1
|
Conde A, Voces D, Medel-Plaza M, Perales C, de Ávila AI, Aguilera-Correa JJ, de Damborenea JJ, Esteban J, Domingo E, Arenas MA. Fluoride anodic films on stainless-steel fomites to reduce transmission infections. Appl Environ Microbiol 2024; 90:e0189223. [PMID: 38289132 PMCID: PMC10880592 DOI: 10.1128/aem.01892-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/05/2024] [Indexed: 02/22/2024] Open
Abstract
The growing concern arising from viruses with pandemic potential and multi-resistant bacteria responsible for hospital-acquired infections and outbreaks of food poisoning has led to an increased awareness of indirect contact transmission. This has resulted in a renewed interest to confer antimicrobial properties to commonly used metallic materials. The present work provides a full characterization of optimized fluoride anodic films grown in stainless steel 304L as well as their antimicrobial properties. Antibacterial tests show that the anodic film, composed mainly of chromium and iron fluorides, reduces the count and the percentage of the area covered by 50% and 87.7% for Pseudomonas aeruginosa and Stenotrophomonas maltophilia, respectively. Virologic tests show that the same treatment reduces the infectivity of the coronavirus HCoV-229E-GFP, in comparison with the non-anodized stainless steel 304L.IMPORTANCEThe importance of environmental surfaces as a source of infection is a topic of particular interest today, as many microorganisms can survive on these surfaces and infect humans through direct contact. Modification of these surfaces by anodizing has been shown to be useful for some alloys of medical interest. This work evaluates the effect of anodizing on stainless steel, a metal widely used in a variety of applications. According to the study, the fluoride anodic layers reduce the colonization of the surfaces by both bacteria and viruses, thus reducing the risk of acquiring infections from these sources.
Collapse
Affiliation(s)
- Ana Conde
- Centro Nacional de Investigaciones Metalúrgicas, CENIM-CSIC, Madrid, Spain
- CIBERINFEC, CENTRO DE INVESTIGACIÓN BIOMEDICA EN RED Enfermedades Infecciosas, Madrid, Spain
| | - Daniel Voces
- Centro Nacional de Investigaciones Metalúrgicas, CENIM-CSIC, Madrid, Spain
| | | | - Celia Perales
- IIS-Fundación Jiménez Díaz, IIS-FJD, Madrid, Spain
- Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
- CIBEREHD, CENTRO DE INVESTIGACIÓN BIOMEDICA EN RED Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Ana Isabel de Ávila
- CIBEREHD, CENTRO DE INVESTIGACIÓN BIOMEDICA EN RED Enfermedades Hepáticas y Digestivas, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CBMSO) (CSIC-UAM), Madrid, Spain
| | - John Jairo Aguilera-Correa
- CIBERINFEC, CENTRO DE INVESTIGACIÓN BIOMEDICA EN RED Enfermedades Infecciosas, Madrid, Spain
- Pathogénie mycobactérienne et nouvelles cibles thérapeutiques, Institut de Recherche en Infectiologie de Montpellier, Montpellier, France
| | - Juan Jose de Damborenea
- Centro Nacional de Investigaciones Metalúrgicas, CENIM-CSIC, Madrid, Spain
- CIBERINFEC, CENTRO DE INVESTIGACIÓN BIOMEDICA EN RED Enfermedades Infecciosas, Madrid, Spain
| | - Jaime Esteban
- CIBERINFEC, CENTRO DE INVESTIGACIÓN BIOMEDICA EN RED Enfermedades Infecciosas, Madrid, Spain
- IIS-Fundación Jiménez Díaz, IIS-FJD, Madrid, Spain
| | - Esteban Domingo
- CIBEREHD, CENTRO DE INVESTIGACIÓN BIOMEDICA EN RED Enfermedades Hepáticas y Digestivas, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Maria Angeles Arenas
- Centro Nacional de Investigaciones Metalúrgicas, CENIM-CSIC, Madrid, Spain
- CIBERINFEC, CENTRO DE INVESTIGACIÓN BIOMEDICA EN RED Enfermedades Infecciosas, Madrid, Spain
| |
Collapse
|
2
|
Fadillah L, Kowalski D, Vincent M, Zhu C, Kitano S, Aoki Y, Habazaki H. Lithiation of Anodic Magnetite-Hematite Nanotubes Formed on Iron. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37931031 DOI: 10.1021/acsami.3c12233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Electrochemically active iron oxide nanotubes formed by anodization are of high interest as battery components in various battery systems due to their 1D geometry, offering high volume expansion tolerance and applications without the use of binders and conductive additives. This work takes a step forward toward understanding lithium-ion storage in 1D nanotubes through the analysis of differential capacity plots d(Q - Q0)·dE-1 supported by in situ Raman spectroscopy observations. The iron oxide nanotubes were synthesized by anodizing polycrystalline iron and subsequently modified by thermal treatment in order to control the degree of crystallinity and the ratio of hematite (Fe2O3) to magnetite (Fe3O4). The electrochemical fingerprints revealed a quasi-reversible lithiation/delithiation process through Li2O formation. Significant improvement in electrochemical performance was found to be related to the high degree of crystallinity and the increase of the hematite (Fe2O3) to magnetite (Fe3O4) ratio. In situ mechanistic studies revealed a reversible reduction of iron oxide to metallic iron simultaneously with Li2O formation.
