1
|
Song Y, He H, Zhao Y, Li Y, Wu M, Li J, Lu X, Zhao L, Wei L. Effective construction of a CuCo MOF@graphene functional electrocatalyst for hydrogen evolution reaction. Dalton Trans 2023; 52:12695-12703. [PMID: 37609809 DOI: 10.1039/d3dt01477k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Electrochemical water splitting is considered a green and sustainable method of producing hydrogen energy. Herein, to pursue a highly efficient hydrogen evolution reaction, we fabricated high-performance electrocatalysts, by utilizing a bimetallic (Cu and Co) metal-organic framework to modify rGO through a one-step in situ approach. The synthesized CuCoOC@rGO presents a highly ordered structure with a defect-rich porous surface for the hydrogen evolution reaction (HER). Specifically, the appropriate adjustment of metal (Cu and Co), 1,3,5-benzenetricarboxylic acid (H3BTC), and rGO ratios leads to a well-defined morphology, which creates a defect-rich porous surface. Characterized by XRD, SEM, EDS, FT-IR spectroscopy, Raman spectroscopy, XPS, and BET, the morphology exposes more active sites, strong evidence for the promotion of electrocatalytic efficiency. Upon the analysis of the experimental data, the obtained CuCoOC@rGO catalyst exhibits excellent activity in alkaline media with a low overpotential of 120 mV at a current density of 10 mA cm-2, and a Tafel slope of 124 mV dec-1 for the hydrogen evolution reaction (HER). Guided by the structure-activity relationship, the superior HER activity of CuCoOC@rGO in alkaline electrolyte could originate from many sources, including: (1) as a self-supported substrate, CuCoOC@rGO not only leads to profitable electrical contact and mechanical stability but also firmly roots into the rGO without extra binders. (2) The highly ordered structure provides smooth ion and electron transport channels, which are conducive to electrolyte infiltration and gas release. (3) The abundance of defective pores on the surface of the nanoarrays, which offers more active sites for the catalytic process. This study provides new prospects for the rational design and fabrication of advanced hierarchical functional electrocatalysts for application in electrochemical energy devices.
Collapse
Affiliation(s)
- Yang Song
- Chemical Pollution Control Chongqing Applied Technology Extension Center of Higher Vocational Colleges, School of Chemical and Pharmaceutical Engineering, Chongqing Industry Polytechnic College, Chongqing, 401120, P. R. China.
| | - Huiyi He
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, P. R. China
| | - Yangyang Zhao
- Chemical Pollution Control Chongqing Applied Technology Extension Center of Higher Vocational Colleges, School of Chemical and Pharmaceutical Engineering, Chongqing Industry Polytechnic College, Chongqing, 401120, P. R. China.
| | - Ying Li
- Chemical Pollution Control Chongqing Applied Technology Extension Center of Higher Vocational Colleges, School of Chemical and Pharmaceutical Engineering, Chongqing Industry Polytechnic College, Chongqing, 401120, P. R. China.
| | - Mingzhu Wu
- Chemical Pollution Control Chongqing Applied Technology Extension Center of Higher Vocational Colleges, School of Chemical and Pharmaceutical Engineering, Chongqing Industry Polytechnic College, Chongqing, 401120, P. R. China.
| | - Jing Li
- Chemical Pollution Control Chongqing Applied Technology Extension Center of Higher Vocational Colleges, School of Chemical and Pharmaceutical Engineering, Chongqing Industry Polytechnic College, Chongqing, 401120, P. R. China.
