1
|
Thongam DD, Hang DR, Liang CT, Chou MMC. Doping and defect engineering in carbon-based electrocatalysts for enhanced electrochemical CO 2 reduction: From 0D to 3D materials. Adv Colloid Interface Sci 2025; 339:103429. [PMID: 39951901 DOI: 10.1016/j.cis.2025.103429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 12/16/2024] [Accepted: 02/01/2025] [Indexed: 02/17/2025]
Abstract
The increasing atmospheric CO2 levels and the urgent need for sustainable energy solutions have driven research into electrochemical CO2 reduction. Carbon-based materials have received significant attention for their potential as electrocatalysts, yet their inert nature often limits their performance. Defect engineering and heteroatom doping have emerged as transformative approaches to overcome these limitations, enhancing both catalytic activity and Faradaic efficiency. This review systematically examines the role of these strategies across diverse carbon materials, including graphene, carbon nanotubes, carbon dots, and boron-doped diamond. Special attention is given to the incorporation of heteroatoms, such as nitrogen and boron, and the modulation of defect structures to optimize CO2 reduction pathways. By exploring the interplay between dopant type, defect density, and material dimensionality, we provide a comprehensive understanding of how tailored carbon-based electrocatalysts can drive advancements in sustainable electrochemical CO2 conversion. This work underscores the potential of defect-engineered and doped carbon materials to revolutionize the field of electrocatalysis, paving the way for innovative solutions to environmental and energy challenges.
Collapse
Affiliation(s)
- Debika Devi Thongam
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; School of Energy Sciences and Engineering, Indian Institute of Technology Guwahati, Assam 781039, India; Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Da-Ren Hang
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Chi-Te Liang
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan; Taiwan Consortium of Emergent Crystalline Materials, Taipei 10617, Taiwan; Center for Quantum Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.
| | - Mitch M C Chou
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
2
|
El-Nowihy GH. Tailor-designed nanoparticle-based PdNiSn catalyst as a potential anode for glycerol fuel cells. Sci Rep 2023; 13:13244. [PMID: 37582833 PMCID: PMC10427691 DOI: 10.1038/s41598-023-40374-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/09/2023] [Indexed: 08/17/2023] Open
Abstract
In order to effectively use glycerol as a fuel in direct glycerol fuel cells, a catalyst that can break the C-C bond and enhance the electro-oxidation of glycerol to CO2 is necessary. In this particular investigation, a palladium-nickel-tin nanocomposite electrodeposited on a glassy carbon electrode (PdNiSn/GC) exhibited excellent activity towards the electro-oxidation of glycerol, thanks to the synergistic effect of the catalyst composition. The PdNiSn/GC surface generated a peak current (Ip) that was 2.5 times higher than that obtained at a Pd/GC electrode, with a cathodic shift in the onset potential (Eonset) of approximately 300 mV. Additionally, the current obtained at the PdNiSn/GC surface remained stable during continuous electrolysis. Capacitance measurements were used to interpret the results of the electrocatalytic activity, and high-performance liquid chromatography indicated that the products of the glycerol electro-oxidation reaction were oxalic acid and formic acid, which were subsequently oxidized to CO2, as revealed by the charge calculations. The results depict that the synergy between Pd, β-Ni(OH)2, and SnO2 is crucial for boosting GEOR through enhancing the C-C bond cleavage and completely oxidize the reaction intermediates to CO2.
Collapse
Affiliation(s)
- Ghada H El-Nowihy
- Chemical Engineering Department, Faculty of Engineering, The British University in Egypt, Cairo, 11837, Egypt.
| |
Collapse
|
3
|
Liu J, Li P, Bi J, Zhu Q, Han B. Design and Preparation of Electrocatalysts by Electrodeposition for CO
2
Reduction. Chemistry 2022; 28:e202200242. [DOI: 10.1002/chem.202200242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 02/05/2023]
Affiliation(s)
- Jiyuan Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Colloid and Interface and Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Pengsong Li
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Colloid and Interface and Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jiahui Bi
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Colloid and Interface and Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Colloid and Interface and Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Colloid and Interface and Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
4
|
EINAGA Y. Application of Boron-doped Diamond Electrodes: Focusing on the Electrochemical Reduction of Carbon Dioxide. ELECTROCHEMISTRY 2022. [DOI: 10.5796/electrochemistry.22-00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
5
|
Jiwanti PK, Sultana S, Wicaksono WP, Einaga Y. Metal modified carbon-based electrode for CO2 electrochemical reduction: A review. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Jiwanti PK, Einaga Y. Further Study of CO 2 Electrochemical Reduction on Palladium Modified BDD Electrode: Influence of Electrolyte. Chem Asian J 2020; 15:910-914. [PMID: 32027090 DOI: 10.1002/asia.201901669] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/21/2020] [Indexed: 11/11/2022]
Abstract
The study of CO2 electrochemical reduction to useful compounds using bare or modified BDD electrode attracts numerous attentions. Meanwhile, the efficiency of products obtained from CO2 electrochemical reduction is known to be determined by the electrode material and the electrolyte. Formic acid as main product and CO as a minor product, have also been known on the CO2 reduction using BDD electrode. Recently, we reported the successful improvement of CO production from the reduction of CO2 by decorating the surface of BDD electrode with palladium particles. Following this, herein, we present further investigation on electrolyte dependence, including cation and anion dependence and also concentration effect in order to understand deeply the CO2 reduction on surface of palladium modified BDD electrode. The results suggest the use of NaCl and KCl as a catholyte for optimum performance, in addition to the improvement of CO2 reduction product in higher electrolyte concentration.