Collapse
Affiliation(s)
- Laras Fadillah
- Faculty of Engineering, Hokkaido University, Kita-Ku Kita 13, Jo Nishi 8, Sapporo 060-8628, Hokkaido, Japan
| | - Damian Kowalski
- Faculty of Engineering, Hokkaido University, Kita-Ku Kita 13, Jo Nishi 8, Sapporo 060-8628, Hokkaido, Japan
- Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, Warsaw 02-089, Poland
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Mewin Vincent
- Faculty of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Chunyu Zhu
- School of Low-carbon Energy and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Sho Kitano
- Faculty of Engineering, Hokkaido University, Kita-Ku Kita 13, Jo Nishi 8, Sapporo 060-8628, Hokkaido, Japan
| | - Yoshitaka Aoki
- Faculty of Engineering, Hokkaido University, Kita-Ku Kita 13, Jo Nishi 8, Sapporo 060-8628, Hokkaido, Japan
| | - Hiroki Habazaki
- Faculty of Engineering, Hokkaido University, Kita-Ku Kita 13, Jo Nishi 8, Sapporo 060-8628, Hokkaido, Japan
| |
Collapse
|
3
|
Fadillah L, Kowalski D, Kitano S, Zhu C, Aoki Y, Habazaki H. Highly enhanced photocatalytic activity of nanotubular Fe2O3/Fe2WO6 nanocomposite film formed by anodizing FeW alloy. Electrochem commun 2023. [DOI: 10.1016/j.elecom.2023.107460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
4
|
The role of mild and hard anodization regimes of iron oxide nanotubes in the photoelectrochemical performance. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
5
|
Nishimoto M, Xiong Z, Kitano S, Aoki Y, Habazaki H. The effect of anodizing temperature on the oxygen evolution reaction activity of anodized FeNiCo alloy in alkaline electrolyte. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Brudzisz AM, Giziński D, Stępniowski WJ. Incorporation of Ions into Nanostructured Anodic Oxides-Mechanism and Functionalities. Molecules 2021; 26:molecules26216378. [PMID: 34770787 PMCID: PMC8587705 DOI: 10.3390/molecules26216378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Anodic oxidation of metals leads to the formation of ordered nanoporous or nanotubular oxide layers that contribute to numerous existing and emerging applications. However, there are still numerous fundamental aspects of anodizing that have to be well understood and require deeper understanding. Anodization of metals is accompanied by the inevitable phenomenon of anion incorporation, which is discussed in detail in this review. Additionally, the influence of anion incorporation into anodic alumina and its impact on various properties is elaborated. The literature reports on the impact of the incorporated electrolyte anions on photoluminescence, galvanoluminescence and refractive index of anodic alumina are analyzed. Additionally, the influence of the type and amount of the incorporated anions on the chemical properties of anodic alumina, based on the literature data, was also shown to be important. The role of fluoride anions in d-electronic metal anodizing is shown to be important in the formation of nanostructured morphology. Additionally, the impact of incorporated anionic species, such as ruthenites, and their influence on anodic oxides formation, such as titania, reveals how the phenomenon of anion incorporation can be beneficial.
Collapse
|
7
|
Compositional variations in anodic nanotubes/nanopores formed on Fe 100, 110 and 111 single crystals. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Sepúlveda M, Castaño J, Echeverría F, Aoki Y, Kowalski D, Habazaki H. Formation of quasi-spherical Au48-198 clusters in anodic titania nanotubes grown on Ti-Au alloys. Electrochem commun 2020. [DOI: 10.1016/j.elecom.2020.106847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Guo Z, Zhang H, Ma X, Zhou X, Liang D, Mao J, Yu J, Wang G, Huang T. Photoelectrochemical Catalysis of Fluorine‐Doped Amorphous TiO
2
Nanotube Array for Water Splitting. ChemistrySelect 2020. [DOI: 10.1002/slct.202002516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhongqin Guo
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical MaterialsSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan Shandong 250022 China
| | - Haizhou Zhang
- Department of Cardiac SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical University No.324 Jingwu Road Jinan Shandong 250021 China
| | - Xiaochun Ma
- Department of Cardiac SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical University No.324 Jingwu Road Jinan Shandong 250021 China
| | - Xiaoming Zhou
- Department of Cardiac SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical University No.324 Jingwu Road Jinan Shandong 250021 China
| | - Dong Liang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical MaterialsSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan Shandong 250022 China
| | - Jianfeng Mao
- Institute for Superconducting & Electronic MaterialsUniversity of Wollongong NSW 2500 Australia
| | - Jiemei Yu
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical MaterialsSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan Shandong 250022 China
| | - Gang Wang
- Research and Development Center for Graphene/Polymer CompositesShandongLutai Holding Group Co.Ltd. Jining Shandong 272000 China
| | - Taizhong Huang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical MaterialsSchool of Chemistry and Chemical EngineeringUniversity of Jinan Jinan Shandong 250022 China
| |
Collapse
|
10
|
Fadillah L, Takase K, Kobayashi H, Turczyniak-Surdacka S, Strawski M, Kowalski D, Zhu C, Aoki Y, Habazaki H. The role of tungsten species in the transition of anodic nanopores to nanotubes formed on iron alloyed with tungsten. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|