| | - Xiangman Lu
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, P. R. China
| | - Lishuang Zhao
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, P. R. China
| | - Liguo Wei
- College of Environmental and Chemical Engineering, Heilongjiang University of Science and Technology, Harbin 150022, P. R. China
| |
Collapse
|
2
|
Lamiel C, Hussain I, Rabiee H, Ogunsakin OR, Zhang K. Metal-organic framework-derived transition metal chalcogenides (S, Se, and Te): Challenges, recent progress, and future directions in electrochemical energy storage and conversion systems. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
3
|
Sadeghi E, Peighambardoust NS, Chamani S, Aydemir U. Designing In Situ Grown Ternary Oxide/2D Ni-BDC MOF Nanocomposites on Nickel Foam as Efficient Electrocatalysts for Electrochemical Water Splitting. ACS MATERIALS AU 2023; 3:143-163. [PMID: 38089730 PMCID: PMC9999482 DOI: 10.1021/acsmaterialsau.2c00073] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 07/30/2024]
Abstract
The security of future energy, hydrogen, is subject to designing high-performance, stable, and low-cost electrocatalysts for hydrogen and oxygen evolution reactions (HERs and OERs), for the realization of efficient overall water splitting. Two-dimensional (2D) metal-organic frameworks (MOFs) introduce a large family of materials with versatile chemical and structural features for a variety of applications, such as supercapacitors, gas storage, and water splitting. Herein, a series of nanocomposites based on NCM/Ni-BDC@NF (N=Ni, C=Co, M:F=Fe, C=Cu, and Z=Zn, BDC: benzene dicarboxylic acid, NF: nickel foam) were directly developed on NF using a facile yet scalable solvothermal method. After coupling, the electronic structure of metallic atoms was well-modulated. Based on the XPS results, for the NCF/Ni-BDC, cationic atoms shifted to higher oxidation states, favorable for the OER. Conversely, for the NCZ/Ni-BDC and NCC/Ni-BDC nanocomposites, cationic atoms shifted to lower oxidation states, advantageous for the HER. The as-prepared NCF/Ni-BDC demonstrated prominent OER performance, requiring only 1.35 and 1.68 V versus a reversible hydrogen electrode to afford 10 and 50 mA cm-2 current densities, respectively. On the cathodic side, NCZ/Ni-BDC exhibited the best HER activity with an overpotential of 170 and 350 mV to generate 10 and 50 mA cm-2, respectively, under 1.0 M KOH medium. In a two-electrode alkaline electrolyzer, the assembled NCZ/Ni-BDC (cathode) ∥ NCF/Ni-BDC (anode) couple demanded a cell voltage of only 1.58 V to produce 10 mA cm-2. The stability of NCF/Ni-BDC toward OER was also exemplary, experiencing a continuous operation at 10, 20, and 50 mA cm-2 for nearly 45 h. Surprisingly, the overpotential after OER stability at 50 mA cm-2 dropped drastically from 450 to 200 mV. Finally, the faradaic efficiencies for the overall water splitting revealed the respective values of 100 and 85% for the H2 and O2 production at a constant current density of 20 mA cm-2.
Collapse
Affiliation(s)
- Ebrahim Sadeghi
- Koç
University Boron and Advanced Materials Applications and Research
Center (KUBAM), Sariyer, Istanbul34450, Turkey
- Graduate
School of Sciences and Engineering, Koç
University, Sariyer, Istanbul34450, Turkey
| | - Naeimeh Sadat Peighambardoust
- Koç
University Boron and Advanced Materials Applications and Research
Center (KUBAM), Sariyer, Istanbul34450, Turkey
| | - Sanaz Chamani
- Koç
University Boron and Advanced Materials Applications and Research
Center (KUBAM), Sariyer, Istanbul34450, Turkey
| | - Umut Aydemir
- Koç
University Boron and Advanced Materials Applications and Research
Center (KUBAM), Sariyer, Istanbul34450, Turkey
- Department
of Chemistry, Koç University, Sariyer, Istanbul34450, Turkey
| |
Collapse
|
4
|
Complexes of Sodium Pectate with Nickel for Hydrogen Oxidation and Oxygen Reduction in Proton-Exchange Membrane Fuel Cells. Int J Mol Sci 2022; 23:ijms232214247. [PMID: 36430721 PMCID: PMC9695899 DOI: 10.3390/ijms232214247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022] Open
Abstract
A number of nickel complexes of sodium pectate with varied Ni2+ content have been synthesized and characterized. The presence of the proton conductivity, the possibility of the formation of a dense spatial network of transition metals in these coordination biopolymers, and the immobilization of transition ions in the catalytic sites of this class of compounds make them promising for proton-exchange membrane fuel cells. It has been established that the catalytic system composed of a coordination biopolymer with 20% substitution of sodium ions for divalent nickel ions, Ni (20%)-NaPG, is the leading catalyst in the series of 5, 15, 20, 25, 35% substituted pectates. Among the possible reasons for the improvement in performance the larger specific surface area of this sample compared to the other studied materials and the narrowest distribution of the vertical size of metal arrays were registered. The highest activity during CV and proximity to four-electron transfer during the catalytic cycle have also been observed for this compound.
