any significant differences in C > 12 concentration, either in shoots or roots, compared to the control plants. Thus, the decrease in plant yield might not be attributed to hydrocarbons accumulation in the plant tissues and may rather be due to a reduced soil fertility, which negatively affected plant growth. Under our experimental conditions, the hydrocarbons present in the contaminated soil were not absorbed by the plants and did not accumulate in plant tissue or in grains, thus avoiding the risk of them entering the food chain.
Collapse
Affiliation(s)
- M Grifoni
- Research Institute on Terrestrial Ecosystems, National Research Council, via Moruzzi 1, 56124, Pisa, Italy.
| | - I Rosellini
- Research Institute on Terrestrial Ecosystems, National Research Council, via Moruzzi 1, 56124, Pisa, Italy
| | | | - G Petruzzelli
- Research Institute on Terrestrial Ecosystems, National Research Council, via Moruzzi 1, 56124, Pisa, Italy
| | - B Pezzarossa
- Research Institute on Terrestrial Ecosystems, National Research Council, via Moruzzi 1, 56124, Pisa, Italy
| |
Collapse
|
10
|
Franchi E, Cosmina P, Pedron F, Rosellini I, Barbafieri M, Petruzzelli G, Vocciante M. Improved arsenic phytoextraction by combined use of mobilizing chemicals and autochthonous soil bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:328-336. [PMID: 30471601 DOI: 10.1016/j.scitotenv.2018.11.242] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 05/24/2023]
Abstract
Proper plant selection and application of suitable strategies are key factors to ensure the effectiveness of a reclamation via phytoremediation approach. In this study, micro- and meso-cosm scale experimentation has been realized to address a persistent contamination by arsenic on a disused industrial site through an assisted phytoremediation intervention. Three crop species, namely Brassica juncea, Helianthus annuus and Zea mays, have been considered and the addition of K2HPO4, a common mobilizing agent for As, or (NH4)S2O3, a promising additive for As mobilization in case of mercury co-presence, evaluated. The use of these additives significantly enhanced the bioavailability of the target contaminant and therefore its phytoextraction up to 80%. Furthermore, in order to maximize the extraction efficiency of the plants, the influence of five indigenous Plant Growth Promoting Bacteria (PGPB), in combination with the mobilizing agents, was measured. The addition of the microbial consortium led to a further increase in the total uptake of arsenic, especially in B. juncea (up to 140%). The combined strategy supports and enhances the arsenic phytoextraction together with an improvement of the soil quality, as shown by phytotoxicity tests.
Collapse
Affiliation(s)
- Elisabetta Franchi
- Eni S.p.A, Renewable Energy & Environmental R&D, Via Maritano 26, 20097 S. Donato Milanese (MI), Italy.
| | - Paola Cosmina
- Eni S.p.A, Renewable Energy & Environmental R&D, Via Maritano 26, 20097 S. Donato Milanese (MI), Italy.
| | - Francesca Pedron
- Institute of Ecosystem Study, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy.
| | - Irene Rosellini
- Institute of Ecosystem Study, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy.
| | - Meri Barbafieri
- Institute of Ecosystem Study, National Council of Research, Via Moruzzi 1, 56124 Pisa, Italy.
| | | | - Marco Vocciante
- DCCI, Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy.
