1
|
Salinas G, Arnaboldi S, Bouffier L, Kuhn A. Recent Advances in Bipolar Electrochemistry with Conducting Polymers. ChemElectroChem 2022. [DOI: 10.1002/celc.202101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gerardo Salinas
- Univ. Bordeaux ISM UMR 5255 CNRS, Bordeaux INP 33607 Pessac France
| | - Serena Arnaboldi
- Dip. Di Chimica Univ. degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Laurent Bouffier
- Univ. Bordeaux ISM UMR 5255 CNRS, Bordeaux INP 33607 Pessac France
| | - Alexander Kuhn
- Univ. Bordeaux ISM UMR 5255 CNRS, Bordeaux INP 33607 Pessac France
| |
Collapse
|
2
|
Hu S, Gao J. Shaping Electroluminescence with a Large, Printed Bipolar Electrode Array: Solid Polymer Electrochemical Cells with Over a Thousand Light‐Emitting p–n Junctions. ChemElectroChem 2020. [DOI: 10.1002/celc.202000153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shiyu Hu
- Department of Physics Engineering Physics and Astronomy Queen's University Kingston Ontario K7 L 3 N6 Canada
| | - Jun Gao
- Department of Physics Engineering Physics and Astronomy Queen's University Kingston Ontario K7 L 3 N6 Canada
| |
Collapse
|
3
|
Kim S, Lee JI, Yang J, Shin I, Earmme T, Kang MS. A Guide for Realizing Efficient Polymer Light‐Emitting Electrochemical Cells in a Single Active Layer Device Structure. ChemElectroChem 2020. [DOI: 10.1002/celc.201901772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Seunghan Kim
- Department of Chemical and Biomolecular EngineeringSogang University Seoul 04107 Republic of Korea
| | - Jong Ik Lee
- Department of Chemical and Biomolecular EngineeringSogang University Seoul 04107 Republic of Korea
| | - Jeehye Yang
- Department of Chemical and Biomolecular EngineeringSogang University Seoul 04107 Republic of Korea
| | - Ik‐Soo Shin
- Department of ChemistrySoongsil University Seoul 06978 Republic of Korea
| | - Taeshik Earmme
- Department of Chemical EngineeringHongik University Seoul 04066 Republic of Korea
| | - Moon Sung Kang
- Department of Chemical and Biomolecular EngineeringSogang University Seoul 04107 Republic of Korea
| |
Collapse
|
4
|
Assavapanumat S, Gupta B, Salinas G, Goudeau B, Wattanakit C, Kuhn A. Chiral platinum-polypyrrole hybrid films as efficient enantioselective actuators. Chem Commun (Camb) 2019; 55:10956-10959. [PMID: 31451809 DOI: 10.1039/c9cc05854k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We report the synthesis of a hybrid bilayer, being composed of a free-standing conducting polymer film and a layer of mesoporous metal, encoded with chiral features. The resulting structure constitutes an enantioselective actuator, which can be electrochemically addressed in a wireless way. The controlled discriminatory deformation of the film allows an easy readout of chiral information.
Collapse
Affiliation(s)
- Sunpet Assavapanumat
- University of Bordeaux, CNRS, Bordeaux INP, ISM UMR 5255, Site ENSCBP, 16 avenue Pey Berland, 33607, Pessac, France.
| | | | | | | | | | | |
Collapse
|
5
|
|
6
|
Hu S, Gao J. Dynamic Bipolar Electrode Array for Visualized Screening of Electrode Materials in Light-Emitting Electrochemical Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:1117-1124. [PMID: 30507115 DOI: 10.1021/acsami.8b17623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Charge injection at a metal/semiconductor interface is of paramount importance for many chemical and physical processes. The dual injection of electrons and holes, for example, is necessary for electroluminescence in organic light-emitting devices. In an electrochemical cell, charge transfer across the electrode interface is responsible for redox reactions and Faradic current flow. In this work, we use polymer light-emitting electrochemical cells (PLECs) to visually assess the ability of metals to inject electronic charges into a luminescent polymer. Silver, aluminum, and gold microdisks are deposited between the two driving electrodes of the PLEC in the form of a horizontal array. When the PLEC is polarized, the individual disks functioned as bipolar electrodes (BPEs) to induce redox p- and n-doping reactions at their extremities, which are visualized as strongly photoluminescence-quenched growth in the luminescent polymer. The three metals initially generate highly distinct doping patterns that are consistent with differences in their work function. Over time, the doped regions continue to grow in size. Quantitative analysis of the n/p area ratio reveals an amazing convergence to a single value for all 39 BPEs, regardless of their metal type and large variation in the size of individual doped areas. We introduce the concept of a dynamic BPE, which transforms from an initial metal disk of a fixed size to one that is a composite of p- and n-doped polymer joined by the initial metallic BPE. The internal structure of the dynamic BPE, as measured by the n/p area ratio, reflects the properties of only the mixed conductor of the PLEC active layer itself when the area ratio converges.