Collapse
|
5
|
Iqbal B, Laybourn A, O'Shea JN, Argent SP, Zaheer M. Electrocatalytic hydrogen evolution over micro and mesoporous cobalt metal-organic frameworks. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Behera P, Subudhi S, Tripathy SP, Parida K. MOF derived nano-materials: A recent progress in strategic fabrication, characterization and mechanistic insight towards divergent photocatalytic applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214392] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Jadhav HS, Bandal HA, Ramakrishna S, Kim H. Critical Review, Recent Updates on Zeolitic Imidazolate Framework-67 (ZIF-67) and Its Derivatives for Electrochemical Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107072. [PMID: 34846082 DOI: 10.1002/adma.202107072] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Design and construction of low-cost electrocatalysts with high catalytic activity and long-term stability is a challenging task in the field of catalysis. Metal-organic frameworks (MOF) are promising candidates as precursor materials in the development of highly efficient electrocatalysts for energy conversion and storage applications. This review starts with a summary of basic concepts and key evaluation parameters involved in the electrochemical water-splitting reaction. Then, different synthesis approaches reported for the cobalt-based Zeolitic imidazolate framework (ZIF-67) and its derivatives are critically reviewed. Additionally, several strategies employed to enhance the electrocatalytic activity and stability of ZIF-67-based electrocatalysts are discussed in detail. The present review provides a succinct insight into the ZIF-67 and its derivatives (oxides, hydroxides, sulfides, selenides, phosphide, nitrides, telluride, heteroatom/metal-doped carbon, noble metal-supported ZIF-67 derivatives) reported for oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and overall water splitting applications. Finally, this review concludes with the associated challenges and the perspectives on developing the best economic, durable electrocatalytic materials.
Collapse
Affiliation(s)
- Harsharaj S Jadhav
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Harshad A Bandal
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, National University of Singapore, 9 Engineering Drive 1, Singapore, 117576, Singapore
| | - Hern Kim
- Department of Energy Science and Technology, Environmental Waste Recycle Institute, Myongji University, Yongin, Gyeonggi-do, 17058, Republic of Korea
| |
Collapse
|
8
|
Electrokinetic analysis of water oxidation on alumina supported silver oxide nanopowders. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Dey G, Shadab, Aijaz A. Metal‐Organic Framework Derived Nanostructured Bifunctional Electrocatalysts for Water Splitting. ChemElectroChem 2021. [DOI: 10.1002/celc.202100687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gargi Dey
- Department of Sciences & Humanities Chemistry Division Rajiv Gandhi Institute of Petroleum Technology (RGIPT) – Jais Amethi Uttar Pradesh 229304 India
| | - Shadab
- Department of Sciences & Humanities Chemistry Division Rajiv Gandhi Institute of Petroleum Technology (RGIPT) – Jais Amethi Uttar Pradesh 229304 India
| | - Arshad Aijaz
- Department of Sciences & Humanities Chemistry Division Rajiv Gandhi Institute of Petroleum Technology (RGIPT) – Jais Amethi Uttar Pradesh 229304 India
| |
Collapse
|
10
|
Li J, Chen S, Liu M, Li Z, Dong Z, Zhang F, Zhang X. Self‐Template Construction of High‐Performance Co, N‐Decorated Carbon Nanotubes from a Novel Cobalt Dicyandiamide Molecule. ChemCatChem 2021. [DOI: 10.1002/cctc.202100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jingjing Li
- Institute of Crystalline Materials Institute of Molecular Science Shanxi University Taiyuan 030006 P. R. China
| | - Shuai Chen
- Analytical Instrumentation Center, Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 P. R. China
| | - Mengmeng Liu