| |
Collapse
|
11
|
Bhuvaneshwari S, Hettiarachchi H, Meegoda JN. Crop Residue Burning in India: Policy Challenges and Potential Solutions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E832. [PMID: 30866483 PMCID: PMC6427124 DOI: 10.3390/ijerph16050832] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 11/16/2022]
Abstract
India, the second largest agro-based economy with year-round crop cultivation, generates a large amount of agricultural waste, including crop residues. In the absence of adequate sustainable management practices, approximately 92 seems a very small number of metric tons of crop waste is burned every year in India, causing excessive particulate matter emissions and air pollution. Crop residue burning has become a major environmental problem causing health issues as well as contributing to global warming. Composting, biochar production and mechanization are a few effective sustainable techniques that can help to curtail the issue while retaining the nutrients present in the crop residue in the soil. The government of India has attempted to curtail this problem, through numerous measures and campaigns designed to promote sustainable management methods such as converting crop residue into energy. However, the alarming rise of air pollution levels caused by crop residue burning in the city of Delhi and other northern areas in India observed in recent years, especially in and after the year of 2015, suggest that the issues is not yet under control. The solution to crop residue burning lies in the effective implementation of sustainable management practices with Government interventions and policies. This manuscript addresses the underlying technical as well as policy issues that has prevented India from achieving a long-lasting solution and also potential solutions that have been overlooked. However, effective implementation of these techniques also requires us to look at other socioeconomic aspects that had not been considered. This manuscript also discusses some of the policy considerations and functionality based on the analyses and current practices. The agricultural waste sector can benefit immensely from some of the examples from other waste sectors such as the municipal solid waste (MSW) and wastewater management where collection, segregation, recycling and disposal are institutionalized to secure an operational system. Active stakeholder involvement including education and empowerment of farmers along with technical solutions and product manufacturing can also assist tremendously. Even though the issue of crop residue burning touches many sectors, such as environment, agriculture, economy, social aspects, education, and energy, the past governmental efforts mainly revolved around agriculture and energy. This sectorial thinking is another barrier that needs to be broken. The government of India as well as governments of other developing countries can benefit from the emerging concept of nexus thinking in managing environmental resources. Nexus thinking promotes a higher-level integration and higher level of stakeholder involvement that goes beyond the disciplinary boundaries, providing a supporting platform to solve issues such as crop residue burning.
Collapse
Affiliation(s)
- S Bhuvaneshwari
- Department of Civil Engineering, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram 603203, Tamil Nadu, India.
| | | | - Jay N Meegoda
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07032, USA.
| |
Collapse
|
12
|
Vergani L, Mapelli F, Marasco R, Crotti E, Fusi M, Di Guardo A, Armiraglio S, Daffonchio D, Borin S. Bacteria Associated to Plants Naturally Selected in a Historical PCB Polluted Soil Show Potential to Sustain Natural Attenuation. Front Microbiol 2017; 8:1385. [PMID: 28790991 PMCID: PMC5524726 DOI: 10.3389/fmicb.2017.01385] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/10/2017] [Indexed: 11/13/2022] Open
Abstract
The exploitation of the association between plants and microorganisms is a promising approach able to boost natural attenuation processes for soil clean-up in vast polluted areas characterized by mixed chemical contamination. We aimed to explore the selection of root-associated bacterial communities driven by different plant species spontaneously established in abandoned agricultural soils within a historical polluted site in north Italy. The site is highly contaminated by chlorinated persistent organic pollutants, mainly constituted by polychlorobiphenyls (PCBs), together with heavy metals and metalloids, in variable concentrations and uneven distribution. The overall structure of the non-vegetated and root-associated soil fractions bacterial communities was described by high-throughput sequencing of the 16S rRNA gene, and a collection of 165 rhizobacterial isolates able to use biphenyl as unique carbon source was assayed for plant growth promotion (PGP) traits and bioremediation potential. The results showed that the recruitment of specific bacterial communities in the root-associated soil fractions was driven by both soil fractions and plant species, explaining 21 and 18% of the total bacterial microbiome variation, respectively. PCR-based detection in the soil metagenome of bacterial bphA gene, encoding for the biphenyl dioxygenase α subunit, indicated that the soil in the site possesses metabolic traits linked to PCB degradation. Biphenyl-utilizing bacteria isolated from the rhizosphere of the three different plant species showed low phylogenetic diversity and well represented functional traits, in terms of PGP and bioremediation potential. On average, 72% of the strains harbored the bphA gene and/or displayed catechol 2,3-dioxygenase activity, involved in aromatic ring cleavage. PGP traits, including 1-aminocyclopropane-1-carboxylic acid deaminase activity potentially associated to plant stress tolerance induction, were widely distributed among the isolates according to in vitro assays. PGP tested in vivo on tomato plants using eleven selected bacterial isolates, confirmed the promotion and protection potential of the rhizosphere bacteria. Different spontaneous plant species naturally selected in a historical chronically polluted site showed to determine the enrichment of peculiar bacterial communities in the soil fractions associated to the roots. All the rhizosphere communities, nevertheless, hosted bacteria with degradation/detoxification and PGP potential, putatively sustaining the natural attenuation process.
Collapse
Affiliation(s)
- Lorenzo Vergani
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| | - Ramona Marasco
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Elena Crotti
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| | - Marco Fusi
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Antonio Di Guardo
- Department of Science and High Technology, University of InsubriaComo, Italy
| | | | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences, University of MilanMilan, Italy
| |
Collapse
|