1
|
Li P, Jiang R, Zhao L, Peng H, Zhao P, Jia S, Zheng H, Wang J. Cation Defect Mediated Phase Transition in Potassium Tungsten Bronze. Inorg Chem 2021; 60:18199-18204. [PMID: 34775746 DOI: 10.1021/acs.inorgchem.1c02839] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Applying in situ transmission electron microscopy, the phase instability in potassium tungsten bronze (KxWO3, 0.18 < x < 0.57) induced by heating was investigated. The atomistic phase transition pathway of monoclinic K0.20WO3 → hexagonal KmWO3 (0.18 < m < 0.20) → cubic WO3 induced by cationic defects (K and W vacancies) was directly revealed. Unexpectedly, a K+-rich tetragonal KnWO3 (0.40 < n < 0.57) phase would nucleate as well, which may result from the blockage of K+ diffusion at the grain boundaries. Our results point out the critical role of the cationic defects in mediating the crystal structures in KxWO3, which provide reference to rational structural design for extensive high-temperature applications.
Collapse
Affiliation(s)
- Pei Li
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Renhui Jiang
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Ligong Zhao
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Huayu Peng
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Peili Zhao
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Shuangfeng Jia
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - He Zheng
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.,Suzhou Institute of Wuhan University, Suzhou, Jiangsu 215123, China.,Wuhan University Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Jianbo Wang
- School of Physics and Technology, Center for Electron Microscopy, MOE Key Laboratory of Artificial Micro- and Nano-structures, and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
2
|
Gaury J, Lafont U, Bychkov E, Schmidt-Ott A, Biskos G. Connectivity enhancement of highly porous WO3nanostructured thin films by in situ growth of K0.33WO3nanowires. CrystEngComm 2014. [DOI: 10.1039/c3ce42078g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|