1
|
Chen Z, Wu J, Chen Z, Yang H, Zou K, Zhao X, Liang R, Dong X, Menezes PW, Kang Z. Entropy Enhanced Perovskite Oxide Ceramic for Efficient Electrochemical Reduction of Oxygen to Hydrogen Peroxide. Angew Chem Int Ed Engl 2022; 61:e202200086. [PMID: 35238121 PMCID: PMC9400899 DOI: 10.1002/anie.202200086] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 12/16/2022]
Abstract
The electrochemical oxygen reduction reaction (ORR) offers a most promising and efficient route to produce hydrogen peroxide (H2 O2 ), yet the lack of cost-effective and high-performance electrocatalysts have restricted its practical application. Herein, an entropy-enhancement strategy has been employed to enable the low-cost perovskite oxide to effectively catalyze the electrosynthesis of H2 O2 . The optimized Pb(NiWMnNbZrTi)1/6 O3 ceramic is available on a kilogram-scale and displays commendable ORR activity in alkaline media with high selectivity over 91 % across the wide potential range for H2 O2 including an outstanding degradation property for organic dyes through the Fenton process. The exceptional performance of this perovskite oxide is attributed to the entropy stabilization-induced polymorphic transformation assuring the robust structural stability, decreased charge mobility as well as synergistic catalytic effects which we confirm using advanced in situ Raman, transient photovoltage, Rietveld refinement as well as finite elemental analysis.
Collapse
Affiliation(s)
- Ziliang Chen
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon-based Functional Materials and DevicesJoint International Research Laboratory of Carbon-Based Functional Materials and DevicesSoochow UniversitySuzhou215123China
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C210623BerlinGermany
| | - Jie Wu
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon-based Functional Materials and DevicesJoint International Research Laboratory of Carbon-Based Functional Materials and DevicesSoochow UniversitySuzhou215123China
| | - Zhengran Chen
- Key Laboratory of Inorganic Functional Materials and DevicesShanghai Institute of CeramicsChinese Academy of Sciences588 Heshuo Road, Jiading DistrictShanghai201800China
| | - Hongyuan Yang
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C210623BerlinGermany
| | - Kai Zou
- Key Laboratory of Inorganic Functional Materials and DevicesShanghai Institute of CeramicsChinese Academy of Sciences588 Heshuo Road, Jiading DistrictShanghai201800China
| | - Xiangyong Zhao
- Key Laboratory of Optoelectronic Material and DeviceDepartment of PhysicsShanghai Normal UniversityShanghai200234China
| | - Ruihong Liang
- Key Laboratory of Inorganic Functional Materials and DevicesShanghai Institute of CeramicsChinese Academy of Sciences588 Heshuo Road, Jiading DistrictShanghai201800China
| | - Xianlin Dong
- Key Laboratory of Inorganic Functional Materials and DevicesShanghai Institute of CeramicsChinese Academy of Sciences588 Heshuo Road, Jiading DistrictShanghai201800China
| | - Prashanth W. Menezes
- Department of Chemistry: Metalorganics and Inorganic MaterialsTechnische Universität BerlinStraße des 17 Juni 135, Sekr. C210623BerlinGermany
- Material Chemistry Group for Thin Film Catalysis—CatLabHelmholtz-Zentrum Berlin für Materialien und EnergieAlbert-Einstein-Str. 1512489BerlinGermany
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM)Jiangsu Key Laboratory for Carbon-based Functional Materials and DevicesJoint International Research Laboratory of Carbon-Based Functional Materials and DevicesSoochow UniversitySuzhou215123China
| |
Collapse
|
2
|
Lu S, Zhu K, Hu X. Ab Initio Exploration of Energetically and Kinetically Favorable ORR Activity on a 1T-ZrO 2 Monolayer for a Nonaqueous Lithium-Oxygen Battery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13410-13418. [PMID: 35271770 DOI: 10.1021/acsami.2c01400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein, we explore the potential applications of the experimentally synthesized ZrO2 monolayer as the cathode catalyst for nonaqueous lithium-oxygen batteries. First, we show that a new peroxide-like adsorption geometry is the most stable configuration for LiO2, which is distinct from the previously known O-Li-O triangular geometry. The proposed most stable adsorption configuration is because the Zr atoms in the substrate play a critical role in stabilizing the LiO2 cluster. Second, our ab initio calculations indicate that both the ORR and OER catalytic activities are most likely to adopt the four-electron mechanism with a considerably low overpotential of only 0.44 and 0.76 V, respectively. Finally, we show that the adsorption energy of Li2O2 is a good descriptor for both ORR and OER catalytic activities, and weak Li2O2 adsorption behavior is positively related to low overpotentials and satisfactory catalytic performance.
