1
|
Fan C, Dong Y, Li Z, Wang Q, Wang Z, Wu Q, Wang C. Preparation of novel cationic porous polymers for effective pre-concentration and sensitive detection of endocrine disruptors in water and fish. Anal Chim Acta 2025; 1353:343956. [PMID: 40221203 DOI: 10.1016/j.aca.2025.343956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Phenolic endocrine disrupting chemicals (EDCs) that are widely present in water environment can mimic hormones and interfere with the endocrine system, posing a severe threat to human health. Therefore, there is an urgent need to develop sensitive methods to effectively monitor phenolic EDCs in environment water and seafood products. In this study, a novel quaternary ammonium cationic porous polymer (AC-HCP3) was synthesized and a new analytical method was established by using AC-HCP3 as solid phase extraction adsorbent in combination with high-performance liquid chromatography, achieving the sensitive and reliable detection of phenolic EDCs in fish and environmental water. RESULTS The developed AC-HCP3 has high stability, positive ionic feature and good recycle utilization, achieving high enrichment efficiency that is unsusceptible to pH for several EDCs, including bisphenol F, bisphenol A, bisphenol B, and p-tert-butylphenol. The high enrichment efficiency is proved to be the synergistic effects of π-π conjugation, hydrogen bonding, and electrostatic interactions. Based on AC-HCP3, a feasible and practical detection method was established and employed for determining several phenolic EDCs in fish (Basa fish and tilapia) and environmental water. The method achieved low detection limits of 1.67-7.80 ng g-1 for fish and 0.004-0.02 ng mL-1 for environmental water, with recoveries of 80.7 %-118 % and relative standard deviations ≤8.40 %. The adsorption capacity of AC-HCP3 ranged from 68.73 to 128.53 mg g-1. Compared with other reported methods, the developed method offers high sensitivity, efficiency and applicability. SIGNIFICANCE Herein, for the first time, we designed and synthesized a novel ionic porous polymer (AC-HCP3) through simple preparation process (one-step Friedel-Crafts alkylation reaction). The AC-HCP3 displayed an outstanding adsorption effect in harsh environments such as strong acids and alkalis. This work not only provides a feasible approach for the construction of ionic porous polymers, but also provides an alternative approach for the effective monitoring of phenolic EDCs in complex food and environmental samples.
Collapse
Affiliation(s)
- Chengcheng Fan
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Yanli Dong
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Zhi Li
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Qianqian Wang
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Zhi Wang
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China; College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China; College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China; College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
2
|
Chu K, Wang C, Cui X. Europium (III)-modified sunflower-derived carbon dots for fluorescent anti-counterfeiting inks and photocatalysis. LUMINESCENCE 2024; 39:e4872. [PMID: 39245989 DOI: 10.1002/bio.4872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024]
Abstract
A highly water-soluble and fluorescent N,S-doped carbon dots/europium (N,S-CDs/Eu) was successfully synthesized via a secondary hydrothermal method. This involved surface modification of N,S-CDs derived from sunflower stem pith (SSP) with europium ions (Eu3+) doping. When excited within the range of 400-470 nm, N,S-CDs/Eu exhibited a stable and broad optimal emission wavelength ranging from 505 to 540 nm. Notably, the photoluminescence quantum yield (PLQY) of N,S-CDs/Eu is 31.4%, significantly higher than the 19.5% observed for N,S-CDs. Additionally, by dissolving N,S-CDs/Eu into polyvinyl alcohol (PVA), a uniform fluorescent anti-counterfeiting ink can be prepared. The N,S-CDs/Eu/TiO2 composite demonstrates excellent photocatalytic degradation ability towards the organic dye methylene blue (MB). N,S-CDs/Eu has potential in the field of fluorescent inks and photocatalysis due to its simple and efficient preparation and excellent properties.
Collapse
Affiliation(s)
- Kunyu Chu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Congling Wang
- School of Material Science and Engineering, Hunan University, Changsha, China
| | - Xuemin Cui
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| |
Collapse
|
3
|
Han D, Villanueva-Tagle ME, Peña-Icart M, López-Mesas M, Valiente M. Trace cisplatin adsorption by thiol-functionalized sponge (TFS) and Sn/SnO 2-coated TFS: Adsorption study and mechanism investigation. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134442. [PMID: 38688222 DOI: 10.1016/j.jhazmat.2024.134442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/22/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
To remove trace cisplatin from aqueous solution, commercial sponges were functionalized by esterification with 3-mercaptopropionic acid, followed by reduction with Na2S·9H2O or SnCl2·2H2O. The resulting thiol-functionalized sponges (TFSs), TFS_1 and TFS_2, were tested for the removal of cisplatin (235 μg L-1) achieving maximum removal of 95.5 ± 0.8% and 99.5 ± 0.1% respectively, which were significantly higher than the non-functionalized counterpart. The successful grafting of thiol groups, verified through FTIR, elemental analysis, SEM-EDS, and XPS characterization, facilitated Pt-S complexation during adsorption. The aqua-derivatives of cisplatin, formed through hydration, complexed with thiol sites through ligand displacement. Additionally, the presence of Sn/SnO2 coating on TFS_2 further enhanced the adsorption process. The rapid adsorption process conformed to pseudo-second-order kinetic model, involving both diffusion and chemisorption. While the Langmuir isotherm model generally described the monolayer adsorption behavior of cisplatin, the aggregation of Sn/SnO2 onto TFS_2 at 343 K introduced surface heterogeneity, rendering the Freundlich model a better fit for the adsorption isotherm. Differential pH dependence and the evaluation of mean free energy, derived from the Dubinin-Radushkevich isotherm model, indicated that cisplatin adsorption onto TFS_1 involved physisorption, including electrostatic attraction, while chemisorption predominated for TFS_2. Increasing the temperature notably promoted adsorption by facilitating the thermal-favored formation of Pt-S bonds.
