1
|
Lavecchia di Tocco F, Cannistraro S, Bizzarri AR. A PEG-based strategy to improve detection of clinical microRNA 155 by bio-Field Effect Transistor in high ionic strength environment. Talanta 2025; 292:127881. [PMID: 40073819 DOI: 10.1016/j.talanta.2025.127881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/14/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025]
Abstract
microRNAs are small oligonucleotides involved in post-transcriptional gene regulation whose alteration is found in several diseases, including cancer, and therefore their detection is crucial for diagnosis, prognosis, and treatment purposes. Field-Effect Transistor-based biosensors (bioFETs) represent a promising technology for the clinical detection of microRNAs. However, one of the main challenges associated with this technology is the Debye screening, becoming significant at the high ionic strengths required for effective hybridization. We aimed at detecting oncogenic microRNA-155 by using a bioFET system using as capture element a complementary RNA probe (antimiR-155) combined with the introduction of PEG molecules (20 kDa, PEG20), at an ionic strength of 300 mM. We optimized the co-immobilization ratio between antimiR-155 and PEG20 and assessed its impact on the interactions between the oligonucleotides. The kinetics can be well described by the Langmuir-Freundlich isotherm with an affinity constant within the range typical of nucleic acid interactions. The introduction of PEG20 significantly enhanced the detection sensitivity of miR-155 by reaching a level of less than 200 pM, together with excellent discrimination against other clinically relevant microRNAs. Our findings demonstrate that the incorporation of PEG20 constitutes an effective strategy to mitigate the Debye screening effects and facilitates bioFET-based clinical applications at physiological ionic strengths.
Collapse
Affiliation(s)
- Francesco Lavecchia di Tocco
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100, Viterbo, Italy; Department of Biomedical Sciences and Technologies, Università Roma Tre, Viale Guglielmo Marconi, 00144 Rome, Italy
| | - Salvatore Cannistraro
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100, Viterbo, Italy
| | - Anna Rita Bizzarri
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Largo dell'Università, 01100, Viterbo, Italy.
| |
Collapse
|
2
|
Smiljanic M, Bleteau P, Papageorgiou A, Goffart N, Adam C, Doneux T. Introducing common oxazine fluorophores as new redox labels for electrochemical DNA sensors. Bioelectrochemistry 2024; 155:108582. [PMID: 37806117 DOI: 10.1016/j.bioelechem.2023.108582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/10/2023]
Abstract
The electrochemical properties of three oxazine fluorophores, ATTO655, ATTO680 and ATTO700 have been investigated at gold electrodes. They display a reversible or quasi-reversible voltammetric behaviour involving either a 2e-, 2H+ or a 2e-, 1H+ redox process depending on the pH, at a formal potential located in the stability range of thiolate self-assembled monolayers (E°' ≈ -0.33 V vs. Ag|AgCl|3M KCl at pH 7.2). The performance of ATTO655 as redox label for electrochemical nucleic acid sensing was evaluated in a typical E-DNA configuration. The redox label has no detrimental impact on the folding of DNA, as shown with the i-motif forming sequence investigated here. An electron transfer rate constant around 40 s-1 was determined, which is comparable to the values reported for the popular methylene blue label. Hybridisation experiments show a significant signal variation between ssDNA and dsDNA, though it is emphasised that the sign and amplitude of the variation are highly dependent on the electrochemical parameters such as the frequency in square wave voltammetry.
Collapse
Affiliation(s)
- Milutin Smiljanic
- Chemistry of Surfaces, Interfaces and Nanomaterials (ChemSIN), Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, 2, CP 255, B-1050 Bruxelles, Belgium; Department of Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Pierre Bleteau
- Chemistry of Surfaces, Interfaces and Nanomaterials (ChemSIN), Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, 2, CP 255, B-1050 Bruxelles, Belgium; Université de Paris-Cité, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France
| | - Alexia Papageorgiou
- Chemistry of Surfaces, Interfaces and Nanomaterials (ChemSIN), Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, 2, CP 255, B-1050 Bruxelles, Belgium
| | - Nathan Goffart
- Chemistry of Surfaces, Interfaces and Nanomaterials (ChemSIN), Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, 2, CP 255, B-1050 Bruxelles, Belgium
| | - Catherine Adam
- Chemistry of Surfaces, Interfaces and Nanomaterials (ChemSIN), Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, 2, CP 255, B-1050 Bruxelles, Belgium
| | - Thomas Doneux
- Chemistry of Surfaces, Interfaces and Nanomaterials (ChemSIN), Faculté des Sciences, Université libre de Bruxelles (ULB), Boulevard du Triomphe, 2, CP 255, B-1050 Bruxelles, Belgium.