Collapse
Affiliation(s)
- Shaohua Lu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Kai Zhu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaojun Hu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
3
|
Chen Z, Wu J, Chen Z, Yang H, Zou K, Zhao X, Liang R, Dong X, Menezes PW, Kang Z. Entropy Enhanced Perovskite Oxide Ceramic for Efficient Electrochemical Reduction of Oxygen to Hydrogen Peroxide. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ziliang Chen
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China
- Department of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin Straße des 17 Juni 135, Sekr. C2 10623 Berlin Germany
| | - Jie Wu
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China
| | - Zhengran Chen
- Key Laboratory of Inorganic Functional Materials and Devices Shanghai Institute of Ceramics Chinese Academy of Sciences 588 Heshuo Road, Jiading District Shanghai 201800 China
| | - Hongyuan Yang
- Department of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin Straße des 17 Juni 135, Sekr. C2 10623 Berlin Germany
| | - Kai Zou
- Key Laboratory of Inorganic Functional Materials and Devices Shanghai Institute of Ceramics Chinese Academy of Sciences 588 Heshuo Road, Jiading District Shanghai 201800 China
| | - Xiangyong Zhao
- Key Laboratory of Optoelectronic Material and Device Department of Physics Shanghai Normal University Shanghai 200234 China
| | - Ruihong Liang
- Key Laboratory of Inorganic Functional Materials and Devices Shanghai Institute of Ceramics Chinese Academy of Sciences 588 Heshuo Road, Jiading District Shanghai 201800 China
| | - Xianlin Dong
- Key Laboratory of Inorganic Functional Materials and Devices Shanghai Institute of Ceramics Chinese Academy of Sciences 588 Heshuo Road, Jiading District Shanghai 201800 China
| | - Prashanth W. Menezes
- Department of Chemistry: Metalorganics and Inorganic Materials Technische Universität Berlin Straße des 17 Juni 135, Sekr. C2 10623 Berlin Germany
- Material Chemistry Group for Thin Film Catalysis—CatLab Helmholtz-Zentrum Berlin für Materialien und Energie Albert-Einstein-Str. 15 12489 Berlin Germany
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices Joint International Research Laboratory of Carbon-Based Functional Materials and Devices Soochow University Suzhou 215123 China
| |
Collapse
|
4
|
Wang N, Ma S, Zuo P, Duan J, Hou B. Recent Progress of Electrochemical Production of Hydrogen Peroxide by Two-Electron Oxygen Reduction Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100076. [PMID: 34047062 PMCID: PMC8336511 DOI: 10.1002/advs.202100076] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/17/2021] [Indexed: 05/06/2023]
Abstract
Shifting electrochemical oxygen reduction reaction (ORR) via two-electron pathway becomes increasingly crucial as an alternative/green method for hydrogen peroxide (H2 O2 ) generation. Here, the development of 2e- ORR catalysts in recent years is reviewed, in aspects of reaction mechanism exploration, types of high-performance catalysts, factors to influence catalytic performance, and potential applications of 2e- ORR. Based on the previous theoretical and experimental studies, the underlying 2e- ORR catalytic mechanism is firstly unveiled, in aspect of reaction pathway, thermodynamic free energy diagram, limiting potential, and volcano plots. Then, various types of efficient catalysts for producing H2 O2 via 2e- ORR pathway are summarized. Additionally, the catalytic active sites and factors to influence catalysts' performance, such as electronic structure, carbon defect, functional groups (O, N, B, S, F etc.), synergistic effect, and others (pH, pore structure, steric hindrance effect, etc.) are discussed. The H2 O2 electrogeneration via 2e- ORR also has various potential applications in wastewater treatment, disinfection, organics degradation, and energy storage. Finally, potential future directions and prospects in 2e- ORR catalysts for electrochemically producing H2 O2 are examined. These insights may help develop highly active/selective 2e- ORR catalysts and shape the potential application of this electrochemical H2 O2 producing method.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Center for Ocean Mega‐ScienceChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Open Studio for Marine Corrosion and ProtectionPilot National Laboratory for Marine Science and Technology (Qingdao)1 Wenhai RoadQingdao266237China
| | - Shaobo Ma
- MITT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Pengjian Zuo
- MITT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageSchool of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Center for Ocean Mega‐ScienceChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Open Studio for Marine Corrosion and ProtectionPilot National Laboratory for Marine Science and Technology (Qingdao)1 Wenhai RoadQingdao266237China
| | - Baorong Hou
- Key Laboratory of Marine Environmental Corrosion and Bio‐FoulingInstitute of OceanologyChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Center for Ocean Mega‐ScienceChinese Academy of Sciences7 Nanhai RoadQingdao266071China