Collapse
Affiliation(s)
- Dong Han
- GTS-UAB Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, Bellaterra, (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | | | - Mirella Peña-Icart
- Institute of Materials Science and Technology, University of Havana, Havana 10400, Cuba
| | - Montserrat López-Mesas
- GTS-UAB Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, Bellaterra, (Cerdanyola del Vallès), 08193 Barcelona, Spain.
| | - Manuel Valiente
- GTS-UAB Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, Bellaterra, (Cerdanyola del Vallès), 08193 Barcelona, Spain
| |
Collapse
|
4
|
Thakur N, Thakur N, Kumar A, Thakur VK, Kalia S, Arya V, Kumar A, Kumar S, Kyzas GZ. A critical review on the recent trends of photocatalytic, antibacterial, antioxidant and nanohybrid applications of anatase and rutile TiO2 nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169815. [PMID: 38184262 DOI: 10.1016/j.scitotenv.2023.169815] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have become a focal point of research due to their widespread daily use and diverse synthesis methods, including physical, chemical, and environmentally sustainable approaches. These nanoparticles possess unique attributes such as size, shape, and surface functionality, making them particularly intriguing for applications in the biomedical field. The continuous exploration of TiO2 NPs is driven by the quest to enhance their multifunctionality, aiming to create next-generation products with superior performance. Recent research efforts have specifically focused on understanding the anatase and rutile phases of TiO2 NPs and evaluating their potential in various domains, including photocatalytic processes, antibacterial properties, antioxidant effects, and nanohybrid applications. The hypothesis guiding this research is that by exploring different synthesis methods, particularly chemical and environmentally friendly approaches, and incorporating doping and co-doping techniques, the properties of TiO2 NPs can be significantly improved for diverse applications. The study employs a comprehensive approach, investigating the effects of nanoparticle size, shape, dose, and exposure time on performance. The synthesis methods considered encompass both conventional chemical processes and environmentally friendly alternatives, with a focus on how doping and co-doping can enhance the properties of TiO2 NPs. The research unveils valuable insights into the distinct phases of TiO2 NPs and their potential across various applications. It sheds light on the improved properties achieved through doping and co-doping, showcasing advancements in photocatalytic processes, antibacterial efficacy, antioxidant capabilities, and nanohybrid applications. The study concludes by emphasizing regulatory aspects and offering suggestions for product enhancement. It provides recommendations for the reliable application of TiO2 NPs, addressing a comprehensive spectrum of critical aspects in TiO2 NP research and application. Overall, this research contributes to the evolving landscape of TiO2 NP utilization, offering valuable insights for the development of innovative and high-performance products.
Collapse
Affiliation(s)
- Naveen Thakur
- Department of Physics, Career Point University, Hamirpur, Himachal Pradesh 176041, India.
| | - Nikesh Thakur
- Department of Physics, Career Point University, Hamirpur, Himachal Pradesh 176041, India
| | - Anil Kumar
- School of chemical and metallurgical engineering, University of the Witwatersrand, Johannesburg, South Africa
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings West Mains Road, Edinburgh EH9 3JG, United Kingdom
| | - Susheel Kalia
- Department of Chemistry, ACC Wing (Academic Block) Indian Military Academy, Dehradun, Uttarakhand 248007, India
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, Uttarakhand 249405, India
| | - Ashwani Kumar
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, Uttarakhand 249405, India
| | - Sunil Kumar
- Department of Animal Sciences, Central University of Himachal Pradesh, Kangra, Shahpur, Himachal Pradesh 176206, India
| | - George Z Kyzas
- Hephaestus Laboratory, Department of Chemistry, School of Science, International Hellenic University, Kavala, Greece.