| |
Collapse
|
3
|
Grzędowski A, Ma T, Bizzotto D. FRET Imaging of Nonuniformly Distributed DNA SAMs on Gold Reveals the Role Played by the Donor/Acceptor Ratio and the Local Environment in Measuring the Rate of Hybridization. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:286-296. [PMID: 37388962 PMCID: PMC10302881 DOI: 10.1021/cbmi.3c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 07/01/2023]
Abstract
Mixed DNA SAMs labeled with a fluorophore (either AlexaFluor488 or AlexaFluor647) were prepared on a single crystal gold bead electrode using potential-assisted thiol exchange and studied using Förster resonance energy transfer (FRET). A measure of the local environment of the DNA SAM (e.g., crowding) was possible using FRET imaging on these surfaces since electrodes prepared this way have a range of surface densities (ΓDNA). The FRET signal was strongly dependent on ΓDNA and on the ratio of AlexaFluor488 to AlexaFluor647 used to make the DNA SAM, which were consistent with a model of FRET in 2D systems. FRET was shown to provide a direct measure of the local DNA SAM arrangement on each crystallographic region of interest providing a direct assessment of the probe environment and its influence on the rate of hybridization. The kinetics of duplex formation for these DNA SAMs was also studied using FRET imaging over a range of coverages and DNA SAM compositions. Hybridization of the surface-bound DNA increased the average distance between the fluorophore label and the gold electrode surface and decreased the distance between the donor (D) and acceptor (A), both of which result in an increase in FRET intensity. This increase in FRET was modeled using a second order Langmuir adsorption rate equation, reflecting the fact that both D and A labeled DNA are required to become hybridized to observe a FRET signal. The self-consistent analysis of the hybridization rates on low and high coverage regions on the same electrode showed that the low coverage regions achieved full hybridization 5× faster than the higher coverage regions, approaching rates typically found in solution. The relative increase in FRET intensity from each region of interest was controlled by manipulating the donor to acceptor composition of the DNA SAM without changing the rate of hybridization. The FRET response can be optimized by controlling the coverage and the composition of the DNA SAM sensor surface and could be further improved with the use of a FRET pair with a larger (e.g., > 5 nm) Förster radius.
Collapse
|
4
|
Zheng Z, Kim SH, Chovin A, Clement N, Demaille C. Electrochemical response of surface-attached redox DNA governed by low activation energy electron transfer kinetics. Chem Sci 2023; 14:3652-3660. [PMID: 37006693 PMCID: PMC10055828 DOI: 10.1039/d3sc00320e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
We demonstrate, using high scan rate cyclic voltammetry and molecular dynamics simulations, that the electrochemical response of electrode-attached redox DNA is governed by low reorganization energy electron transfer kinetics.