Collapse
Affiliation(s)
- Shiyu Hu
- Department of Physics, Engineering Physics and Astronomy , Queen's University , Kingston , Ontario K7L 3N6 , Canada
| | - Jun Gao
- Department of Physics, Engineering Physics and Astronomy , Queen's University , Kingston , Ontario K7L 3N6 , Canada
| |
Collapse
|
7
|
AlTal F, Gao J. Laser-Induced Bipolar Electrochemistry-On-Demand Formation of Bipolar Electrodes in a Solid Polymer Light-Emitting Electrochemical Cell. J Am Chem Soc 2018; 140:9737-9742. [PMID: 30001124 DOI: 10.1021/jacs.8b06052] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Bipolar electrochemistry (BPEC) is a versatile and powerful technique that has found applications in sensing, chemical synthesis, catalysis, fuel cells, and batteries, among others. In BPEC, the reactions of interest occur at a wireless, bipolar electrode (BPE). BPEC is most commonly carried out in an electrochemical cell that contains an electrolyte solution, in which a metallic BPE is immersed and polarized when the wired driving electrodes are biased. In this article, we demonstrate BPEC in a solid light-emitting electrochemical cell (LEC) that does not initially contain a BPE. Shining a focused laser beam onto the mixed conductor LEC film causes the illuminated spot to function as a BPE from which redox reactions are induced and visualized. Separate experiments using a photosensitizer (widely used in polymer solar cells) confirm that a BPE is formed on-demand via photoabsorption that causes the illuminated spot to have elevated photoconductivity. The simplicity of laser-induced BPEC offers exciting opportunities to explore sciences and applications of BPEC in the new realm of solid-state organic photonic devices.
Collapse
Affiliation(s)
- Faleh AlTal
- Department of Physics, Engineering Physics and Astronomy , Queen's University , Kingston , Ontario K7L 3N6 , Canada
| | - Jun Gao
- Department of Physics, Engineering Physics and Astronomy , Queen's University , Kingston , Ontario K7L 3N6 , Canada
| |
Collapse
|
8
|
Gupta B, Goudeau B, Kuhn A. Wireless Electrochemical Actuation of Conducting Polymers. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Bhavana Gupta
- Univ. Bordeaux, ISM UMR CNRS 5255; Bordeaux INP, ENSCBP; 33607 Pessac France
| | - Bertrand Goudeau
- Univ. Bordeaux, ISM UMR CNRS 5255; Bordeaux INP, ENSCBP; 33607 Pessac France
| | - Alexander Kuhn
- Univ. Bordeaux, ISM UMR CNRS 5255; Bordeaux INP, ENSCBP; 33607 Pessac France
| |
Collapse
|
9
|
Gupta B, Goudeau B, Kuhn A. Wireless Electrochemical Actuation of Conducting Polymers. Angew Chem Int Ed Engl 2017; 56:14183-14186. [DOI: 10.1002/anie.201709038] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Bhavana Gupta
- Univ. Bordeaux, ISM UMR CNRS 5255; Bordeaux INP, ENSCBP; 33607 Pessac France
| | - Bertrand Goudeau
- Univ. Bordeaux, ISM UMR CNRS 5255; Bordeaux INP, ENSCBP; 33607 Pessac France
| | - Alexander Kuhn
- Univ. Bordeaux, ISM UMR CNRS 5255; Bordeaux INP, ENSCBP; 33607 Pessac France
| |
Collapse
|
10
|
Gao J, Chen S, AlTal F, Hu S, Bouffier L, Wantz G. Bipolar Electrode Array Embedded in a Polymer Light-Emitting Electrochemical Cell. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32405-32410. [PMID: 28849645 DOI: 10.1021/acsami.7b11204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A linear array of aluminum discs is deposited between the driving electrodes of an extremely large planar polymer light-emitting electrochemical cell (PLEC). The planar PLEC is then operated at a constant bias voltage of 100 V. This promotes in situ electrochemical doping of the luminescent polymer from both the driving electrodes and the aluminum discs. These aluminum discs function as discrete bipolar electrodes (BPEs) that can drive redox reactions at their extremities. Time-lapse fluorescence imaging reveals that p- and n-doping that originated from neighboring BPEs can interact to form multiple light-emitting p-n junctions in series. This provides direct evidence of the working principle of bulk homojunction PLECs. The propagation of p-doping is faster from the BPEs than from the positive driving electrode due to electric field enhancement at the extremities of BPEs. The effect of field enhancement and the fact that the doping fronts only need to travel the distance between the neighboring BPEs to form a light-emitting junction greatly reduce the response time for electroluminescence in the region containing the BPE array. The near simultaneous formation of multiple light-emitting p-n junctions in series causes a measurable increase in cell current. This indicates that the region containing a BPE is much more conductive than the rest of the planar cell despite the latter's greater width. The p- and n-doping originating from the BPEs is initially highly confined. Significant expansion and divergence of doping occurred when the region containing the BPE array became more conductive. The shape and direction of expanded doping strongly suggest that the multiple light-emitting p-n junctions, formed between and connected by the array of metal BPEs, have functioned as a single rod-shaped BPE. This represents a new type of BPE that is formed in situ and as a combination of metal, doped polymers, and forward-biased p-n junctions connected in series.
Collapse
Affiliation(s)
- Jun Gao
- Department of Physics, Engineering Physics and Astronomy, Queen's University , Kingston, Ontario K7L 3N6, Canada
| | - Shulun Chen
- Department of Physics, Engineering Physics and Astronomy, Queen's University , Kingston, Ontario K7L 3N6, Canada
| | - Faleh AlTal
- Department of Physics, Engineering Physics and Astronomy, Queen's University , Kingston, Ontario K7L 3N6, Canada
| | - Shiyu Hu
- Department of Physics, Engineering Physics and Astronomy, Queen's University , Kingston, Ontario K7L 3N6, Canada
| | - Laurent Bouffier
- Université de Bordeaux, ISM, CNRS, UMR 5255 , Bordeaux INP, F-33400 Talence, France
| | - Guillaume Wantz
- Université de Bordeaux, IMS, CNRS, UMR 5218 , Bordeaux INP, F-33405 Talence, France
| |
Collapse
|
11
|
|