1
|
Chen X, Li Y, Chen L, Tu J, Pan J, Zeng X, Fu Y, Sun D. Label-free electrochemiluminescence aptasensor for rapid and accurate detection of cardiac troponin I. Talanta 2025; 294:128160. [PMID: 40273715 DOI: 10.1016/j.talanta.2025.128160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/06/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
Acute myocardial infarction (AMI) is the most common cause of death in individuals with cardiovascular disease. Cardiac troponin I (cTnI) is acknowledged as the most prominent biomarker for AMI. However, the key problem of practical applications is how to effectively improve the detection speed and sensitivity. In this study, we designed a novel electrochemiluminescence (ECL) aptasensor for the rapid and quantitative determination of cTnI. This sensor employs self-luminous europium-based metal-organic framework@CdS quantum dots (Eu-MOF@CdS QDs) as a signal probe. The Eu-MOF@CdS QDs can produce a robust cathodic ECL signal via a synergistic effect. Furthermore, a ferrocene-labeled aptamer was used as a quenching probe for quenching the ECL emission of the Eu-MOF@CdS QDs. In the presence of cTnI, the ECL intensity increased with increasing cTnI concentration after ferrocene-labeled aptamer specifically recognized cTnI and was detached from the electrode interface. Under optimal conditions, the aptasensor demonstrated precise analytical capabilities for cTnI ranging from 1.0 pg/mL to 1.0 ng/mL with a notably low detection limit of 0.08 pg/mL within 60 min. The results show that the developed ECL sensing device demonstrates the potential applications and perspectives for the detection of cTnI in serum samples as well as in the field of biomedical analyses.
Collapse
Affiliation(s)
- Xilin Chen
- Internal Medicine-Cardiovascular Department, Foshan Sanshui District People's Hospital, Foshan, 528100, Guangdong, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Yanli Li
- Internal Medicine-Cardiovascular Department, Foshan Sanshui District People's Hospital, Foshan, 528100, Guangdong, China
| | - Ling Chen
- Internal Medicine-Cardiovascular Department, Foshan Sanshui District People's Hospital, Foshan, 528100, Guangdong, China
| | - Junrong Tu
- Internal Medicine-Cardiovascular Department, Foshan Sanshui District People's Hospital, Foshan, 528100, Guangdong, China
| | - Jianbin Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Xiaoru Zeng
- Internal Medicine-Cardiovascular Department, Foshan Sanshui District People's Hospital, Foshan, 528100, Guangdong, China.
| | - Yu Fu
- Department of Pharmacy, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, Guangdong, China.
| | - Duanping Sun
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
2
|
Lin Y, Luo P, Luo F, Lin C, Wang J, Qiu B, Lin Z, Chen J. High-Sensitivity Homogeneous Detection of miRNA-155 Governed by DNA Walker-Regulated Surface DNA Density of Magnetic Electrochemiluminescence Nanoparticles. Anal Chem 2024; 96:13710-13718. [PMID: 39115804 DOI: 10.1021/acs.analchem.4c02848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Homogeneous electrochemiluminescence (ECL) has gained attention for its simplicity and stability. However, false positives due to solution background interference pose a challenge. To address this, magnetic ECL nanoparticles (Fe3O4@Ru@SiO2 NPs) were synthesized, offering easy modification, magnetic separation, and stable luminescence. These were utilized in an ECL sensor for miRNA-155 (miR-155) detection, with locked DNAzyme and substrate chain (mDNA) modified on their surface. The poor conductivity of long-chain DNA significantly impacts the conductivity and electron transfer capability of Fe3O4@Ru@SiO2 NPs, resulting in weaker ECL signals. Upon target presence, unlocked DNAzyme catalyzes mDNA cleavage, leading to shortened DNA chains and reduced density. In contrast, the presence of short-chain DNA has minimal impact on the conductivity and electron transfer capability of Fe3O4@Ru@SiO2 NPs. Simultaneously, the material surface's electronegativity decreases, weakening the electrostatic repulsion with the negatively charged electrode, resulting in the system detecting stronger ECL signals. This sensor enables homogeneous ECL detection while mitigating solution background interference through magnetic separation. Within a range of 100 fM to 10 nM, the sensor exhibits a linear relationship between ECL intensity and target concentration, with a 26.91 fM detection limit. It demonstrates high accuracy in clinical sample detection, holding significant potential for clinical diagnostics. Future integration with innovative detection strategies may further enhance sensitivity and specificity in biosensing applications.