Collapse
Affiliation(s)
- Zhiyong Zheng
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire, F-75013 Paris, France
| | - Soo Hyeon Kim
- IIS, LIMMS/CNRS-IIS UMI2820, The Univ. of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Arnaud Chovin
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire, F-75013 Paris, France
| | - Nicolas Clement
- IIS, LIMMS/CNRS-IIS UMI2820, The Univ. of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Christophe Demaille
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire, F-75013 Paris, France
| |
Collapse
|
5
|
Ma T, Bizzotto D. Improved Thermal Stability and Homogeneity of Low Probe Density DNA SAMs Using Potential-Assisted Thiol-Exchange Assembly Methods. Anal Chem 2021; 93:15973-15981. [PMID: 34813297 DOI: 10.1021/acs.analchem.1c03353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Methods for producing DNA SAM-based sensors with improved thermal stability and control over the homogeneity of low DNA probe density will enable advanced sensor development. The thermal stability of low-coverage DNA SAMs was studied for surfaces prepared using potential-assisted thiol exchange (Edep) and compared to DNA SAMs prepared without control over the substrate potential (OCPdep). Both surface preparation methods were studied using in situ fluorescence microscopy and electrochemistry with fluorophore or redox-modified DNA SAMs on a single-crystal gold bead electrode. Fluorescence microscopy showed that the influence of the underlying surface crystallography was important in both cases. The highest thermal stability was realized for square or rectangular surface atomic structure (e.g., surfaces from 110 to 100). The 111 and related surfaces were the least thermally stable. The low DNA coverage surfaces prepared by Edep had better thermal stability and higher DNA probe mobility as compared to OCPdep-prepared surfaces with the similar coverage. These results were correlated with methylene blue redox-tagged DNA probes, which directly measured the average DNA coverage. Both methods indicated that Edep DNA SAMs were more uniformly distributed across the electrode surface, while the surfaces prepared via OCPdep assembled into clusters with reduced mobility. The potential-assisted thiol-exchange approach to preparing low-coverage DNA SAMs was shown to quickly create modified surfaces that were consistent, had mobility characteristics which should yield superior DNA hybridization efficiencies, and having greater thermal stability which will translate into a longer shelf-life.
Collapse
Affiliation(s)
- Tianxiao Ma
- AMPEL, University of British Columbia, Vancouver V6T 1Z4, Canada.,Department of Chemistry, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Dan Bizzotto
- AMPEL, University of British Columbia, Vancouver V6T 1Z4, Canada.,Department of Chemistry, University of British Columbia, Vancouver V6T 1Z4, Canada
| |
Collapse
|
6
|
Response surface methodology optimized electrochemical DNA biosensor based on HAPNPTs/PPY/MWCNTs nanocomposite for detecting Mycobacterium tuberculosis. Talanta 2021; 226:122099. [PMID: 33676656 DOI: 10.1016/j.talanta.2021.122099] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/26/2020] [Accepted: 01/05/2021] [Indexed: 01/27/2023]
Abstract
An important issue in the prognosis of tuberculosis (TB) is a short period between correct diagnosis and start the suitable antibiotic therapy. So, a rapid and valid method for detection of Mycobacterium tuberculosis (M. tb) complex is considered as a necessity. Herein, a rapid, low-cost, and PCR-free DNA biosensor was developed based on multi-walled carbon nanotubes (MWCNTs), polypyrrole (PPy), and hydroxyapatite nanoparticles (HAPNPs) for highly sensitive and specific recognition of M.tb. The biosensor consisted of M.tb ssDNA probe covalently attached to the HANPs/PPy/MWCNTs/GCE surface that hybridized to a complementary target sequence to form a duplex DNA. The M.tb target recognition was based on the oxidation signal of the electroactive Methylene Blue (MB) on the surface of the modified GCE using differential pulse voltammetry (DPV) method. It is worth to mention that for the first time Plackett-Burman (PB) screening design and response surface method (RSM) based on central composite design (CCD) was applied as a powerful and an efficient approach to find optimal conditions for maximum M.tb biosensor performance leading to simplicity and rapidity of operation. The proposed DNA biosensor exhibits a wide detection range from 0.25 to 200.0 nM with a low detection limit of 0.141 nM. The performance of designed biosensor for clinical diagnosis and practical applications was revealed through hybridization between DNA probe-modified GCE and extracted DNA from sputum clinical samples.