| |
Collapse
|
5
|
Pereira HA, da Boit Martinello K, Vieira Y, Diel JC, Netto MS, Reske GD, Lorenzett E, Silva LFO, Burgo TAL, Dotto GL. Adsorptive behavior of multi-walled carbon nanotubes immobilized magnetic nanoparticles for removing selected pesticides from aqueous matrices. CHEMOSPHERE 2023; 325:138384. [PMID: 36931403 DOI: 10.1016/j.chemosphere.2023.138384] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
The present work synthesized two new materials of functionalized multi-walled carbon nanotubes (MWCNT-OH and MWCNT-COOH) impregnated with magnetite (Fe3O4) using solution precipitation methodology. The resulting MWCNT-OH-Mag and MWCNT-COOH-Mag materials were characterized by scanning electron microscopy coupled with energy dispersion X-ray spectroscopy, Fourier transform infrared, X-ray diffraction, atomic force microscopy, and electrical force microscopy. The characterization results indicate that the -OH functional groups in the MWCNT interact effectively with magnetite iron favoring impregnation and indicating the regular distribution of nanoparticles on the surface of the synthesized materials. The adsorption efficiency of the MWCNT-OH-Mag and MWCNT-COOH-Mag materials was tested using the pollutants 2,4-D and Atrazine. Over batch studies carried out under different pH ranges, it was found that the optimal condition for 2,4-D adsorption was at pH 2, while for Atrazine, it was found at pH 6. The rapid adsorption kinetics of 2,4-D and Atrazine reaches equilibrium within 30 min. The pseudo-first-order model described 2,4-D adsorption well. The General-order model described better atrazine adsorption. The magnetically doped adsorbent functionalized with -OH surface groups (MWCNT-OH-Mag) demonstrated superior adsorption performance and increased Fe-doped sites. The Sips model described the adsorption isotherms accurately. MWCNT-OH-Mag presented the greatest adsorption capacity at 51.4 and 47.7 mg g-1 for 2,4-D and Atrazine, respectively. Besides, electrostatic forces and complexation rule the molecular interactions between metals and pesticides. The leaching and regeneration tests of the synthesized materials indicate high stability in an aqueous solution. Furthermore, experiments with wastewater samples contaminated with the model pollutants indicate that the novel adsorbents are highly promising for enhancing water purification by adsorptive separation.
Collapse
Affiliation(s)
- Hercules A Pereira
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900, Santa Maria, RS, Brazil
| | | | - Yasmin Vieira
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900, Santa Maria, RS, Brazil
| | - Júlia C Diel
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900, Santa Maria, RS, Brazil
| | - Matias S Netto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900, Santa Maria, RS, Brazil
| | - Gabriel D Reske
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900, Santa Maria, RS, Brazil
| | - Ezequiel Lorenzett
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900, Santa Maria, RS, Brazil
| | - Luis F O Silva
- Universidad De La Costa, Calle 58 # 55-66, 080002, Barranquilla, Atlántico, Colombia.
| | - Thiago A L Burgo
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900, Santa Maria, RS, Brazil
| | - Guilherme Luiz Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
6
|
Farah J, Malloggi F, Miserque F, Kim J, Gravel E, Doris E. Continuous Flow Photocatalytic Hydrogen Production from Water Synergistically Activated by TiO 2, Gold Nanoparticles, and Carbon Nanotubes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1184. [PMID: 37049277 PMCID: PMC10097087 DOI: 10.3390/nano13071184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Titanium dioxide nanoparticles were combined with carbon nanotubes and gold to develop improved photocatalysts for the production of hydrogen from water. The entangled nature of the nanotubes allowed for the integration of the photoactive hybrid catalyst, as a packed-bed, in a microfluidic photoreactor, and the chips were studied in the photocatalyzed continuous flow production of hydrogen. The combination of titanium dioxide with carbon nanotubes and gold significantly improved hydrogen production due to a synergistic effect between the multi-component system and the stabilization of the active catalytic species. The titanium dioxide/carbon nanotubes/gold system permitted a 2.5-fold increase in hydrogen production, compared to that of titanium dioxide/carbon nanotubes, and a 20-fold increase, compared to that of titanium dioxide.
