1
|
Liu Z, Kong Z, Cui S, Liu L, Wang F, Wang Y, Wang S, Zang SQ. Electrocatalytic Mechanism of Defect in Spinels for Water and Organics Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302216. [PMID: 37259266 DOI: 10.1002/smll.202302216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/07/2023] [Indexed: 06/02/2023]
Abstract
Spinels display promising electrocatalytic ability for oxygen evolution reaction (OER) and organics oxidation reaction because of flexible structure, tunable component, and multifold valence. Unfortunately, limited exposure of active sites, poor electronic conductivity, and low intrinsic ability make the electrocatalytic performance of spinels unsatisfactory. Defect engineering is an effective method to enhance the intrinsic ability of electrocatalysts. Herein, the recent advances in defect spinels for OER and organics electrooxidation are reviewed. The defect types that exist in spinels are first introduced. Then the catalytic mechanism and dynamic evolution of defect spinels during the electrochemical process are summarized in detail. Finally, the challenges of defect spinel electrocatalysts are brought up. This review aims to deepen the understanding about the role and evolution of defects in spinel for electrochemical water/organics oxidation and provide a significant reference for the design of efficient defect spinel electrocatalysts.
Collapse
Affiliation(s)
- Zhijuan Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhijie Kong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Shasha Cui
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Luyu Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Fen Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yanyong Wang
- State Key Laboratory of Chem/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
2
|
Chandrasekharan Meenu P, Roy S. Electro-oxidation Reaction of Methanol over Reducible Ce 1-x-yNi xSr yO 2-δ: A Mechanistic Probe of Participation of Lattice Oxygen. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37471142 DOI: 10.1021/acsami.3c05262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Methanol oxidation reaction crucially depends on the formation of -OOH species over the catalyst's surface. Ni-based catalysts are by far the choice of materials, where the redox couple of Ni2+/Ni3+ facilitates the formation of -OOH species by surface reconstructions. However, it is challenging to oxidize Ni2+ as it generates charge-transfer orbitals near the Fermi energy level. One possible solution is to substitute Ni2+ with a reducible oxide support, which will not only facilitate the Ni2+ → Ni3+ oxidation but also adsorb oxygenated species like -OOH at a lower potential owing to its oxophilicity. This work shows with the help of structural and surface studies that the reducible CeO2 support in Ni and Sr co-doped Ce1-x-yNixSryO2-δ solid solution can easily facilitate Ni2+ → Ni3+ oxidation as well as evolution of lattice oxygen during the methanol oxidation reaction. While the Ni3+ species helped in formation of -OOH surface intermediates, the evolved lattice oxygen eased the CO oxidation process in order to bring out the better CO-tolerant methanol oxidation activity over Ce1-x-yNixSryO2-δ. The study shows the unique importance of the electronic interactions between the active site and support and involvement of lattice oxygen in the methanol oxidation reaction.
Collapse
Affiliation(s)
- Preetha Chandrasekharan Meenu
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - Sounak Roy
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
- Materials Center for Sustainable Energy & Environment, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Hyderabad 500078, India
| |
Collapse
|
3
|
Yang M, Liu Y, Ge W, Liu Z. Enhanced electrocatalytic activity of sulfur and tungsten co-doped nickel hydroxide nanosheets for urea oxidation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Advanced LDH-MOF Derived Bimetallic NiCoP Electrocatalyst for Methanol Oxidation Reaction. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Viswanathan C, Ponpandian N. NiCo 2O 4 nanoparticles inlaid on sulphur and nitrogen doped and co-doped rGO sheets as efficient electrocatalysts for the oxygen evolution and methanol oxidation reactions. NANOSCALE ADVANCES 2021; 3:3216-3231. [PMID: 36133652 PMCID: PMC9417605 DOI: 10.1039/d1na00135c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/26/2021] [Accepted: 03/28/2021] [Indexed: 05/06/2023]
Abstract
The present work depicts the fabrication of NiCo2O4 decorated on rGO, and doped and co-doped rGO and its electrocatalytic activity towards the oxygen evolution reaction and methanol oxidation reaction. The NiCo2O4 catalyst with S-doped rGO outperformed the other catalysts, indicating that the sulphur atoms attached on rGO possess low oxophilicity and optimum free energy. This results in facile adsorption of the intermediate products formed during the OER and a rapid release of O2 molecules. The same catalyst requires an overpotential of 1.51 V vs. RHE to attain the benchmark current density value of 10 mA cm-2 and shows a Tafel slope of 57 mV dec-1. It also reveals outstanding stability during its operation for 10 h with a minimum loss in potential. On the other hand, NiCo2O4/S,N-rGO reveals superior activity with high efficiency and stability in catalyzing methanol oxidation. The catalyst delivered a low onset potential of 0.12 V vs. Hg/HgO and high current density of 203.4 mA cm-2 after addition of 0.5 M methanol, revealing the outstanding performance of the electrocatalyst.