Collapse
|
7
|
Hubin A, Doneux T. Preface to the Special Issue in the honour of Claudine Buess-Herman on the occasion of her 65th anniversary. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Leung KK, Martens I, Yu HZ, Bizzotto D. Measuring and Controlling the Local Environment of Surface-Bound DNA in Self-Assembled Monolayers on Gold When Prepared Using Potential-Assisted Deposition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6837-6847. [PMID: 32484684 DOI: 10.1021/acs.langmuir.9b03970] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
DNA self-assembled monolayers (SAMs) were prepared using potential-assisted deposition on clean gold single-crystal bead electrodes under a number of conditions (constant or square-wave potential perturbations in TRIS or phosphate immobilization buffers with and without Cl-). The local environment around the fluorophore-labeled DNA tethered to the electrode surface was characterized using in situ fluorescence microscopy during electrochemical measurements as a function of the underlying surface crystallography. Potential-assisted deposition from a TRIS buffer containing Cl- created DNA SAMs that were uniformly distributed on the surface with little preference to the underlying crystallography. A constant (+0.4 V/SCE) or a square-wave potential perturbation (+0.4 to -0.3 V/SCE, 50 Hz) resulted in similar DNA-modified surfaces in TRIS immobilization buffer. Deposition using a square-wave potential without Cl- resulted in lower DNA surface coverage. Despite this, the local environment around the DNA in the SAM appears to be densely packed. This implies the formation of clusters of densely packed DNA in the SAM. This effect was also demonstrated when depositing from a phosphate buffer. DNA clusters were significantly reduced when Cl- was present in the buffer. Clusters were most prevalent on the low-index plane surfaces (e.g., {111} and {100}) and less on the higher-index planes (e.g., {210} or {311}). A mechanism is proposed to rationalize the formation of DNA-clustered regions for deposition using a square-wave potential perturbation. The conditions for creating clusters of DNA in a SAM or for preventing these clusters from forming provide an approach for tailoring the surfaces used for biosensing.
Collapse
Affiliation(s)
- Kaylyn K Leung
- AMPEL, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Isaac Martens
- AMPEL, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Hua-Zhong Yu
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Dan Bizzotto
- AMPEL, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
9
|
Madrigal EA, Taylor JK, Raghu G, West RM. Cross-linking of DNA monolayers by cisplatin examined using electrostatic denaturation. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Mahmoodi P, Rezayi M, Rasouli E, Avan A, Gholami M, Ghayour Mobarhan M, Karimi E, Alias Y. Early-stage cervical cancer diagnosis based on an ultra-sensitive electrochemical DNA nanobiosensor for HPV-18 detection in real samples. J Nanobiotechnology 2020; 18:11. [PMID: 31931815 PMCID: PMC6956556 DOI: 10.1186/s12951-020-0577-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 01/07/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND In several years ago, infection with human papillomaviruses (HPVs), have been prevalent in the worlds especially HPV type 18, can lead to cervical cancer. Therefore, rapid, accurate, and early diagnosis of HPV for successful treatment is essential. The present study describes the development of a selective and sensitive electrochemical biosensor base on DNA, for early detection of HPV-18. For this purpose, a nanocomposite of reduced graphene oxide (rGO) and multiwalled carbon nanotubes (MWCNTs) were electrodeposited on a screen-printed carbon electrode (SPCE). Then, Au nanoparticles (AuNPs) were dropped on a modified SPCE. Subsequently, single strand DNA (ssDNA) probe was immobilized on the modified electrode. The link attached between AuNPs and probe ssDNA provided by L-cysteine via functionalizing AuNPs (Cys-AuNPs). The differential pulse voltammetry (DPV) assay was also used to electrochemical measurement. The measurement was based on the oxidation signals of anthraquninone-2-sulfonic acid monohydrate sodium salt (AQMS) before and after hybridization between the probe and target DNA. RESULTS The calibration curve showed a linear range between 0.01 fM to 0.01 nM with a limit of detection 0.05 fM. The results showed that the optimum concentration for DNA probe was 5 µM. The good performance of the proposed biosensor was achieved through hybridization of DNA probe-modified SPCE with extracted DNA from clinical samples. CONCLUSIONS According to the investigated results, this biosensor can be introduced as a proprietary, accurate, sensitive, and rapid diagnostic method of HPV 18 in the polymerase chain reaction (PCR) of real samples.