- Institute of Crystalline Materials Institute of Molecular Science Shanxi University Taiyuan 030006 P. R. China
| | - Zhihong Li
- Institute of Crystalline Materials Institute of Molecular Science Shanxi University Taiyuan 030006 P. R. China
| | - Zhengping Dong
- College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Fengwei Zhang
- Institute of Crystalline Materials Institute of Molecular Science Shanxi University Taiyuan 030006 P. R. China
| | - Xian‐Ming Zhang
- Institute of Crystalline Materials Institute of Molecular Science Shanxi University Taiyuan 030006 P. R. China
| |
Collapse
|
11
|
Wang H, Chen BH, Liu DJ. Metal-Organic Frameworks and Metal-Organic Gels for Oxygen Electrocatalysis: Structural and Compositional Considerations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008023. [PMID: 33984166 DOI: 10.1002/adma.202008023] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Increasing demand for sustainable and clean energy is calling for the next-generation energy conversion and storage technologies such as fuel cells, water electrolyzers, CO2 /N2 reduction electrolyzers, metal-air batteries, etc. All these electrochemical processes involve oxygen electrocatalysis. Boosting the intrinsic activity and the active-site density through rational design of metal-organic frameworks (MOFs) and metal-organic gels (MOGs) as precursors represents a new approach toward improving oxygen electrocatalysis efficiency. MOFs/MOGs afford a broad selection of combinations between metal nodes and organic linkers and are known to produce electrocatalysts with high surface areas, variable porosity, and excellent activity after pyrolysis. Some recent studies on MOFs/MOGs for oxygen electrocatalysis and their new perspectives in synthesis, characterization, and performance are discussed. New insights on the structural and compositional design in MOF/MOG-derived oxygen electrocatalysts are summarized. Critical challenges and future research directions are also outlined.
Collapse
Affiliation(s)
- Hao Wang
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Biao-Hua Chen
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Di-Jia Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
12
|
Tailoring metal-oxide-supported PtNi as bifunctional catalysts of superior activity and stability for unitised regenerative fuel cell applications. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.106963] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
13
|
Mei H, Li S, Dong J, Zhang L, Su C. Porphyrinic Metal‐Organic Frameworks Derived Carbon‐Based Nanomaterials for Hydrogen Evolution Reaction. ChemistrySelect 2020. [DOI: 10.1002/slct.202002908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hong‐Min Mei
- School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Shuai Li
- School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Ju‐Rong Dong
- School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Li Zhang
- School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Cheng‐Yong Su
- School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|
14
|
Singh B, Indra A. Designing Self‐Supported Metal‐Organic Framework Derived Catalysts for Electrochemical Water Splitting. Chem Asian J 2020; 15:607-623. [DOI: 10.1002/asia.201901810] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/30/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Baghendra Singh
- Department of ChemistryIndian Institute of Technology (BHU) Varanasi Uttar Pradesh 221005 India
| | - Arindam Indra
- Department of ChemistryIndian Institute of Technology (BHU) Varanasi Uttar Pradesh 221005 India
| |
Collapse
|
15
|
Liu J, Hou S, Li W, Bandarenka AS, Fischer RA. Recent Approaches to Design Electrocatalysts Based on Metal–Organic Frameworks and Their Derivatives. Chem Asian J 2019; 14:3474-3501. [DOI: 10.1002/asia.201900748] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/12/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Juan Liu
- Department of Chemistry and Catalysis Research CenterTechnical University of Munich Lichtenbergstraße 4 85748 Garching bei München Germany
