1
|
Peng CH, Li G, Li KC, Cui XB. Six polyoxotungstate-based transition metal compounds for electrochemical capacitor application and a comparative analysis of factors affecting capacitances. Dalton Trans 2024; 53:3499-3510. [PMID: 38270509 DOI: 10.1039/d3dt04052f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Six different polyoxotungstate-based transition metal complexes were synthesized, namely [Cu5(2,2'-bpy)5(μ2-Cl)2(PO4)2(H2O)2][HPW12O40]·2H2O (1), [Cu1.5(2,2'-bpy)1.5(inic)2(H2O)1.5]3[H1.5PW12O40]2·16.25H2O (2), [Cu(2,2'-bpy)2]2[SiW12O40]·10H2O (3), [Zn(phen)3]2[PWVWVI11O40]·5H2O (4), [Zn(phen)2(H2O)]2[SiW12O40]·2H2O (5), and [Zn(2,2'-bpy)2]2[SiW12O40] (6) (2,2'-bpy = 2,2'-bipyridine, inic = isonicotinic acid, phen = 1,10-phenanthroline). Compound 1 is based on [HPW12O40]2- anions, which are accommodated within the open channels of a supramolecular network formed by novel Cu-P-Cl coordination clusters. Compound 2 is constructed from [H1.5PW12O40]1.5- and novel [Cu1.5(2,2'-bpy)1.5(inic)2(H2O)1.5]+ coordination fragments, and polyoxoanions are encapsulated within the pores created by the copper coordination fragments, resulting in a unique three-dimensional supramolecular architecture. Compound 3 is a two-dimensional structure formed through the covalent linkage between [SiW12O40]4- and [Cu(2,2'-bpy)2]2+. Compound 4 is a supramolecular architecture formed by [PWVWVI11O40]4- and [Zn(phen)3]2+ coordination fragments, while compound 5 is a supramolecular structure based on POM bi-supported Zn coordination complexes. Compound 6 is a two-dimensional framework structure constituted by [SiW12O40]4- and [Zn(2,2'-bpy)2]2+via covalent interactions. In addition, electrochemical measurement results show that the copper-based tungstate compounds 1-3 and zinc-based tungstate compounds 4-6 exhibit different performances and durabilities as electrochemical capacitors (compound 1 shows the highest specific capacitance of 94.0 F g-1 at 1.5 A g-1, whereas compound 6 maintains the best cycling stability with the capacity retention of 80.7% after 1000 cycles at 4 A g-1.). This study contributes to the development of POM-based transition metal complexes with high capacitance by providing insights into the design and synthesis process.
Collapse
Affiliation(s)
- Cai-Hong Peng
- College of Chemistry and State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130023, P. R. China.
| | - Guanghua Li
- College of Chemistry and State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130023, P. R. China.
| | - Ke-Chang Li
- College of Chemistry and State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130023, P. R. China.
| | - Xiao-Bing Cui
- College of Chemistry and State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin, 130023, P. R. China.
| |
Collapse
|
2
|
Zhang L, Di S, Lin H, Wang C, Yu K, Lv J, Wang C, Zhou B. Nanomaterial with Core-Shell Structure Composed of {P 2W 18O 62} and Cobalt Homobenzotrizoate for Supercapacitors and H 2O 2-Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1176. [PMID: 37049271 PMCID: PMC10097129 DOI: 10.3390/nano13071176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/01/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Designing and preparing dual-functional Dawson-type polyoxometalate-based metal-organic framework (POMOF) energy storage materials is challenging. Here, the Dawson-type POMOF nanomaterial with the molecular formula CoK4[P2W18O62]@Co3(btc)2 (abbreviated as {P2W18}@Co-BTC, H3btc = 1,3,5-benzylcarboxylic acid) was prepared using a solid-phase grinding method. XRD, SEM, TEM et al. analyses prove that this nanomaterial has a core-shell structure of Co-BTC wrapping around the {P2W18}. In the three-electrode system, it was found that {P2W18}@Co-BTC has the best supercapacitance performance, with a specific capacitance of 490.7 F g-1 (1 A g-1) and good stability, compared to nanomaterials synthesized with different feedstock ratios and two precursors. In the symmetrical double-electrode system, both the power density (800.00 W kg-1) and the energy density (11.36 Wh kg-1) are greater. In addition, as the electrode material for the H2O2 sensor, {P2W18}@Co-BTC also exhibits a better H2O2-sensing performance, such as a wide linear range (1.9 μM-1.67 mM), low detection limit (0.633 μM), high selectivity, stability (92.4%) and high recovery for the detection of H2O2 in human serum samples. This study provides a new strategy for the development of Dawson-type POMOF nanomaterial compounds.