Collapse
Affiliation(s)
- Pegah Mahmoodi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Majid Rezayi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Elisa Rasouli
- Nanotechnology & Catalysis Research Centre, Institute of Postgraduate Studies, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Amir Avan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Gholami
- Department of Chemistry, Marvdasht Branch, Islamic Azad University, P.O. Box 465, Marvdasht, Iran
| | - Majid Ghayour Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Yatima Alias
- Department of Chemistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Galagedera SKK, Flechsig G. Deuterium Isotope Effects Upon the Redox‐switching of the Viscosity of DNA Layers Observed by Electrochemical Quartz Crystal Micro‐balance. ELECTROANAL 2019. [DOI: 10.1002/elan.201900350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Gerd‐Uwe Flechsig
- Department of ChemistryUniversity at Albany-SUNY 1400 Washington Ave Albany NY 12222
- School of Applied Natural SciencesCoburg University of Applied Sciences and Arts Friedrich-Streib-Str. 2 96450 Coburg Germany
| |
Collapse
|
12
|
Galagedera SKK, Flechsig G. Voltammetric H/D Isotope Effects on Redox‐Active Small Molecules Conjugated with DNA Self‐Assembled Monolayers. ChemElectroChem 2019. [DOI: 10.1002/celc.201901151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sarasi K. K. Galagedera
- Department of ChemistryUniversity at Albany-SUNY 1400, Washington Avenue Albany NY 12222 U.S.A
| | - Gerd‐Uwe Flechsig
- Department of ChemistryUniversity at Albany-SUNY 1400, Washington Avenue Albany NY 12222 U.S.A
- Faculty of Applied Natural SciencesCoburg University of Applied Sciences and Arts Friedrich-Streib-Str. 2 96450 Coburg Germany
| |
Collapse
|
13
|
Qi L, Tian H, Yu HZ. Binary Thiolate DNA/Ferrocenyl Self-Assembled Monolayers on Gold: A Versatile Platform for Probing Biosensing Interfaces. Anal Chem 2018; 90:9174-9181. [PMID: 29938496 DOI: 10.1021/acs.analchem.8b01655] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The properties of DNA self-assembled monolayers (SAMs) have strong influences on the interfacial DNA-analyte binding behavior, which further affect the performance of biosensors built upon. In this work, we prepared binary thiolate DNA/6-ferrocenyl-1-hexanethiol (FcC6SH) SAMs on gold (DNA/FcC6S-Au) for convenient electrochemical characterization and subsequent data analysis. Our cyclic voltammetric (CV) studies confirmed that the redox responses of surface-tethered Fc and electrostatically bound [Ru(NH3)6]3+ are capable of providing quantitative information regarding the DNA film properties, including the surface density, structural heterogeneity, and molecular orientation under different preparation and measurement conditions. With the binary thiolate DNA/FcC6S-Au SAM prepared in the conventional post-assembly exchange protocol as a trial system, we are demonstrating the capability of introducing redox-active thiols as passivating and labeling reagents for preparing many other DNA-based biosensing interfaces via varied assembly steps and under different measurement conditions.
Collapse
Affiliation(s)
- Lin Qi
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
| | - Huihui Tian
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada.,National Center for Nanoscience and Technology , Beijing 100190 , P.R. China
| | - Hua-Zhong Yu
- Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
| |
Collapse
|
14
|
Adam C, Olmos JM, Doneux T. Electrochemical Monitoring of the Reversible Folding of Surface-Immobilized DNA i-Motifs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3112-3118. [PMID: 29481095 DOI: 10.1021/acs.langmuir.7b04088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Two cytosine (C) rich DNA sequences folding in i-motif upon protonation of C at low pH have been immobilized at gold electrodes to study the impact of the electrode|electrolyte interface on the stability of the noncanonical DNA secondary structure. The effects of the molecular composition and environment on the melting and folding of the structures immobilized at the gold surface have been compared to the properties of the DNA strands in solution. The DNA folding into i-motif upon protonation, both at the surface and in solution, results in a significant variation of the charge density which is monitored electrochemically through the electrostatic interactions between the DNA strand and the electroactive hexaammineruthenium(III). This method is shown to be sufficiently sensitive to distinguish hemiprotonated folded state and single strand unfolded state of i-motif. The pH of melting has been determined for both sequences in the bulk and at the gold|electrolyte interface. The results evidence a stabilizing effect of the interface on i-motif structure, whereby the pH of melting is higher for the sequences immobilized at the surface. The reversibility and precision of the electrochemical model described here allows a clear and simple characterization of DNA structures and does not require any labeling of the sequence.