- Open Studio for Marine Corrosion and ProtectionPilot National Laboratory for Marine Science and Technology (Qingdao)1 Wenhai RoadQingdao266237China
| |
Collapse
|
5
|
Iron‐Containing Nitrogen‐Doped Carbon Nanomaterials Prepared via NaCl Template as Efficient Electrocatalysts for the Oxygen Reduction Reaction. ChemElectroChem 2021. [DOI: 10.1002/celc.202100571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
|
7
|
Feng Y, Li W, An J, Zhao Q, Wang X, Liu J, He W, Li N. Graphene family for hydrogen peroxide production in electrochemical system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144491. [PMID: 33736245 DOI: 10.1016/j.scitotenv.2020.144491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/15/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
The development of carbon-based materials to catalyze two-electron (2e-) pathway of oxygen reduction reaction (ORR) offers great potential for hydrogen peroxide (H2O2) production. As a class of novel two-dimensional (2D) carbon materials, graphene and its derivatives have raised increasing attention as excellent noble-metal-free catalysts in 2e ORR due to their unique structure, physical and chemical properties. This review focuses on the synthesis of main graphene family members and graphene based electrodes, as well as their applications for H2O2 generation in electrochemical systems. We describe the functions of the graphene family in electrochemical systems, such as accelerating electron transfer and increasing oxygen transfer for cathodes in electrochemical systems, aiming to reveal the enhancement mechanisms of graphene and its derivatives on H2O2 production. Furthermore, the challenges and prospects for graphene family used as catalyst for H2O2 production in the future are also proposed.
Collapse
Affiliation(s)
- Yujie Feng
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, China
| | - Wen Li
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jingkun An
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Qian Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Xin Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China
| | - Jia Liu
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Weihua He
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Nan Li
- School of Environmental Science and Engineering, Academy of Environment and Ecology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China.
| |
Collapse
|
8
|
Zou SJ, Ding BH, Chen YF, Fan HT. Nanocomposites of graphene and zirconia for adsorption of organic-arsenic drugs: Performances comparison and analysis of adsorption behavior. ENVIRONMENTAL RESEARCH 2021; 195:110752. [PMID: 33485908 DOI: 10.1016/j.envres.2021.110752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/28/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
3-Nitro-4-hydroxy-phenylarsonic acid (3-NHPAA), an organic-arsenic compound, as one of widely used antibacterial veterinary drug, has greatly attracted the attention due to its potential threats on ecological environment. A series of the nanocomposites of zirconia nanoparticles with crystal phases (pure monoclinic, pure tetragonal and mixed phase (monoclinic + tetragonal)) anchored on reduced graphene oxide were produced through managing the concentration of triethanolamine solution and the reaction time. The effects of the crystal phases of the zirconia in the structure of the nanocomposites were played a key role in the adsorption performances of the 3-NHPAA. Experiment data identified the nanocomposites with monoclinic phase of zirconia excelled at the adsorption of the 3-NHPAA with a higher adsorption capacity up to 207.2 mg g-1. The uptake of the 3-NHPAA by the three nanocomposites was implemented within 60 min and highly pH-dependent which illustrated electrostatic attraction between them as a main mechanism during the adsorption process. A wider pH range (3.8-8.8) for the uptake of the 3-NHPAA by the nanocomposites with the monoclinic phase of zirconia was obtained compared with the nanocomposites containing tetragonal phase (3.8-5.9) or the mixed phase (3.8-7.1) of zirconia. The adsorption of the 3-NHPAA was well described by the pseudo-second order kinetic and Langmuir equations. The thermodynamic parameters suggested that the adsorption of the 3-NHPAA over the three nanocomposites was endothermic and spontaneous in nature. In summary, the nanocomposites of reduced graphene oxide and monoclinic phase of zirconia nanoparticles as an adsorbent were better to the adsorption of the 3-NHPAA.
Collapse
Affiliation(s)
- Shan-Juan Zou
- College of Petrochemical Engineering, Liaoning Shihua University, Fushun, 113001, China
| | - Bao-Hong Ding
- College of Petrochemical Engineering, Liaoning Shihua University, Fushun, 113001, China
| | - Ying-Fan Chen
- College of Petrochemical Engineering, Liaoning Shihua University, Fushun, 113001, China
| | - Hong-Tao Fan
- College of Petrochemical Engineering, Liaoning Shihua University, Fushun, 113001, China.
| |
Collapse
|