Collapse
Affiliation(s)
- Lanyue Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Shan Di
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Hong Lin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Chunmei Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Kai Yu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
- Key Laboratory of Synthesis of Functional Materials and Green Catalysis, Colleges of Heilongjiang Province, Harbin Normal University, Harbin 150025, China
| | - Jinghua Lv
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Chunxiao Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Baibin Zhou
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
- Key Laboratory of Synthesis of Functional Materials and Green Catalysis, Colleges of Heilongjiang Province, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
3
|
Two New 2D POMOFs based on Octamolybdate/Copper Substituted Keggin Polymolybdate for Enhancing Electrochemical Capacitor Performance. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
4
|
Zhou CW, Wang XY, Duan ZP, Hu TZ, Wang HT, Gong SQ, Shi SY, Chu XY. Construction of Sb-capped Dawson-type POM derivatives for high-performance asymmetric supercapacitors. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
5
|
He LL, Cui LP, Yu K, Lv JH, Ma YJ, Tian R, Zhou BB. The pseudocapacitance and sensing materials constructed by Dawson/basket-like phosphomolybdate. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Zhu JJ, Gomez-Romero P. Polyoxometalate intercalated MXene with enhanced electrochemical stability. NANOSCALE 2022; 14:14921-14934. [PMID: 36018283 DOI: 10.1039/d2nr01410f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
MXene/polyoxometalate (POM) hybrids are useful target materials for a variety of applications. Yet, the goal of preparing simple binary hybrids by intercalation of POMs into MXene has not been achieved. We propose and demonstrate here a method to intercalate POMs (phosphotungstate, PW12) into Ti3C2Tx MXene through the interaction between POM anions and pre-intercalated surfactant cations. A variety of quaternary ammonium cations have been used to expand Ti3C2Tx interlayer spacing. Cetyltrimethylammonium cations (CTA+) lead to an expansion of 2 nm while allowing intercalation of a considerable load (10 wt%) thanks to their tadpole-like shape and size. CTAPW12 has a layered structure compatible with Ti3C2Tx. The CTA+-delaminated Ti3C2Tx keeps the large interlayer spacing after being coupled with PW12. The PW12 clusters are dispersed and kept isolated thanks to CTA surfactant and the confinement into Ti3C2Tx layers. The redox reactions in CTA+-delaminated Ti3C2Tx/PW12 are diffusion-controlled, which proves the well-dispersed PW12 clusters are not adsorbed on the surface of Ti3C2Tx particles but within Ti3C2Tx layers. The CTA+- delaminated Ti3C2Tx/PW12 shows superior electrochemical stability (remaining redox active after 5000 cycles) over the other MXene/POM hybrids prepared in this work (inactive after 500 cycles). We associate this improved stability to the effective intercalation of PW12 within Ti3C2Tx layers helped by the CTA cations, as opposed to the external aggregation of PW12 clusters into micro or nanocrystals taking place for the other cations. The results provide a solid guide to help develop high-performance MXene/POM hybrid materials for a variety of applications.
Collapse
Affiliation(s)
- Jun-Jie Zhu
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - Pedro Gomez-Romero
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
- Consejo Superior de Investigaciones Científicas (CSIC), Spain
| |
Collapse
|
7
|
Chen Y, Chang Z, Zhang Y, Chen K, Wang X. "Tree"-like Multidentate Ligand-Assisted Synthesis of Polymolybdate-Based Architectures with Multinuclear Metal Clusters: Supercapacitor and Electrochemical Sensing Performances. Inorg Chem 2022; 61:16020-16027. [PMID: 36177812 DOI: 10.1021/acs.inorgchem.2c02424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this work, aiming for constructing multinuclear metal cluster-modified polymolybdate-based architectures with novel conformation, the "tree"-like multidentate ligand 5-(3-pyridyl)-1H-tetrazole) (3-ptzH) is introduced into the polymolybdate reaction system. Three new polymolybdate-based architectures with various multinuclear metal clusters, H4[Cu6(μ3-OH)2(3-ptz)6(γ-Mo8O28) (H2O)2]·2H2O (BOHU-1), H2[Ag4(3-ptz)2(Mo8O26)] (BOHU-2), and H4[Cu5(3-ptzH)2(3-ptz)2(MnMo9O32)2(H2O)4] (BOHU-3) (BOHU = Bohai University), have been prepared via the hydrothermal method and structurally characterized. In BOHU-1, a kind of pentanuclear copper cluster unit: [Cu5(μ3-OH)2(3-ptz)6]2+ is formed, which connects to construct a one-dimensional (1D) cluster-based chain. The 1D chains are extended to a two-dimensional (2D) layer via the Cu ions, which are further linked by the 4-connected [γ-Mo8O28]8- anions to build a three-dimensional (3D) framework. In BOHU-2, when a AgI ion was used as the central metal, the 3-ptz adopts different coordination modes to link the Ag ions, forming hexanuclear [Ag6(3-ptz)4]2+ cluster and finally 1D chains. These 1D cluster-based chains are connected by the 6-connected [γ-Mo8O26]4- anions to establish a 2D layer, which is further extended by [Mo8O26]n4n- 1D chains to a 3D framework. For BOHU-3, the chiral [MnMo9O32]6- anions are introduced and coordinated with the Cu ions to build left- and right-handed 1D chains, which are connected via the [Cu3(3-ptz)4]2+ cluster to form a 1D ladder-like chain. The effects of 3-ptz on the formation of multinuclear clusters, as well as the metals and polymolybdates on the multinuclear clusters and final structures of BOHU-1∼3, are discussed. The electrochemical performances of BOHU-1∼3 as electrode materials for supercapacitors and electrochemical sensors are investigated.