Collapse
Affiliation(s)
- Catherine Adam
- Chimie Analytique et Chimie des Interfaces , Université libre de Bruxelles (ULB) , Boulevard du Triomphe, 2, CP255 , B-1050 Bruxelles , Belgium
| | - José Manuel Olmos
- Chimie Analytique et Chimie des Interfaces , Université libre de Bruxelles (ULB) , Boulevard du Triomphe, 2, CP255 , B-1050 Bruxelles , Belgium
- Departamento de Química Física, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum" , Universidad de Murcia , 30100 Murcia , Spain
| | - Thomas Doneux
- Chimie Analytique et Chimie des Interfaces , Université libre de Bruxelles (ULB) , Boulevard du Triomphe, 2, CP255 , B-1050 Bruxelles , Belgium
| |
Collapse
|
15
|
Leung KK, Gaxiola AD, Yu HZ, Bizzotto D. Tailoring the DNA SAM surface density on different surface crystallographic features using potential assisted thiol exchange. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.12.114] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Urmann K, Arshavsky-Graham S, Walter JG, Scheper T, Segal E. Whole-cell detection of live lactobacillus acidophilus on aptamer-decorated porous silicon biosensors. Analyst 2016; 141:5432-40. [PMID: 27381045 DOI: 10.1039/c6an00810k] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This work describes the design of optical aptamer-based porous silicon (PSi) biosensors for the direct capture of Lactobacillus acidophilus. Aptamers are oligonucleotides (single-stranded DNA or RNA) that can bind their targets with high affinity and specificity, making them excellent recognition elements for biosensing applications. Herein, aptamer Hemag1P, which specifically targets the important probiotic L. acidophilus, was utilized for direct bacteria capture onto oxidized PSi Fabry-Pérot thin films. Monitoring changes in the reflectivity spectrum (using reflective interferometric Fourier transform spectroscopy) allows for bacteria detection in a label-free, simple and rapid manner. The performance of the biosensor was optimized by tuning the PSi nanostructure, its optical properties, as well as the immobilization density of the aptamer. We demonstrate the high selectivity and specificity of this simple "direct-capture" biosensing scheme and show its ability to distinguish between live and dead bacteria. The resulting biosensor presents a robust and rapid method for the specific detection of live L. acidophilus at concentrations relevant for probiotic products and as low as 10(6) cells per mL. Rapid monitoring of probiotic bacteria is crucial for quality, purity and safety control as the use of probiotics in functional foods and pharmaceuticals is becoming increasingly popular.
Collapse
Affiliation(s)
- K Urmann
- Institute of Technical Chemistry, Leibniz University of Hannover, Callinstr. 5, 30167 Hannover, Germany
| | | | | | | | | |
Collapse
|
17
|
Jambrec D, Gebala M, La Mantia F, Schuhmann W. Potentialgestützte DNA-Immobilisierung als Voraussetzung für eine schnelle und kontrollierte Bildung von DNA-Monoschichten. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506672] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Jambrec D, Gebala M, La Mantia F, Schuhmann W. Potential-Assisted DNA Immobilization as a Prerequisite for Fast and Controlled Formation of DNA Monolayers. Angew Chem Int Ed Engl 2015; 54:15064-8. [PMID: 26487262 DOI: 10.1002/anie.201506672] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Indexed: 11/11/2022]
Abstract
Highly reproducible and fast potential-assisted immobilization of single-stranded (ss)DNA on gold surfaces is achieved by applying a pulse-type potential modulation. The desired DNA coverage can be obtained in a highly reproducible way within minutes. Understanding the underlying processes occurring during potential-assisted ssDNA immobilization is crucial. We propose a model that considers the role of ions surrounding the DNA strands, the distance dependence of the applied potentials within the electrolyte solution, and most importantly the shift of the potential of zero charge during the immobilization due to the surface modification with DNA. The control of the surface coverage of ssDNA as well as the achieved speed and high reproducibility are seen as prerequisites for improved DNA-based bioassays.