Collapse
Affiliation(s)
- Joseph Farah
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
- Université Paris-Saclay, Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SCBM, 91191 Gif-sur-Yvette, France
| | - Florent Malloggi
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette, France
| | - Frédéric Miserque
- Université Paris-Saclay, Service de Recherche en Corrosion et Comportement des Matériaux, CEA, 91191 Gif-sur-Yvette, France
| | - Jongwook Kim
- Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS, IP Paris, 91128 Palaiseau, France
| | - Edmond Gravel
- Université Paris-Saclay, Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SCBM, 91191 Gif-sur-Yvette, France
| | - Eric Doris
- Université Paris-Saclay, Département Médicaments et Technologies pour la Santé (DMTS), CEA, INRAE, SCBM, 91191 Gif-sur-Yvette, France
| |
Collapse
|
7
|
GadelHak Y, Salama E, Abd-El Tawab S, Mouhmed EA, Alkhalifah DHM, Hozzein WN, Mohaseb M, Mahmoud RK, Amin RM. Waste Valorization of a Recycled ZnCoFe Mixed Metal Oxide/Ceftriaxone Waste Layered Nanoadsorbent for Further Dye Removal. ACS OMEGA 2022; 7:44103-44115. [PMID: 36506177 PMCID: PMC9730514 DOI: 10.1021/acsomega.2c05528] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/08/2022] [Indexed: 05/14/2023]
Abstract
Waste valorization of spent wastewater nanoadsorbents is a promising technique to support the circular economy strategies. The terrible rise of heavy metal pollution in the environment is considered a serious threat to the terrestrial and aquatic environment. This led to the necessity of developing cost-effective, operation-convenient, and recyclable adsorbents. ZnCoFe mixed metal oxide (MMO) was synthesized using co-precipitation. The sample was characterized using X-ray powder diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. Factors affecting the adsorption process such as pH, the dose of adsorbent, and time were investigated. ZnCoFe MMO showed the maximum adsorption capacity of 118.45 mg/g for ceftriaxone sodium. The spent MMO was recycled as an adsorbent for malachite green (MG) removal. Interestingly, the spent adsorbent showed 94% removal percent for MG as compared to the fresh MMO (90%). The kinetic investigation of the adsorption process was performed and discussed. In addition, ZnCoFe MMO was tested as an antimicrobial agent. The proposed approach opens up a new avenue for recycling wastes after adsorption into value-added materials for utilization in adsorbent production with excellent performance as antimicrobial agents.
Collapse
Affiliation(s)
- Yasser GadelHak
- Department
of Materials Science and Nanotechnology, Faculty of Postgraduate Studies
for Advanced Sciences, Beni-Suef University, Beni-Suef62511, Egypt
| | - Esraa Salama
- Chemistry
Department, Faculty of Sciences. Beni-Suef
University. Beni-Suef62511, Egypt
| | - Samah Abd-El Tawab
- Food
Science and Technology Department, Faculty of Agriculture, Fayoum University, Fayoum63514, Egypt
| | - Eman Abouzied Mouhmed
- Food
Science and Technology Department, Faculty of Agriculture, Fayoum University, Fayoum63514, Egypt
| | - Dalal Hussien M. Alkhalifah
- Department
of Biology, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh11671, Saudi Arabia
| | - Wael N. Hozzein
- Botany
and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef62511, Egypt
| | - Mona Mohaseb
- Physics Department,
Faculty of Science, Beni-Suef University, Beni-Suef62511, Egypt
- Department
of Physics, Faculty of Applied Sciences, Umm-Al-Qura University, Mecca21421, Saudi Arabia
| | - Rehab K. Mahmoud
- Chemistry
Department, Faculty of Sciences. Beni-Suef
University. Beni-Suef62511, Egypt
| | - Rafat M. Amin
- Physics Department,
Faculty of Science, Beni-Suef University, Beni-Suef62511, Egypt
| |
Collapse
|
8
|
Doltade SB, Yadav YJ, Jadhav NL. Industrial wastewater treatment using oxidative integrated approach. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
9
|
MFO@NZVI/hydrogel for sulfasalazine degradation: Performance, mechanism and degradation pathway. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Dehane A, Merouani S. Impact of dissolved rare gases (Ar, Xe and He) on single-bubble sonochemistry in the presence of carbon tetrachloride. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-02022-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Bilici Z, Saleh M, Yabalak E, Khataee A, Dizge N. The effect of different types of AOPs supported by hydrogen peroxide on the decolorization of methylene blue and viscose fibers dyeing wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:77-89. [PMID: 35050867 DOI: 10.2166/wst.2021.501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Wastewater from the textile industry containing a high concentration of organic and inorganic chemicals has strong color and residual chemical oxygen demand (COD). Therefore, advanced oxidation processes (AOPs) are very good candidates to treat textile industry wastewater. In this study, we investigated the effect of different types of AOPs supported with hydrogen peroxide (H2O2) for the treatment of viscose fibers dyeing wastewater. Fenton, photo-Fenton, and Fenton-supported subcritical water oxidation (FSWO) processes were chosen as AOPs to compare the treatment efficiency of viscose fibers dyeing wastewater. The effects of solution pH, Fe2+ concentration, and H2O2 concentration on the treatment of viscose fibers dyeing wastewater were tested. The maximum color and COD removal efficiency was obtained corresponding to pH 2.5 for all oxidation methods when methylene blue (MB) dye solution was used. However, the maximum efficiencies were obtained at pH 3.0 for real textile wastewater decolorization. The MB dye removal efficiency was increased to 97.22, 100, and 100% for Fenton, photo-Fenton, and FSWO processes, respectively, when the addition of H2O2 concentration was adjusted to 125 mg/L. However, the maximum color removal efficiencies of viscose fibers dyeing wastewater were obtained 56.94, 61.26, 64.11% for Fenton, photo-Fenton, FSWO processes, respectively. As a result, the FSWO showed maximum color removal efficiencies.
