1
|
Khan MD, Warczak M, Shombe GB, Revaprasadu N, Opallo M. Molecular Precursor Routes for Ag-Based Metallic, Intermetallic, and Metal Sulfide Nanoparticles: Their Comparative ORR Activity Trend at Solid|Liquid and Liquid|Liquid Interfaces. Inorg Chem 2023; 62:8379-8388. [PMID: 37191662 DOI: 10.1021/acs.inorgchem.3c00978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The electrochemical conversion of oxygen to water is a crucial process required for renewable energy production, whereas its first two-electron step produces a versatile chemical and oxidant─hydrogen peroxide. Improving performance and widening the limited selection of the potential catalysts for this reaction is a step toward the implementation of clean-energy technologies. As silver is known as one of the most effective catalysts of oxygen reduction reaction (ORR), we have designed a suitable molecular precursor pathway for the selective synthesis of metallic (Ag), intermetallic (Ag3Sb), and binary or ternary metal sulfide (Ag2S and AgSbS2) nanomaterials by judicious control of reaction conditions. The decomposition of xanthate precursors under different reaction conditions in colloidal synthesis indicates that carbon-sulfur bond cleavage yields the respective metal sulfide nanomaterials. This is not the case in the presence of trioctylphosphine when the metal-sulfur bond is broken. The synthesized nanomaterials were applied as catalysts of oxygen reduction at the liquid-liquid and solid-liquid interfaces. Ag exhibits the best performance for electrochemical oxygen reduction, whereas the electrocatalytic performance of Ag and Ag3Sb is comparable for peroxide reduction in an alkaline medium. Scanning electrochemical microscopy (SECM) analysis indicates that a flexible 2-electron to 4-electron ORR pathway has been achieved by transforming metallic Ag into intermetallic Ag3Sb.
Collapse
Affiliation(s)
- Malik Dilshad Khan
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
- Department of Chemistry, University of Zululand, Private bag X1001, Kwa-Dlangezwa 3880, South Africa
| | - Magdalena Warczak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
- Department of Food Analysis and Environmental Protection, Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, Bydgoszcz 85-326, Poland
| | - Ginena Bildard Shombe
- Chemistry Department, University of Dar-es-Salaam, P.O. Box 35061, Dar-es-Salaam 63728, Tanzania
- Department of Chemistry, University of Zululand, Private bag X1001, Kwa-Dlangezwa 3880, South Africa
| | - Neerish Revaprasadu
- Department of Chemistry, University of Zululand, Private bag X1001, Kwa-Dlangezwa 3880, South Africa
| | - Marcin Opallo
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland
| |
Collapse
|
2
|
Opallo MW, Dusilo K, Warczak M, Kalisz J. Hydrogen Evolution, Oxygen Evolution and Oxygen Reduction at Polarizable Liquid|Liquid Interfaces. ChemElectroChem 2022. [DOI: 10.1002/celc.202200513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Marcin Wojciech Opallo
- Institute of Physical Chemistry, Polish Academy of Sciences Department of Electrode Processes Kasprzaka 44/52 01-224 Warszawa POLAND
| | - Katarzyna Dusilo
- Institute of Physical Chemistry Polish Academy of Sciences Library: Instytut Chemii Fizycznej Polskiej Akademii Nauk Biblioteka Electrode Processes POLAND
| | - Magdalena Warczak
- Institute of Physical Chemistry Polish Academy of Sciences Library: Instytut Chemii Fizycznej Polskiej Akademii Nauk Biblioteka Electrode Processes POLAND
| | - Justyna Kalisz
- University of Warsaw: Uniwersytet Warszawski Chemistry POLAND
| |
Collapse
|
3
|
|
4
|
Kalisz J, Nogala W, Adamiak W, Gocyla M, Girault HH, Opallo M. The Solvent Effect on H 2 O 2 Generation at Room Temperature Ionic Liquid|Water Interface. Chemphyschem 2021; 22:1352-1360. [PMID: 33909320 DOI: 10.1002/cphc.202100219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/26/2021] [Indexed: 12/15/2022]
Abstract
H2 O2 is a versatile chemical and can be generated by the oxygen reduction reaction (ORR) in proton donor solution in molecular solvents or room temperature ionic liquids (IL). We investigated this reaction at interfaces formed by eleven hydrophobic ILs and acidic aqueous solution as a proton source with decamethylferrocene (DMFc) as an electron donor. H2 O2 is generated in colorimetrically detectable amounts in biphasic systems formed by alkyl imidazolium hexafluorophosphate or tetraalkylammonium bis(trifluoromethylsulfonyl)imide ionic liquids. H2 O2 fluxes were estimated close to liquid|liquid interface by scanning electrochemical microscopy (SECM). Contrary to the interfaces formed by hydrophobic electrolyte solution in a molecular solvent, H2 O2 generation is followed by cation expulsion to the aqueous phase. Weak correlation between the H2 O2 flux and the difference between DMFc/DMFc+ redox potential and 2 electron ORR standard potential indicates kinetic control of the reaction.
Collapse
Affiliation(s)
- Justyna Kalisz
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Wojciech Nogala
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Wojciech Adamiak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Mateusz Gocyla
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Hubert H Girault
- Laboratoire d'Electrochimie Physique et Amaytique, Ecole Polytechnique Federale de Lausanne, EPFL, Valais, Wallis, Rue d'Industrie 17, 1950, Sion, Switzerland
| | - Marcin Opallo
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| |
Collapse
|