Collapse
Affiliation(s)
- Yue Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Peiqing Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Cuiying Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jian Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jinzhuan Chen
- Department of Anesthesiology, National Regional Medical Center, Binhai Hospital, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| |
Collapse
|
3
|
Giagu G, Fracassa A, Fiorani A, Villani E, Paolucci F, Valenti G, Zanut A. From theory to practice: understanding the challenges in the implementation of electrogenerated chemiluminescence for analytical applications. Mikrochim Acta 2024; 191:359. [PMID: 38819653 PMCID: PMC11143011 DOI: 10.1007/s00604-024-06413-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024]
Abstract
Electrogenerated chemiluminescence (ECL) stands out as a remarkable phenomenon of light emission at electrodes initiated by electrogenerated species in solution. Characterized by its exceptional sensitivity and minimal background optical signals, ECL finds applications across diverse domains, including biosensing, imaging, and various analytical applications. This review aims to serve as a comprehensive guide to the utilization of ECL in analytical applications. Beginning with a brief exposition on the theory at the basis of ECL generation, we elucidate the diverse systems employed to initiate ECL. Furthermore, we delineate the principal systems utilized for ECL generation in analytical contexts, elucidating both advantages and challenges inherent to their use. Additionally, we provide an overview of different electrode materials and novel ECL-based protocols tailored for analytical purposes, with a specific emphasis on biosensing applications.
Collapse
Affiliation(s)
- Gabriele Giagu
- Department of Chemistry Giacomo Ciamician, University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Alessandro Fracassa
- Department of Chemistry Giacomo Ciamician, University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Andrea Fiorani
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Elena Villani
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, 226-8502, Japan
| | - Francesco Paolucci
- Department of Chemistry Giacomo Ciamician, University of Bologna, via Selmi 2, Bologna, 40126, Italy
| | - Giovanni Valenti
- Department of Chemistry Giacomo Ciamician, University of Bologna, via Selmi 2, Bologna, 40126, Italy.
| | - Alessandra Zanut
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padua, 35131, Italy.
| |
Collapse
|
4
|
Zhu L, Tang Z, Zhang X, Zhu L, Meng T, Yu L, Xiao T, Lu S, Xiong X, Yang X. A sensitive "off-on" electrochemiluminescence DNA sensor based on signal cascade amplification circuit and distance-dependent energy transfer. Talanta 2024; 269:125464. [PMID: 38039672 DOI: 10.1016/j.talanta.2023.125464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/08/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
A sensitive "off-on" electrochemiluminescence (ECL) DNA sensor was constructed based on Exo III-assisted cascade amplification system. In the cascade amplification circuit, target DNA and Exo III cutting substrate were designed into an inverted T-shaped binding mode to form a stable DNA junction, thus effectively triggering Exo III digestion cycle. During the biosensor assembly process, ferrocene (Fc) and distance-dependent ECL resonance energy transfer (ECL-RET) and surface plasmon resonance (SPR) effects were introduced to regulate the ECL of semiconductor quantum dots (QDs). Carboxylated ZnCdSe/ZnS QDs were used as ECL signal probes and K2S2O8 was coreactant, and the initial cathodic ECL signal of QDs was efficiently quenched through electron and energy transfer with Fc and ECL-RET with Au NPs, leaving the system in "off" state. After the products of cascade amplification were introduced into the electrode surface, the single-stranded DNA modified with Fc was displaced, and the distance between Au NPs and QDs became farther, resulting in a transition from ECL-RET to SPR, and then a significant ECL signal boost was achieved, turning the system into "on" state. The combination of efficient cascade amplification system and sensitive "off-on" ECL signal change mode enabled the biosensing platform to detect target DNA with high selectivity (able to distinguish single-base mutated DNA) and ultra-high sensitivity (limit of detection was 31.67 aM, S/N = 3), providing a new perspective for designing highly sensitive and programmable ECL biosensors.