Collapse
Affiliation(s)
- Zeynep Bilici
- Department of Environmental Engineering, Mersin University, Mersin 33343, Turkey E-mail:
| | - Mohammed Saleh
- National Agricultural Research Center (NARC), Jenin, Palestine
| | - Erdal Yabalak
- Department of Chemistry, Mersin University, Mersin 33343, Turkey
| | - Alireza Khataee
- Department of Environmental Engineering, Gebze Technical University, Gebze 41400, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Nadir Dizge
- Department of Environmental Engineering, Mersin University, Mersin 33343, Turkey E-mail:
| |
Collapse
|
12
|
Fang Y, Chen X, Zhong Y, Yang Y, Liu F, Guo J, Xu M. Molecular mechanism of zero valent iron-enhanced microbial azo reduction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118046. [PMID: 34461416 DOI: 10.1016/j.envpol.2021.118046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/04/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Zero valent iron (ZVI)-microbe technology has an increasing application on the removal of organic pollution, yet the molecular mechanism of microbe respond to ZVI is still a mystery. Here, we established a successive ZVI-enhanced microbial system to remove azo dye (a typical organic pollutant) by Shewanella decolorationis S12 (S. decolorationis S12, an effective azo dye degradation bacterium) and examined the gene expression time course (10, 30, 60, and 120 min) by whole genome transcriptional analysis. The addition of ZVI to the microbial degradation system increases the rate of azo reduction from ~60% to over 99% in 16 h reaction, suggesting the synergistic effect of ZVI and S12 on azo dye degradation. Comparing with the treatment without ZVI, less filamentous cells were observed in ZVI treated system, and approximately 8% genes affiliated with 10 different gene expression profiles in S. decolorationis S12 were significantly changed in 120 min during the ZVI-enhanced azo reduction. Intriguingly, MarR transcriptional factor might play a vital role in regulating ZVI-enhanced azo reduction in the aspect of energy production, iron homeostasis, and detoxification. Further investigation showed that the induced [Ni-Fe] H2ase genes (hyaABCDEF) and azoreductase genes (mtrABC-omcA) contributed to ZVI-enhanced energy production, while the reduced iron uptake (hmuVCB and feoAB), induced sulfate assimilation (cysPTWA) and cysteine biosynthesis (cysM) related genes were essential to iron homeostasis and detoxification. This study disentangles underlying mechanisms of ZVI-enhanced organic pollution biotreatment in S. decolorationis S12.
Collapse
Affiliation(s)
- Yun Fang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xingjuan Chen
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yin Zhong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yonggang Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Fei Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Jun Guo
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
13
|
Chowdhury MA, Hossain N, Shuvho MBA, Kowser MA, Islam MA, Ali MR, EI-Badry YA, EI-Bahy ZM. Improvement of interfacial adhesion performance of the kevlar fiber mat by depositing SiC/TiO2/Al2O3/graphene nanoparticles. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
14
|
Osajima JA, Silva LAL, Silva AAL, Rios MAS, De Carvalho TAF, Araújo AR, Silva DA, Magalhães JL, Matos JME, Silva-Filho EC. Facile synthesis of H-CoMoO4 nanosheets for antibacterial approaches. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01925-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Dao TBT, Ha TTL, Nguyen TD, Le HN, Ha-Thuc CN, Nguyen TML, Perre P, Nguyen DM. Effectiveness of photocatalysis of MMT-supported TiO 2 and TiO 2 nanotubes for rhodamine B degradation. CHEMOSPHERE 2021; 280:130802. [PMID: 33975244 DOI: 10.1016/j.chemosphere.2021.130802] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 05/26/2023]
Abstract
The aim of this paper is to synthesize montmorillonite/TiO2-nanoparticles (MMT/TiO2 and montmorillonite/TiO2-nanotubes (MMT/TiO2-NTs) photocatalysts through a simple wet agitation method based on TiO2 nanoparticles and MMT. They are likely to accumulate the effect of adsorption and photodegradation. Then, the photocatalysts are applied to degrade the rhodamine B in dye effluents. The structural characterizations of photocatalysts are investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and energy-dispersive X-ray spectroscopy (EDX). The photocatalytic activities and effectiveness of photocatalysts are evaluated through rhodamine B degradation at different concentrations under dark and UV-C irradiation conditions. The results show that the synthesized TiO2-NTs have an average tube diameter of 5 nm and a tube length at least about 110 nm, which are intercalated into MMT sheets in MMT/TiO2-NTs photocatalyst. Meanwhile, TiO2 nanoparticles are immobilized on the surface of MMT sheets in the MMT/TiO2 photocatalyst. The photocatalytic effectiveness of rhodamine B degradation of TiO2-NTs shows a significantly enhance compared to that of TiO2 nanoparticles. However, photocatalytic performance of MMT/TiO2-NTs is lower than that of MMT/TiO2. The degradation effectiveness of MMT/TiO2 photocatalyst reaches to 100% for 3 ppm and 90% at 10 ppm of rhodamine B, while these values are 97.5% and 85.5%, respectively, recorded for MMT/TiO2-NTs.