Collapse
Affiliation(s)
- Yongzhen Chen
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Zhihan Chang
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Yuchen Zhang
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Keke Chen
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| | - Xiuli Wang
- College of Chemistry and Materials Engineering, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Bohai University, Jinzhou 121013, P. R. China
| |
Collapse
|
8
|
The reduced phosphomolybdate as dual-functional electrocatalyst and electrochemical sensor for detecting hydrogen peroxide and dopamine. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Zhao T, Cui LP, Yu K, Lv JH, Ma YJ, Yang AS, Zhou BB. Porous {P 6Mo 18O 73}-type Poly(oxometalate) Metal-Organic Frameworks for Improved Pseudocapacitance and Electrochemical Sensing Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30099-30111. [PMID: 35729744 DOI: 10.1021/acsami.2c06369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
{P6Mo18} poly(oxometalate) (POM) clusters have huge steric hindrance and limited active oxygen atoms, which make them difficult to combine with metal-organic units to form three-dimensional (3D) porous structures. Therefore, functionalization of such POMs has always been a bottleneck that is difficult to break through. In this study, {P6Mo18} POM was successfully grafted on a lock-like metal-organic chain to generate a multiporous coordination polymer, [{Na(H2O)(H2btb)}{Cu4I(H2O)(pz)5Cl}{H2Sr⊂P6Mo2VMo16VIO73}]·3H2O (1) (pz = pyrazine; btb = 1,4-bis(1,2,4-triazole) butane). Meanwhile, a zero-dimensional (0-D) control compound with only btb ligands as counterions, (H4btb)[H4Sr⊂P6Mo2VMo16VIO73]·3H2O (2), was also obtained via a hydrothermal reaction. Compound 1 represents the first basket-type 3D poly(oxometalate) metal-organic framework (POMOF) assembly, which possesses interpenetrating pores and complex topology. 1-GO-CPE displays improved supercapacitor (SC) performance (the specific capacitance of 929.4 F g-1 at a current density of 3 A g-1 with 94.1% of cycle efficiency after 5000 cycles) compared with 2-GO-CPE and most reported POMOF electrode materials, which may be due to the outstanding redox capability of basket-POM, introduction of metal-organic chains, intersecting pores, and excellent conductivity of graphene. An asymmetric SC device with 1-GO-CPE as the negative electrode exhibits an energy density of 29.7 Wh kg-1 with a power density of 3148.2 W kg-1 and long-lasting cycling life. In addition, 1-GO-GCE as an electrochemical sensor responds to dopamine (DA) at a voltage of 0.40 V and shows lower detection limits (0.19 μM (signal-to-noise ratio (SNR) = 3)), higher selectivity, and good reproducibility in the linear range of 0.56 μM to 0.24 mM. The ability to accurately detect the content of DA in biological samples further proves the feasibility of the sensor in practical applications.