| | - Shujin Hou
- Department of PhysicsTechnical University of Munich James-Franck-Straße 1 85748 Garching bei München Germany
| | - Weijin Li
- Department of Chemistry and Catalysis Research CenterTechnical University of Munich Lichtenbergstraße 4 85748 Garching bei München Germany
| | - Aliaksandr S. Bandarenka
- Department of Chemistry and Catalysis Research CenterTechnical University of Munich Lichtenbergstraße 4 85748 Garching bei München Germany
- Department of PhysicsTechnical University of Munich James-Franck-Straße 1 85748 Garching bei München Germany
| | - Roland A. Fischer
- Department of Chemistry and Catalysis Research CenterTechnical University of Munich Lichtenbergstraße 4 85748 Garching bei München Germany
| |
Collapse
|
16
|
Ren J, Song Z, Zhou X, Chai Y, Lu X, Zheng Q, Xu C, Lin D. A Porous Carbon Polyhedron/Carbon Nanotube Based Hybrid Material as Multifunctional Sulfur Host for High‐Performance Lithium‐Sulfur Batteries. ChemElectroChem 2019. [DOI: 10.1002/celc.201900744] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Juan Ren
- College of Chemistry and Materials ScienceSichuan Normal University Chengdu 610066 China
| | - Zhicui Song
- College of Chemistry and Materials ScienceSichuan Normal University Chengdu 610066 China
| | - Xuemei Zhou
- College of Chemistry and Materials ScienceSichuan Normal University Chengdu 610066 China
| | - Yuru Chai
- College of Chemistry and Materials ScienceSichuan Normal University Chengdu 610066 China
| | - Xiaoli Lu
- College of Chemistry and Materials ScienceSichuan Normal University Chengdu 610066 China
| | - Qiaoji Zheng
- College of Chemistry and Materials ScienceSichuan Normal University Chengdu 610066 China
| | - Chenggang Xu
- College of Chemistry and Materials ScienceSichuan Normal University Chengdu 610066 China
| | - Dunmin Lin
- College of Chemistry and Materials ScienceSichuan Normal University Chengdu 610066 China
| |
Collapse
|
17
|
Wang Q, Astruc D. State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chem Rev 2019; 120:1438-1511. [DOI: 10.1021/acs.chemrev.9b00223] [Citation(s) in RCA: 894] [Impact Index Per Article: 149.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Qi Wang
- ISM, UMR CNRS N°5255, University of Bordeaux, 351 Cours de la Libération, 33405 Talence Cedex, France
| | - Didier Astruc
- ISM, UMR CNRS N°5255, University of Bordeaux, 351 Cours de la Libération, 33405 Talence Cedex, France
| |
Collapse
|
18
|
Wang Q, Liu F, Wei C, Li D, Guo W, Zhao Q. High Efficiency FeNi‐Metal‐Organic Framework Grown In‐situ on Nickel Foam for Electrocatalytic Oxygen Evolution. ChemistrySelect 2019. [DOI: 10.1002/slct.201901709] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qiang Wang
- Research Institute of Special ChemicalsTaiyuan University of Technology Taiyuan 030024, Shanxi P.R. China. (Q. Zhao
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization Taiyuan 030024, Shanxi P.R. China
| | - Fengyu Liu
- Shanxi Provincial Institute of Chemical Industry(Co. Ltd.) Jinzhong 030600, Shanxi P.R. China
| | - Congcong Wei
- Research Institute of Special ChemicalsTaiyuan University of Technology Taiyuan 030024, Shanxi P.R. China. (Q. Zhao
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization Taiyuan 030024, Shanxi P.R. China
| | - Dandan Li
- Research Institute of Special ChemicalsTaiyuan University of Technology Taiyuan 030024, Shanxi P.R. China. (Q. Zhao
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization Taiyuan 030024, Shanxi P.R. China
| | - Wenjun Guo
- Research Institute of Special ChemicalsTaiyuan University of Technology Taiyuan 030024, Shanxi P.R. China. (Q. Zhao
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization Taiyuan 030024, Shanxi P.R. China
| | - Qiang Zhao
- Research Institute of Special ChemicalsTaiyuan University of Technology Taiyuan 030024, Shanxi P.R. China. (Q. Zhao
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization Taiyuan 030024, Shanxi P.R. China
| |
Collapse
|
19
|