Collapse
Affiliation(s)
- Thi Bang Tam Dao
- Faculty of Materials Science and Technology, University of Science, VNU-HCM, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, 700000, Viet Nam; Vietnam National University - Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Thi Thu Loan Ha
- Faculty of Materials Science and Technology, University of Science, VNU-HCM, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, 700000, Viet Nam; Vietnam National University - Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Trung Do Nguyen
- Faculty of Materials Science and Technology, University of Science, VNU-HCM, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, 700000, Viet Nam; Vietnam National University - Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Hon Nhien Le
- Faculty of Materials Science and Technology, University of Science, VNU-HCM, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, 700000, Viet Nam; Vietnam National University - Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam
| | - Chi Nhan Ha-Thuc
- Faculty of Materials Science and Technology, University of Science, VNU-HCM, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, 700000, Viet Nam; Vietnam National University - Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, 700000, Viet Nam.
| | - Thi Mai Loan Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Patrick Perre
- Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 Rue des Rouges Terres, 51110, Pomacle, France.
| | - Dang Mao Nguyen
- Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 Rue des Rouges Terres, 51110, Pomacle, France.
| |
Collapse
|
16
|
Han D, Li X, Gong Z, Jiang L, Wang Z, Liu P. Hierarchical Porous Catalytic Pyrolysis Char Derived from Oily Sludge for Enhanced Adsorption. ACS OMEGA 2021; 6:20549-20559. [PMID: 34396000 PMCID: PMC8359169 DOI: 10.1021/acsomega.1c02575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
A novel pyrolysis char (PC), prepared by H3PO4 catalytic pyrolysis of oily sludge (OS), was presented to remove methylene blue (MB) dye from aqueous solution for the first time. The optimal preparation conditions (catalytic pyrolysis temperature of 411 °C, H3PO4 impregnation ratio of 2.44, and catalytic pyrolysis time of 59 min) were predicted by the response surface methodology. The optimal PC exhibited favorable hierarchical porous properties, which brought a large adsorption capability (322.89 mg/g). The adsorption process fitted well with the Langmuir model and pseudo-second order model. In addition, thermodynamic parameters showed that the adsorption process was endothermic (ΔH 0 > 0) and spontaneous (ΔG 0 < 0). The adsorption capability was strongly influenced by coexisting metal ions due to the competitive adsorption effect. The inhibition for MB adsorption was arranged in the following order: Al3+ > Fe3+ > Mg2+ > Ca2+ > K+ > Na+. The adsorption mechanism of MB onto the OS-derived PC includes pore filling, π-π interactions, and electrostatic interactions. The as-obtained PC adsorbent exhibited good reusability performance, which leads to great potential in practical application for wastewater treatment.
Collapse
Affiliation(s)
- Dong Han
- College
of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- College
of New Energy, China University of Petroleum
(East China), Qingdao 266580, China
| | - Xiaoyu Li
- College
of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- College
of New Energy, China University of Petroleum
(East China), Qingdao 266580, China
| | - Zhiqiang Gong
- State
Grid Shandong Electric Power Research Institute, Jinan 250003, China
| | - Lanyue Jiang
- College
of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Zhenbo Wang
- College
of New Energy, China University of Petroleum
(East China), Qingdao 266580, China
| | - Peikun Liu
- College
of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
17
|
A new model and estimation of thermodynamic parameters for the solubility of azobenzene and anthraquinone derivatives in supercritical carbon dioxide. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Liu J, Zhang L, Sun Y, Luo Y. Bifunctional Ag-Decorated CeO 2 Nanorods Catalysts for Promoted Photodegradation of Methyl Orange and Photocatalytic Hydrogen Evolution. NANOMATERIALS 2021; 11:nano11051104. [PMID: 33923342 PMCID: PMC8145711 DOI: 10.3390/nano11051104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 01/20/2023]
Abstract
The photodegradation of organic pollutants and photocatalytic hydrogen generation from water by semiconductor catalysts are regarded as the of the most promising strategies to resolve the crisis of global environmental issues. Herein, we successfully designed and prepared a series of silver-decorated CeO2(Ag/CeO2) photocatalysts with different morphologies by a facile hydrothermal route. The physical properties, charge transfer behavior and photocatalytic performances (degradation and hydrogen evolution) over diverse catalysts with nanocubes, nanoparticles and nanorods shapes were comprehensively studied. It was found that the Ag-decorated CeO2 nanorods (Ag/R-CeO2) demonstrate the best activity for both photocatalytic methyl orange (MO) degradation and photocatalytic H2 production reaction with attractive stability during cycling tests, suggesting its desirable practical potential. The superior performance of Ag/R-CeO2 can be ascribed to (1) the facilitated light absorption due to enriched surface oxygen vacancies (OVs) and plasmonic Ag nanoparticles on nanorods, (2) the facilitated photo-excited charge carrier (e−-h+) separation efficiency on a metal/oxide hybrid structure and (3) the promoted formation of active reaction intermediates on surface-enriched Ag and oxygen vacancies reactive sites on Ag/CeO2 nanorods. This study provides a valuable discovery of the utilization of abundant solar energy for diverse catalytic processes.