Collapse
Affiliation(s)
- C Viswanathan
- Department of Nanoscience and Technology, Bharathiar University Coimbatore-641046 India +91-422-2422-387 +91-422-2428-421
| | - N Ponpandian
- Department of Nanoscience and Technology, Bharathiar University Coimbatore-641046 India +91-422-2422-387 +91-422-2428-421
| |
Collapse
|
6
|
Meenu PC, Datta SP, Singh SA, Dinda S, Chakraborty C, Roy S. A compendium on metal organic framework materials and their derivatives as electrocatalyst for methanol oxidation reaction. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Li L, Feng Y, Qiu Y, Li Y, Wu K, Zhu L. A three-dimensional bimetallic oxide NiCo2O4 derived from ZIF-67 with a cage-like morphology as an electrochemical platform for Hg2+ detection. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104762] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Fang Y, Qi J, Wang F, Hao Y, Zhu J, Zhang P. Highly Durable Passive Direct Methanol Fuel Cell with Three‐Dimensional Ordered Porous NiCo
2
O
4
as Cathode Catalyst. ChemElectroChem 2020. [DOI: 10.1002/celc.202000357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yuan Fang
- School of Materials Science and Engineering Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials Shaanxi University of Science and Technology Xi'an 710021 P.R. China
| | - Ji Qi
- School of Materials Science and Engineering Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials Shaanxi University of Science and Technology Xi'an 710021 P.R. China
| | - Fen Wang
- School of Materials Science and Engineering Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials Shaanxi University of Science and Technology Xi'an 710021 P.R. China
| | - Yaorui Hao
- School of Materials Science and Engineering Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials Shaanxi University of Science and Technology Xi'an 710021 P.R. China
| | - Jianfeng Zhu
- School of Materials Science and Engineering Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials Shaanxi University of Science and Technology Xi'an 710021 P.R. China
| | - Pei Zhang
- School of Materials Science and Engineering Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials Shaanxi University of Science and Technology Xi'an 710021 P.R. China
| |
Collapse
|
9
|
Barman SC, Zahed MA, Sharifuzzaman M, Kim J, Xuan X, Nah JS, Park S, Park JY. Carbon‐Free Nanocoral‐Structured Platinum Electrocatalyst for Enhanced Methanol Oxidation Reaction Activity with Superior Poison Tolerance. ChemElectroChem 2020. [DOI: 10.1002/celc.201901988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sharat Chandra Barman
- Department of Electronic Engineering Micro/Nano Devices & Packaging LabKwangwoon University 447-1 Seoul Republic of Korea
| | - Md. Abu Zahed
- Department of Electronic Engineering Micro/Nano Devices & Packaging LabKwangwoon University 447-1 Seoul Republic of Korea
| | - Md. Sharifuzzaman
- Department of Electronic Engineering Micro/Nano Devices & Packaging LabKwangwoon University 447-1 Seoul Republic of Korea
| | - Jiyoung Kim
- Department of Electronic Engineering Micro/Nano Devices & Packaging LabKwangwoon University 447-1 Seoul Republic of Korea
| | - Xing Xuan
- Department of Electronic Engineering Micro/Nano Devices & Packaging LabKwangwoon University 447-1 Seoul Republic of Korea
| | - Joong San Nah
- Department of Electronic Engineering Micro/Nano Devices & Packaging LabKwangwoon University 447-1 Seoul Republic of Korea
| | - Sehkyu Park
- Department of Chemical EngineeringKwangwoon University 447-1 Seoul Republic of Korea
| | - Jae Yeong Park
- Department of Electronic Engineering Micro/Nano Devices & Packaging LabKwangwoon University 447-1 Seoul Republic of Korea
| |
Collapse
|
10
|
Faid AY, Ismail H. Highly Active and Easily Fabricated NiCo
2
O
4
Nanoflowers for Enhanced Methanol Oxidation. ChemistrySelect 2019. [DOI: 10.1002/slct.201901580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Alaa Y. Faid
- Department of Materials Science and EngineeringNorwegian University of Science and Technology Trondheim Norway
| | | |
Collapse
|
11
|
Fluorine-doped nickel cobalt oxide spinel as efficiently bifunctional catalyst for overall water splitting. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|