Shui H, Jin T, Hu J, Liu H. In Situ Incorporation Strategy for Bimetallic FeCo-Doped Carbon as Highly Efficient Bifunctional Oxygen Electrocatalysts. ChemElectroChem 2018. [DOI: 10.1002/celc.201800013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hengxin Shui
- State Key Laboratory of Chemistry Engineering and; Department of Chemistry; East China University of Science and Technology; Shanghai 200237 P. R. China
| | - Tian Jin
- State Key Laboratory of Chemistry Engineering and; Department of Chemistry; East China University of Science and Technology; Shanghai 200237 P. R. China
| | - Jun Hu
- State Key Laboratory of Chemistry Engineering and; Department of Chemistry; East China University of Science and Technology; Shanghai 200237 P. R. China
| | - Honglai Liu
- State Key Laboratory of Chemistry Engineering and; Department of Chemistry; East China University of Science and Technology; Shanghai 200237 P. R. China
| |
Collapse
|
20
|
Ping D, Feng X, Zhang J, Geng J, Dong X. Directed Growth of a Bimetallic MOF Membrane and the Derived NiCo Alloy@C/Ni
x
Co1-x
O/Ni Foam Composite as an Efficient Electrocatalyst for the Oxygen Evolution Reaction. ChemElectroChem 2017. [DOI: 10.1002/celc.201700901] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dan Ping
- School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 P. R. China
| | - Xiao Feng
- School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 P. R. China
| | - Jun Zhang
- Starriss ChemTech Limited; Guangzhou 510663 P. R. China
| | - Jianming Geng
- School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 P. R. China
| | - Xinfa Dong
- School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou 510640 P. R. China
| |
Collapse
|
21
|
Vij V, Sultan S, Harzandi AM, Meena A, Tiwari JN, Lee WG, Yoon T, Kim KS. Nickel-Based Electrocatalysts for Energy-Related Applications: Oxygen Reduction, Oxygen Evolution, and Hydrogen Evolution Reactions. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01800] [Citation(s) in RCA: 638] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Varun Vij
- Center for Superfunctional
Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Siraj Sultan
- Center for Superfunctional
Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Ahmad M. Harzandi
- Center for Superfunctional
Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Abhishek Meena
- Center for Superfunctional
Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Jitendra N. Tiwari
- Center for Superfunctional
Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Wang-Geun Lee
- Center for Superfunctional
Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Taeseung Yoon
- Center for Superfunctional
Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Kwang S. Kim
- Center for Superfunctional
Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
22
|
Sun J, Chen Y, Ren Z, Fu H, Xiao Y, Wang J, Tian G. Self-Supported NiS Nanoparticle-Coupled Ni2
P Nanoflake Array Architecture: An Advanced Catalyst for Electrochemical Hydrogen Evolution. ChemElectroChem 2017. [DOI: 10.1002/celc.201700094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jianmin Sun
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science; Heilongjiang University; 150080 Harbin P. R. China
| | - Yajie Chen
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science; Heilongjiang University; 150080 Harbin P. R. China
| | - Zhiyu Ren
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science; Heilongjiang University; 150080 Harbin P. R. China
| | - Huiying Fu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science; Heilongjiang University; 150080 Harbin P. R. China
| | - Yuting Xiao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science; Heilongjiang University; 150080 Harbin P. R. China
| | - Jinge Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science; Heilongjiang University; 150080 Harbin P. R. China
| | - Guohui Tian
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science; Heilongjiang University; 150080 Harbin P. R. China
| |
Collapse
|