Collapse
Affiliation(s)
- Jinwen Liu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China;
| | - Li Zhang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 823808, China;
| | - Yifei Sun
- College of Energy, Xiamen University, Xiamen 361005, China;
| | - Yang Luo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China;
- Correspondence: ; Tel.: +86-0592-2195201; Fax: +86-0592-2086646
| |
Collapse
|
19
|
Ren X, Lv X, Chen Z, Zhang P, Hu X, Mei X. Preparation of Ag Nanoclusters-Modified Non-Sintered Silica Ceramic-Like Nanosheet for Removing Dyes and Bacteria from Water. Int J Nanomedicine 2021; 16:895-904. [PMID: 33603358 PMCID: PMC7881783 DOI: 10.2147/ijn.s286406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/15/2021] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Worldwide water contamination treatment and water security are essential for all living organisms. Among various water contaminants, dye, and bacteria pollution needs to be solved urgently. METHODS AND RESULTS In this work, a ceramic sheet from monodisperse, porous silica nanospheres (SiO2 NSs) with an average diameter of 220 was prepared. The prepared SiO2 ceramic sheets were investigated as a "filtration" material in removing dyes (alcian blue, AB; and methylene blue, MB) and bacteria (E. coli and S. aureus). The obtained sheets had efficient adsorption efficiency of 98.72% (for AB) and 97.35% (for MB), and a high adsorption capacity for AB is 220 (mg/g), for MB is 176 (mg/g). Furthermore, these SiO2 ceramic sheets had a high recycling capability for removing dyes by calcination. Being modified by Ag nanoclusters, the ceramic sheets present a strong bactericidal function. CONCLUSION Our results demonstrated that the obtained SiO2 non-sintered ceramic sheets is rapid and efficient in the filtration of dyes and bacteria from polluted water.
Collapse
Affiliation(s)
- Xiuli Ren
- Jinzhou Medical University, Jinzhou, 121001, Liaoning, People’s Republic of China
| | - Xinyan Lv
- Jinzhou Medical University, Jinzhou, 121001, Liaoning, People’s Republic of China
| | - Zhenhua Chen
- Jinzhou Medical University, Jinzhou, 121001, Liaoning, People’s Republic of China
| | - Peng Zhang
- Jinzhou Medical University, Jinzhou, 121001, Liaoning, People’s Republic of China
| | - Xun Hu
- University of Jinan, Jinan, 250022, Shandong, People’s Republic of China
| | - Xifan Mei
- Jinzhou Medical University, Jinzhou, 121001, Liaoning, People’s Republic of China
| |
Collapse
|
20
|
Novel 2D/2D g-C3N4/Bi4NbO8Cl nano-composite for enhanced photocatalytic degradation of oxytetracycline under visible LED light irradiation. J Colloid Interface Sci 2021; 584:320-331. [DOI: 10.1016/j.jcis.2020.09.101] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 11/19/2022]
|
21
|
Khan A, Valicsek Z, Horváth O. Comparing the Degradation Potential of Copper(II), Iron(II), Iron(III) Oxides, and Their Composite Nanoparticles in a Heterogeneous Photo-Fenton System. NANOMATERIALS 2021; 11:nano11010225. [PMID: 33467125 PMCID: PMC7829782 DOI: 10.3390/nano11010225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 11/22/2022]
Abstract
Heterogeneous photo-Fenton systems offer efficient solutions for the treatment of wastewaters in the textile industry. This study investigated the fabrication and structural characterization of novel peculiar-shaped CuIIO, FeIII2O3, and FeIIO nanoparticles (NPs) compared to the properties of the iron(II)-doped copper ferrite CuII0.4FeII0.6FeIII2O4. The photocatalytic efficiencies of these NPs and the composite of the simple oxides (CuIIO/FeIIO/FeIII2O3) regarding the degradation of methylene blue (MB) and rhodamine B (RhB) as model dyes were also determined. The catalysts were synthesized via simple co-precipitation and calcination technique. X-ray diffractometry (XRD), scanning electron microscopy (SEM), and diffuse reflectance spectroscopy (DRS) were utilized for structural characterization. The structure of CuIIO was bead-like connected into threads, FeIII2O3 was rod-like, while FeIIO pallet-like, with average crystallite sizes of 18.9, 36.9, and 37.1 nm, respectively. The highest degradation efficiency was achieved by CuIIO for RhB and by CuII0.4FeII0.6FeIII2O4 for MB. The CuIIO/FeIIO/FeIII2O3 composite proved to be the second-best catalyst in both cases, with excellent reusability. Hence, these NPs can be successfully applied as heterogeneous photo-Fenton catalysts for the removal of hazardous pollutants. Moreover, the simple metal oxides and the iron(II)-doped copper ferrite displayed a sufficient antibacterial activity against Gram-negative Vibrio fischeri.