Collapse
Affiliation(s)
- Liping Zhu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China.
| | - Zeng Tang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Xuemei Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Li Zhu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Tian Meng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Linying Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Ting Xiao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Shasha Lu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaoli Xiong
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610066, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
| |
Collapse
|
5
|
O'Connor S, Dennany L, O'Reilly E. Evolution of nanomaterial Electrochemiluminescence luminophores towards biocompatible materials. Bioelectrochemistry 2023; 149:108286. [DOI: 10.1016/j.bioelechem.2022.108286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
|
6
|
O'Connor S, Al Hassan L, Brennan G, McCarthy K, Silien C, Liu N, Kennedy T, Ryan K, O'Reilly E. Cadmium Selenide Sulfide Quantum Dots with Tuneable Emission Profiles: An Electrochemiluminescence Platform for the Determination of TIMP-1 Protein. Bioelectrochemistry 2022; 148:108221. [DOI: 10.1016/j.bioelechem.2022.108221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/02/2022]
|
7
|
Zhao Y, Bouffier L, Xu G, Loget G, Sojic N. Electrochemiluminescence with semiconductor (nano)materials. Chem Sci 2022; 13:2528-2550. [PMID: 35356679 PMCID: PMC8890139 DOI: 10.1039/d1sc06987j] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Electrochemiluminescence (ECL) is the light production triggered by reactions at the electrode surface. Its intrinsic features based on a dual electrochemical/photophysical nature have made it an attractive and powerful method across diverse fields in applied and fundamental research. Herein, we review the combination of ECL with semiconductor (SC) materials presenting various typical dimensions and structures, which has opened new uses of ECL and offered exciting opportunities for (bio)sensing and imaging. In particular, we highlight this particularly rich domain at the interface between photoelectrochemistry, SC material chemistry and analytical chemistry. After an introduction to the ECL and SC fundamentals, we gather the recent advances with representative examples of new strategies to generate ECL in original configurations. Indeed, bulk SC can be used as electrode materials with unusual ECL properties or light-addressable systems. At the nanoscale, the SC nanocrystals or quantum dots (QDs) constitute excellent bright ECL nano-emitters with tuneable emission wavelengths and remarkable stability. Finally, the challenges and future prospects are discussed for the design of new detection strategies in (bio)analytical chemistry, light-addressable systems, imaging or infrared devices.
Collapse
Affiliation(s)
- Yiran Zhao
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR6226 Rennes F-35000 France
| | - Laurent Bouffier
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255 Pessac 33607 France
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun P. R. China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Gabriel Loget
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR6226 Rennes F-35000 France
| | - Neso Sojic
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255 Pessac 33607 France
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun P. R. China
- Department of Chemistry, South Ural State University Chelyabinsk 454080 Russian Federation
| |
Collapse
|
8
|
Hesari M, Ma H, Ding Z. Monitoring single Au 38 nanocluster reactions via electrochemiluminescence. Chem Sci 2021; 12:14540-14545. [PMID: 34881005 PMCID: PMC8580063 DOI: 10.1039/d1sc04018a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/07/2021] [Indexed: 11/21/2022] Open
Abstract
Herein, we report for the first time single Au38 nanocluster reaction events of highly efficient electrochemiluminescence (ECL) with tri-n-propylamine radicals as a reductive co-reactant at the surface of an ultramicroelectrode (UME). The statistical analyses of individual reactions confirm stochastic single ones influenced by the applied potential.
Collapse
Affiliation(s)
- Mahdi Hesari
- Department of Chemistry, The University of Western Ontario London Ontario N6A 5B7 Canada
| | - Hui Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Zhifeng Ding
- Department of Chemistry, The University of Western Ontario London Ontario N6A 5B7 Canada
| |
Collapse
|
9
|
Zhu L, Ye J, Yan M, Yu L, Peng Y, Huang J, Yang X. Sensitive and Programmable "Signal-Off" Electrochemiluminescence Sensing Platform Based on Cascade Amplification and Multiple Quenching Mechanisms. Anal Chem 2021; 93:2644-2651. [PMID: 33395267 DOI: 10.1021/acs.analchem.0c04839] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A versatile and sensitive quantum dot (QD)-based "signal-off" electrochemiluminescence (ECL) sensing system was constructed using target-initiated dual Mg2+-dependent DNAzyme (MNAzyme) recycling and catalytic hairpin assembly (CHA) amplification strategies. After the cascade amplification, numerous ferrocene-labeled Y-shaped DNA complexes generated on the QD-modified electrode surface. In the presence of hemin, moreover, the terminal sequence of the formed complex could assemble into hemin/G-quadruplex. Therefore, the highly efficient ECL quenching was achieved due to the multiple quenching mechanisms, including electron/energy transfer between ferrocene and QDs, the steric hindrance effects, and the horseradish peroxidase-mimicking activity of hemin/G-quadruplex. Furthermore, owing to the flexibility in regulating the recognition sequences of MNAzyme, the assaying targets can be programmed. Based on the cascade amplification and multiple ECL quenching mechanisms, the developed programmable "signal-off" ECL sensing platform demonstrates excellent sensitivity and the detection limits of 35.00 aM, 3.71 fM, and 0.28 pM (S/N = 3) for target DNA, aptamer substrate (ATP as a model), and ion (Ag+ as a model), respectively.