Collapse
Affiliation(s)
- Daliborka Jambrec
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum (Germany)
| | | | - Fabio La Mantia
- Semiconductor and Energy Conversion-Center for Electrochemical Sciences (CES); Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum (Germany)
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum, Universitätsstrasse 150, 44780 Bochum (Germany).
| |
Collapse
|
19
|
De Rache A, Kejnovská I, Buess-Herman C, Doneux T. Electrochemical and circular dichroism spectroscopic evidence of two types of interaction between [Ru(NH3)6]3+ and an elongated thrombin binding aptamer G-quadruplex. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Švorc Ĺ, Jambrec D, Vojs M, Barwe S, Clausmeyer J, Michniak P, Marton M, Schuhmann W. Doping Level of Boron-Doped Diamond Electrodes Controls the Grafting Density of Functional Groups for DNA Assays. ACS APPLIED MATERIALS & INTERFACES 2015; 7:18949-56. [PMID: 26285076 DOI: 10.1021/acsami.5b06394] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The impact of different doping levels of boron-doped diamond on the surface functionalization was investigated by means of electrochemical reduction of aryldiazonium salts. The grafting efficiency of 4-nitrophenyl groups increased with the boron levels (B/C ratio from 0 to 20,000 ppm). Controlled grafting of nitrophenyldiazonium was used to adjust the amount of immobilized single-stranded DNA strands at the surface and further on the hybridization yield in dependence on the boron doping level. The grafted nitro functions were electrochemically reduced to the amine moieties. Subsequent functionalization with a succinic acid introduced carboxyl groups for subsequent binding of an amino-terminated DNA probe. DNA hybridization significantly depends on the probe density which is in turn dependent on the boron doping level. The proposed approach opens new insights for the design and control of doped diamond surface functionalization for the construction of DNA hybridization assays.
Collapse
Affiliation(s)
- Ĺubomír Švorc
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava , Radlinského 9, SK-812 37 Bratislava, Slovak Republic
| | - Daliborka Jambrec
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum , Universitätsstrasse 150, 44780 Bochum, Germany
| | - Marian Vojs
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava , Ilkovičova 3, SK-812 19 Bratislava, Slovak Republic
| | - Stefan Barwe
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum , Universitätsstrasse 150, 44780 Bochum, Germany
| | - Jan Clausmeyer
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum , Universitätsstrasse 150, 44780 Bochum, Germany
| | - Pavol Michniak
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava , Ilkovičova 3, SK-812 19 Bratislava, Slovak Republic
| | - Marián Marton
- Institute of Electronics and Photonics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology in Bratislava , Ilkovičova 3, SK-812 19 Bratislava, Slovak Republic
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Ruhr-Universität Bochum , Universitätsstrasse 150, 44780 Bochum, Germany
| |
Collapse
|
21
|
Meunier A, Triffaux E, Bizzotto D, Buess-Herman C, Doneux T. In Situ Fluorescence Microscopy Study of the Interfacial Inhomogeneity of DNA Mixed Self-Assembled Monolayers at Gold Electrodes. ChemElectroChem 2015. [DOI: 10.1002/celc.201402273] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Mayorga-Martinez CC, Chamorro-García A, Serrano L, Rivas L, Quesada-Gonzalez D, Altet L, Francino O, Sánchez A, Merkoçi A. An iridium oxide nanoparticle and polythionine thin film based platform for sensitive Leishmania DNA detection. J Mater Chem B 2015; 3:5166-5171. [DOI: 10.1039/c5tb00545k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel impedimetric label-free genosensor for highly sensitive DNA detection using a sensing platform based on thionine and iridium oxide nanoparticles.