Collapse
Affiliation(s)
- Asfandyar Khan
- Department of General and Inorganic Chemistry, Faculty of Engineering, University of Pannonia, 8200 Veszprém, Hungary; (A.K.); (Z.V.)
- Department of Textile Processing, National Textile University, Faisalabad, Punjab 37610, Pakistan
| | - Zsolt Valicsek
- Department of General and Inorganic Chemistry, Faculty of Engineering, University of Pannonia, 8200 Veszprém, Hungary; (A.K.); (Z.V.)
| | - Ottó Horváth
- Department of General and Inorganic Chemistry, Faculty of Engineering, University of Pannonia, 8200 Veszprém, Hungary; (A.K.); (Z.V.)
- Correspondence: ; Tel.: +36-88-624000/6049
| |
Collapse
|
22
|
Ameur N, Brahimi FT, Bensaada N, Gouhas H, Ferouani G. Enhanced Photocatalytic Degradation of Organic Pollutants and Anticorrosion of Mild Steel by Vanadium Modified Titanate Nanotubes (X%V‐TiNTs). ChemistrySelect 2020. [DOI: 10.1002/slct.202003713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nawal Ameur
- Laboratory of Catalysis and Synthesis in Organic Chemistry (LCSCO) University of Tlemcen BP 119 Imama 13000 Tlemcen Algeria
- Higher School of Electrical and Energetic Engineering of Oran (ESGEE) BP 64 CH2 Achaba Hanifi USTO 31000 Oran Algeria
| | - Fawzia Taieb Brahimi
- Higher School of Electrical and Energetic Engineering of Oran (ESGEE) BP 64 CH2 Achaba Hanifi USTO 31000 Oran Algeria
- Laboratory of Electrical Engineering and Materials (LGEM) Oran Algeria
| | - Naima Bensaada
- Higher School of Electrical and Energetic Engineering of Oran (ESGEE) BP 64 CH2 Achaba Hanifi USTO 31000 Oran Algeria
- Laboratory of Electrical Engineering and Materials (LGEM) Oran Algeria
| | - Halima Gouhas
- Higher School of Electrical and Energetic Engineering of Oran (ESGEE) BP 64 CH2 Achaba Hanifi USTO 31000 Oran Algeria
- Laboratory of Electrical Engineering and Materials (LGEM) Oran Algeria
| | - Ghaniya Ferouani
- Laboratory of Catalysis and Synthesis in Organic Chemistry (LCSCO) University of Tlemcen BP 119 Imama 13000 Tlemcen Algeria
| |
Collapse
|
23
|
ZnO Nano-Particles Production Intensification by Means of a Spinning Disk Reactor. NANOMATERIALS 2020; 10:nano10071321. [PMID: 32635642 PMCID: PMC7407485 DOI: 10.3390/nano10071321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/02/2020] [Accepted: 06/15/2020] [Indexed: 01/02/2023]
Abstract
Zinc Oxide is widely used in many industrial sectors, ranging from photocatalysis, rubber, ceramic, medicine, and pigment, to food and cream additive. The global market is estimated to be USD 3600M yearly, with a global production of 10 Mt. In novel applications, size and shape may sensibly increase the efficiency and a new nano-ZnO market is taking the lead (USD 2000M yearly with a capacity of 1 Mt and an expected Compound Annual Growth Rate of 20%/year). The aim of this work was to investigate the possibility of producing zinc oxide nanoparticles by means of a spinning disk reactor (SDR). A lab-scale spinning disk reactor, previously used to produce other nanomaterials such as hydroxyapatite or titania, has been investigated with the aim of producing needle-shaped zinc oxide nanoparticles. At nanoscale and with this shape, the zinc oxide particles exhibit their greatest photoactivity and active area, both increasing the efficiency of photocatalysis and ultraviolet (UV) absorbance. Working at different operating conditions, such as at different disk rotational velocity, inlet distance from the disk center, initial concentration of Zn precursor and base solution, and inlet reagent solution flowrate, in certain conditions, a unimodal size distribution and an average dimension of approximately 56 nm was obtained. The spinning disk reactor permits a continuous production of nanoparticles with a capacity of 57 kg/d, adopting an initial Zn-precursor concentration of 0.5 M and a total inlet flowrate of 1 L/min. Product size appears to be controllable, and a lower average dimension (47 nm), adopting an initial Zn-precursor concentration of 0.02 M and a total inlet flow-rate of 0.1 L/min, can be obtained, scarifying productivity (0.23 kg/d). Ultimately, the spinning disk reactor qualifies as a process-intensified equipment for targeted zinc oxide nanoparticle production in shape in size.
Collapse
|
24
|
Abdollahi S, Fallah N, Davarpanah L. Treatment of real artificial leather manufacturing wastewater containing Dimethylamine (DMA) by photocatalytic method. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01235-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|