Collapse
Affiliation(s)
- Liping Zhu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jing Ye
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Mengxia Yan
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Linying Yu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Yao Peng
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jianshe Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xiurong Yang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
10
|
Zanut A, Palomba F, Rossi Scota M, Rebeccani S, Marcaccio M, Genovese D, Rampazzo E, Valenti G, Paolucci F, Prodi L. Dye‐Doped Silica Nanoparticles for Enhanced ECL‐Based Immunoassay Analytical Performance. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Alessandra Zanut
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
- Current address: Tandon School of Engineering New York University Brooklyn NY 11201 USA
| | - Francesco Palomba
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
- Current address: Department of Biomedical Engineering University of California Irvine Irvine CA 92697 USA
| | - Matilde Rossi Scota
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Sara Rebeccani
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Massimo Marcaccio
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Damiano Genovese
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Enrico Rampazzo
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Giovanni Valenti
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Francesco Paolucci
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Luca Prodi
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| |
Collapse
|
11
|
Zanut A, Palomba F, Rossi Scota M, Rebeccani S, Marcaccio M, Genovese D, Rampazzo E, Valenti G, Paolucci F, Prodi L. Dye‐Doped Silica Nanoparticles for Enhanced ECL‐Based Immunoassay Analytical Performance. Angew Chem Int Ed Engl 2020; 59:21858-21863. [DOI: 10.1002/anie.202009544] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/07/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Alessandra Zanut
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
- Current address: Tandon School of Engineering New York University Brooklyn NY 11201 USA
| | - Francesco Palomba
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
- Current address: Department of Biomedical Engineering University of California Irvine Irvine CA 92697 USA
| | - Matilde Rossi Scota
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Sara Rebeccani
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Massimo Marcaccio
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Damiano Genovese
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Enrico Rampazzo
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Giovanni Valenti
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Francesco Paolucci
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| | - Luca Prodi
- Department of Chemistry “Giacomo Ciamician” University of Bologna Bologna Italy
| |
Collapse
|
12
|
Zhu L, Ye J, Yan M, Zhu Q, Wang S, Huang J, Yang X. Electrochemiluminescence Immunosensor Based on Au Nanocluster and Hybridization Chain Reaction Signal Amplification for Ultrasensitive Detection of Cardiac Troponin I. ACS Sens 2019; 4:2778-2785. [PMID: 31571481 DOI: 10.1021/acssensors.9b01369] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Measurement of cardiac troponin I in the blood is crucial for the early diagnosis of acute myocardial infarction. Herein, a novel and ultrasensitive electrochemiluminescence (ECL) immunosensor has been developed for determination of cardiac troponin I (cTnI) by using Au nanoclusters and hybridization chain reaction (HCR) signal amplification. In this ECL immunosensor, Au nanoclusters were dual-labeled at each end of hairpin DNA (H1 and H2) and acted as the luminophore. DNA initiator strands (T1) and secondary antibody (Ab2) were conjugated on Au nanoparticles (AuNPs) to obtain a smart probe (Ab2-AuNP-T1). In the presence of target cTnI, the sandwiched immunocomplex composed of cTnI, Ab1, and Ab2-AuNP-T1 was formed. Then the initiator strands T1 of Ab2-AuNP-T1 opened the hairpin DNA structures and triggered a cascade of hybridization events. Consequently, a large number of Au NCs were indirectly modified on the surface of the electrode, which could react with the coreactant (K2S2O8) and emit a strong ECL signal. Under the optimal conditions, the immunosensor exhibited a wide detection range for cTnI from 5 fg/mL to 50 ng/mL and a low detection limit of 1.01 fg/mL (S/N = 3). Because of the excellent specificity, stability, and reproducibility of the proposed ECL-HCR sensor, it has a great application prospect for cTnI detection in clinical diagnosis.