Collapse
Affiliation(s)
- Carmen C. Mayorga-Martinez
- Nanobioelectronics & Biosensors Group
- Institut Catala de Nanociencia i Nanotecnologia (ICN2)
- Bellaterra (Barcelona) 08193
- Spain
| | - Alejandro Chamorro-García
- Nanobioelectronics & Biosensors Group
- Institut Catala de Nanociencia i Nanotecnologia (ICN2)
- Bellaterra (Barcelona) 08193
- Spain
- Autonomous University of Barcelona
| | - Lorena Serrano
- Vetgenomics
- Edifici Eureka
- Parc de Recerca UAB
- 08193 Bellaterra (Barcelona)
- Spain
| | - Lourdes Rivas
- Nanobioelectronics & Biosensors Group
- Institut Catala de Nanociencia i Nanotecnologia (ICN2)
- Bellaterra (Barcelona) 08193
- Spain
- Autonomous University of Barcelona
| | - Daniel Quesada-Gonzalez
- Nanobioelectronics & Biosensors Group
- Institut Catala de Nanociencia i Nanotecnologia (ICN2)
- Bellaterra (Barcelona) 08193
- Spain
- Autonomous University of Barcelona
| | - Laura Altet
- Vetgenomics
- Edifici Eureka
- Parc de Recerca UAB
- 08193 Bellaterra (Barcelona)
- Spain
| | - Olga Francino
- Autonomous University of Barcelona
- 08193 Bellaterra
- Spain
- Vetgenomics
- Edifici Eureka
| | - Armand Sánchez
- Vetgenomics
- Edifici Eureka
- Parc de Recerca UAB
- 08193 Bellaterra (Barcelona)
- Spain
| | - Arben Merkoçi
- Nanobioelectronics & Biosensors Group
- Institut Catala de Nanociencia i Nanotecnologia (ICN2)
- Bellaterra (Barcelona) 08193
- Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)
| |
Collapse
|
23
|
Souada M, Piro B, Reisberg S, Anquetin G, Noël V, Pham MC. Label-free electrochemical detection of prostate-specific antigen based on nucleic acid aptamer. Biosens Bioelectron 2014; 68:49-54. [PMID: 25569871 DOI: 10.1016/j.bios.2014.12.033] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/01/2014] [Accepted: 12/15/2014] [Indexed: 12/17/2022]
Abstract
We report a label-free aptasensor to make direct detection of prostate specific antigen (PSA, a biomarker of prostate cancer) using a quinone-containing conducting copolymer acting as redox transducer and grafting matrix for immobilization of the short aptamer strands. It is shown that capture of PSA generates a current decrease (signal-off) measured by Square Wave Voltammetry. This current decrease is specific for PSA above a limit of quantification in the ng mL(-1) range. The change in current is used to determine the PSA-aptamer dissociation constant K(D), of ca. 2.6 nM. To consolidate the proof of concept, a heterogeneous competitive exchange with a complementary DNA strand which breaks PSA-aptamer interactions is studied. This double-check followed by a current increase provides full assurance of a perfectly specific recognition.
Collapse
Affiliation(s)
- M Souada
- Univ. Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France
| | - B Piro
- Univ. Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France.
| | - S Reisberg
- Univ. Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France
| | - G Anquetin
- Univ. Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France
| | - V Noël
- Univ. Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France
| | - M C Pham
- Univ. Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France
| |
Collapse
|
24
|
De Rache A, Doneux T, Buess-Herman C. Electrochemical Discrimination between G-Quadruplex and Duplex DNA. Anal Chem 2014; 86:8057-65. [DOI: 10.1021/ac500791s] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Aurore De Rache
- Chimie Analytique et Chimie
des Interfaces, Faculté des Sciences, Université Libre de Bruxelles, CP 255, Boulevard du Triomphe 2, B-1050 Bruxelles, Belgium
| | - Thomas Doneux
- Chimie Analytique et Chimie
des Interfaces, Faculté des Sciences, Université Libre de Bruxelles, CP 255, Boulevard du Triomphe 2, B-1050 Bruxelles, Belgium
| | - Claudine Buess-Herman
- Chimie Analytique et Chimie
des Interfaces, Faculté des Sciences, Université Libre de Bruxelles, CP 255, Boulevard du Triomphe 2, B-1050 Bruxelles, Belgium
| |
Collapse
|