Collapse
Affiliation(s)
| | - Yasuaki Einaga
- Department of Chemistry Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| |
Collapse
|
7
|
Bathla A, Pal B. Bimetallic Cu(core)@Zn(shell) co-catalyst impregnated TiO2 nanosheets (001 faceted) for the selective hydrogenation of quinoline under visible light irradiation. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Xiong W, Yang J, Shuai L, Hou Y, Qiu M, Li X, Leung MKH. CuSn Alloy Nanoparticles on Nitrogen‐Doped Graphene for Electrocatalytic CO
2
Reduction. ChemElectroChem 2019. [DOI: 10.1002/celc.201901381] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Wei Xiong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Sciences and TechnologyDalian University of Technology Dalian 116024 P.R. China
- Ability R&D Energy Research Centre, School of Energy and EnvironmentCity University of Hong Kong Kowloon Hong Kong P.R. China
| | - Jian Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological EngineeringZhejiang University 310027 Hangzhou P.R. China
| | - Ling Shuai
- Institute of Nanoscience and Nanotechnology, College of Physical Science and TechnologyCentral China Normal University Wuhan 430079 P.R. China
| | - Yang Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological EngineeringZhejiang University 310027 Hangzhou P.R. China
| | - Ming Qiu
- Institute of Nanoscience and Nanotechnology, College of Physical Science and TechnologyCentral China Normal University Wuhan 430079 P.R. China
| | - Xinyong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Sciences and TechnologyDalian University of Technology Dalian 116024 P.R. China
| | - Michael K. H. Leung
- Ability R&D Energy Research Centre, School of Energy and EnvironmentCity University of Hong Kong Kowloon Hong Kong P.R. China
| |
Collapse
|
9
|
Jiwanti PK, Einaga Y. Electrochemical reduction of CO 2 using palladium modified boron-doped diamond electrodes: enhancing the production of CO. Phys Chem Chem Phys 2019; 21:15297-15301. [PMID: 30989157 DOI: 10.1039/c9cp01409h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In recent years, boron-doped diamond (BDD) has been utilized as an electrode for the electrochemical reduction of CO2, and several reports have been published on this. The wide potential window of BDD enables the hydrogen evolution reaction, which competes with CO2 reduction, to be suppressed. On the other hand, the high overpotential is still a problem. We attempted to overcome this problem by depositing metal on the BDD electrode. Pd metal was chosen to modify the surface of the BDD electrode (PdBDD). Employing this electrode at a lower potential of -1.6 V vs. Ag/AgCl, we increased the production of CO (53.3% faradaic efficiency) from the reduction of CO2. We present various attempts made to improve the CO production.
Collapse
Affiliation(s)
| | - Yasuaki Einaga
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan. and ACCEL, Japan Science and Technology Agency, 5-3 Yonbancho, Chiyoda 102-8666, Japan
| |
Collapse
|
10
|
JIWANTI PK, NATSUI K, EINAGA Y. The Utilization of Boron-doped Diamond Electrodes for the Electrochemical Reduction of CO 2: Toward the Production Compounds with a High Number of Carbon Atoms. ELECTROCHEMISTRY 2019. [DOI: 10.5796/electrochemistry.19-h0001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | | | - Yasuaki EINAGA
- Department of Chemistry, Keio University
- ACCEL, Japan Science and Technology Agency
| |
Collapse
|
11
|
TAKASHIMA T, SUZUKI T, IRIE H. Electrochemical Reduction of Carbon Dioxide to Formate on Palladium-Copper Alloy Nanoparticulate Electrode. ELECTROCHEMISTRY 2019. [DOI: 10.5796/electrochemistry.18-00086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Toshihiro TAKASHIMA
- Clean Energy Research Center, University of Yamanashi
- Special Doctoral Program for Green Energy Conversion Science and Technology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Tomohiro SUZUKI
- Special Doctoral Program for Green Energy Conversion Science and Technology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| | - Hiroshi IRIE
- Clean Energy Research Center, University of Yamanashi
- Special Doctoral Program for Green Energy Conversion Science and Technology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi
| |
Collapse
|
12
|
Roy N, Suzuki N, Terashima C, Fujishima A. Recent Improvements in the Production of Solar Fuels: From CO2 Reduction to Water Splitting and Artificial Photosynthesis. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180250] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nitish Roy
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal-734013, India
| | - Norihiro Suzuki
- Photocatalysis International Research Center, Tokyo University of Science, 2641-Yamazki, Noda, Chiba 278-8510, Japan
| | - Chiaki Terashima
- Photocatalysis International Research Center, Tokyo University of Science, 2641-Yamazki, Noda, Chiba 278-8510, Japan
| | - Akira Fujishima
- Photocatalysis International Research Center, Tokyo University of Science, 2641-Yamazki, Noda, Chiba 278-8510, Japan
| |
Collapse
|