Collapse
Affiliation(s)
- Liping Zhu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jing Ye
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Mengxia Yan
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Qiuju Zhu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shuang Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Jianshe Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xiurong Yang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
13
|
Danis AS, Metera KL, Payne NA, Sleiman HF, Mauzeroll J. Bottom‐Up Characterization and Self‐Assembly of Electrogenerated Chemiluminescence Active Ruthenium Nanospheres. ChemElectroChem 2019. [DOI: 10.1002/celc.201900702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andrew S. Danis
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal H3 A 0B8, QC Canada
| | - Kimberly L. Metera
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal, QC H3 A 0B8 Canada
| | - Nicholas A. Payne
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal H3 A 0B8, QC Canada
| | - Hanadi F. Sleiman
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal, QC H3 A 0B8 Canada
| | - Janine Mauzeroll
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montreal H3 A 0B8, QC Canada
| |
Collapse
|
14
|
Danis AS, Gordon JB, Potts KP, Stephens LI, Perry SC, Mauzeroll J. Simultaneous Electrochemical and Emission Monitoring of Electrogenerated Chemiluminescence through Instrument Hyphenation. Anal Chem 2019; 91:2312-2318. [PMID: 30618235 DOI: 10.1021/acs.analchem.8b04960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the long-standing challenges to performing electrogenerated chemiluminescence (ECL) research is the need for dedicated instrumentation or highly customized cells to achieve reproducibility. This manuscript describes an approach to designing ECL systems through the hyphenation of existing laboratory instruments, which provide innate time correlation of electrochemical and emission data. This design methodology lowers the entry barrier required to obtaining reproducible ECL measurements and provides flexibility in the scope of applications. Uniquely, the simplicity of this system's experimental interface, a spectrochemical quartz cuvette, readily enables collaboration with finite element modeling that simulates ECL occurring in the cuvette-based cell. This combination of empirical and simulation data allowed for the investigation of the intertwined kinetics behind the coreactant ECL mechanism of tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy)32+) and tripropylamine (TPA). The complexity of the system measurable via the hyphenation methodology was further scaled though the addition of tris[2-(4,6-difluorophenyl)pyridinato-C2, N] iridium(III) (Ir(dFppy)3) and the observation of real time multiplexing.
Collapse
Affiliation(s)
- Andrew S Danis
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal H3A 0B8 , Quebec , Canada
| | - Jesse B Gordon
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal H3A 0B8 , Quebec , Canada
| | - Karlie P Potts
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal H3A 0B8 , Quebec , Canada
| | - Lisa I Stephens
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal H3A 0B8 , Quebec , Canada
| | - Samuel C Perry
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal H3A 0B8 , Quebec , Canada
| | - Janine Mauzeroll
- Department of Chemistry , McGill University , 801 Sherbrooke Street West , Montreal H3A 0B8 , Quebec , Canada
| |
Collapse
|
15
|
Chen H, Liu X, Li W, Peng Y, Nie Z. Silver coordination complex amplified electrochemiluminescence sensor for sensitive detection of coenzyme A and histone acetyltransferase activity. Biosens Bioelectron 2018; 126:535-542. [PMID: 30481667 DOI: 10.1016/j.bios.2018.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/25/2018] [Accepted: 11/02/2018] [Indexed: 11/17/2022]
Abstract
A kind of coenzyme A (CoA)-silver coordination complex (CoA-Ag) was in-situ developed and verified to accelerate the electron transferring and electrochemical catalysis of H2O2 decomposition to enhance the cathode ECL intensity of CdTe@CdS QDs. Afterward, a convenient label-free signal-on ECL approach was constructed for CoA detection with excellent specificity. In addition, the unique ECL enhancing phenomenon was also proposed to assay the enzymatic activity of histone acetyltransferases (HAT) and screen relevant inhibitors, exhibiting a promising potential in the practical application of biochemical research, disease diagnosis and drug discovery.
Collapse
Affiliation(s)
- Hongjun Chen
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi 417000, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Xiu Liu
- Key Laboratory of Pesticide Harmless Application, Collaborative Innovation Center for Field Weeds Control (CICFWC) of Hunan Province, Hunan University of Humanities, Science and Technology, Loudi 417000, PR China
| | - Wang Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China; National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha 410004, PR China.
| | - Yan Peng
- College of Economics and Management, Hengyang Normal University, Hengyang 421008, PR China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
16
|
Oh H, Kim YM, Jeong U, Moon HC. Balancing the Concentrations of Redox Species to Improve Electrochemiluminescence by Tailoring the Symmetry of the AC Voltage. ChemElectroChem 2018. [DOI: 10.1002/celc.201800779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hwan Oh
- Department of Chemical Engineering; University of Seoul; Seoul 02504 Republic of Korea
| | - Yong Min Kim
- Department of Chemical Engineering; University of Seoul; Seoul 02504 Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering; Pohang University of Science and Technology; 77 Cheongam-Ro, Nam-gu Pohang 37673 Republic of Korea
| | - Hong Chul Moon
- Department of Chemical Engineering; University of Seoul; Seoul 02504 Republic of Korea
| |
Collapse
|
17
|
Valenti G, Rampazzo E, Kesarkar S, Genovese D, Fiorani A, Zanut A, Palomba F, Marcaccio M, Paolucci F, Prodi L. Electrogenerated chemiluminescence from metal complexes-based nanoparticles for highly sensitive sensors applications. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
García C, Navarro F, Celis F, Ruiz D, Toledo S, Sanhueza L, Quiñones A, Aguirre MJ. Electrochemical, spectroscopic and electrochemiluminescent characterization of self-assembled 3-aminopropyltriethoxysilane/CdTe quantum dots hybrids on screen-printed electrodes. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
19
|
Danis AS, Potts KP, Perry SC, Mauzeroll J. Combined Spectroelectrochemical and Simulated Insights into the Electrogenerated Chemiluminescence Coreactant Mechanism. Anal Chem 2018; 90:7377-7382. [PMID: 29756773 DOI: 10.1021/acs.analchem.8b00773] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Andrew S. Danis
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal H3A 0B8, Quebec Canada
| | - Karlie P. Potts
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal H3A 0B8, Quebec Canada
| | - Samuel C. Perry
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal H3A 0B8, Quebec Canada
| | - Janine Mauzeroll
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal H3A 0B8, Quebec Canada
| |
Collapse
|
20
|
Electrogenerated chemiluminescence from the monomer of a tetradentate chelate Pt(II) compound. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Liu X, Jiang H. Construction and Potential Applications of Biosensors for Proteins in Clinical Laboratory Diagnosis. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2805. [PMID: 29207528 PMCID: PMC5750678 DOI: 10.3390/s17122805] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/20/2017] [Accepted: 11/30/2017] [Indexed: 12/11/2022]
Abstract
Biosensors for proteins have shown attractive advantages compared to traditional techniques in clinical laboratory diagnosis. In virtue of modern fabrication modes and detection techniques, various immunosensing platforms have been reported on basis of the specific recognition between antigen-antibody pairs. In addition to profit from the development of nanotechnology and molecular biology, diverse fabrication and signal amplification strategies have been designed for detection of protein antigens, which has led to great achievements in fast quantitative and simultaneous testing with extremely high sensitivity and specificity. Besides antigens, determination of antibodies also possesses great significance for clinical laboratory diagnosis. In this review, we will categorize recent immunosensors for proteins by different detection techniques. The basic conception of detection techniques, sensing mechanisms, and the relevant signal amplification strategies are introduced. Since antibodies and antigens have an equal position to each other in immunosensing, all biosensing strategies for antigens can be extended to antibodies under appropriate optimizations. Biosensors for antibodies are summarized, focusing on potential applications in clinical laboratory diagnosis, such as a series of biomarkers for infectious diseases and autoimmune diseases, and an evaluation of vaccine immunity. The excellent performances of these biosensors provide a prospective space for future antibody-detection-based disease serodiagnosis.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Southeast University, Nanjing 210003, China.
| | - Hui Jiang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
22
|
JIANG H, WANG XM. Progress of Metal Nanoclusters-based Electrochemiluminescent Analysis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)61054-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|