Collapse
Affiliation(s)
- Tingting Zhao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Li-Ping Cui
- Academy of Life Science and Technology, State Key Laboratory of Molecular Genetics, Harbin Normal University, Harbin 150025, P. R. China
| | - Kai Yu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
- Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Harbin Normal University, Harbin 150025, Heilongjiang, P. R. China
| | - Jing-Hua Lv
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Ya-Jie Ma
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
- Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Harbin Normal University, Harbin 150025, Heilongjiang, P. R. China
| | - Ao-Shuang Yang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Bai-Bin Zhou
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
- Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Harbin Normal University, Harbin 150025, Heilongjiang, P. R. China
| |
Collapse
|
10
|
Coherent Integration of Organic Gel Polymer Electrolyte and Ambipolar Polyoxometalate Hybrid Nanocomposite Electrode in a Compact High-Performance Supercapacitor. NANOMATERIALS 2022; 12:nano12030514. [PMID: 35159858 PMCID: PMC8839628 DOI: 10.3390/nano12030514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023]
Abstract
We report a gel polymer electrolyte (GPE) supercapacitor concept with improved pathways for ion transport, thanks to a facile creation of a coherent continuous distribution of the electrolyte throughout the electrode. Poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) was chosen as the polymer framework for organic electrolytes. A permeating distribution of the GPE into the electrodes, acting both as integrated electrolyte and binder, as well as thin separator, promotes ion diffusion and increases the active electrode–electrolyte interface, which leads to improvements both in capacitance and rate capability. An activation process induced during the first charge–discharge cycles was detected, after which, the charge transfer resistance and Warburg impedance decrease. We found that a GPE thickness of 12 μm led to optimal capacitance and rate capability. A novel hybrid nanocomposite material, formed by the tetraethylammonium salt of the 1 nm-sized phosphomolybdate cluster and activated carbon (AC/TEAPMo12), was shown to improve its capacitive performance with this gel electrolyte arrangement. Due to the homogeneous dispersion of PMo12 clusters, its energy storage process is non-diffusion-controlled. In the symmetric capacitors, the hybrid nanocomposite material can perform redox reactions in both the positive and the negative electrodes in an ambipolar mode. The volumetric capacitance of a symmetric supercapacitor made with the hybrid electrodes increased by 40% compared to a cell with parent AC electrodes. Due to the synergy between permeating GPE and the hybrid electrodes, the GPE hybrid symmetric capacitor delivers three times more energy density at higher power densities and equivalent cycle stability compared with conventional AC symmetric capacitors.
Collapse
|
11
|
Enhancing the electrochemical capacitor performance of Keggin polyoxometalates by anchoring cobalt-triazole complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Xu L, Zhao X, Yu K, Wang C, Lv J, Wang C, Zhou B. Simple preparation of Ag-BTC-modified Co 3Mo 7O 24 mesoporous material for capacitance and H 2O 2-sensing performances. CrystEngComm 2022. [DOI: 10.1039/d2ce00639a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
{Co3Mo7O24}@Ag-BTC-2 was synthesized by a grinding method, and it showed excellent performance in a supercapacitor and H2O2 sensing.
Collapse
Affiliation(s)
- Lijie Xu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, P.R. China
| | - Xinyu Zhao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, P.R. China
| | - Kai Yu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, P.R. China
- Key Laboratory of Synthesis of Functional Materials and Green Catalysis, Colleges of Heilongjiang Province, Harbin Normal University, Harbin 150025, P.R. China
| | - Chunmei Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, P.R. China
| | - Jinghua Lv
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, P.R. China
| | - Chunxiao Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, P.R. China
| | - Baibin Zhou
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, P.R. China
- Key Laboratory of Synthesis of Functional Materials and Green Catalysis, Colleges of Heilongjiang Province, Harbin Normal University, Harbin 150025, P.R. China
| |
Collapse
|
13
|
Yang L, Lei J, Fan JM, Yuan RM, Zheng MS, Chen JJ, Dong QF. The Intrinsic Charge Carrier Behaviors and Applications of Polyoxometalate Clusters Based Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005019. [PMID: 33834550 DOI: 10.1002/adma.202005019] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Polyoxometalates (POMs) are a series of molecular metal oxide clusters, which span the two domains of solutes and solid metal oxides. The unique characters of POMs in structure, geometry, and adjustable redox properties have attracted widespread attention in functional material synthesis, catalysis, electronic devices, and electrochemical energy storage and conversion. This review is focused on the links between the intrinsic charge carrier behaviors of POMs from a chemistry-oriented view and their recent ground-breaking developments in related areas. First, the advantageous charge transfer behaviors of POMs in molecular-level electronic devices are summarized. Solar-driven, thermal-driven, and electrochemical-driven charge carrier behaviors of POMs in energy generation, conversion and storage systems are also discussed. Finally, present challenges and fundamental insights are discussed as to the advanced design of functional systems based upon POM building blocks for their possible emerging application areas.
Collapse
Affiliation(s)
- Le Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Energy Materials, Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jie Lei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Energy Materials, Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jing-Min Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Energy Materials, Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ru-Ming Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Energy Materials, Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005, China
| | - Ming-Sen Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Energy Materials, Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jia-Jia Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Energy Materials, Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005, China
| | - Quan-Feng Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Chemistry for Energy Materials, Department of Chemistry, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
14
|
Zhang W, Gong L, Du N, Wang C, Yu K, Wang C, Zhou B. {BW 12O 40} Hybrids Modified by in Situ Synthesized Rigid Ligand with Supercapacitance and Photocatalytic Properties. Inorg Chem 2021; 60:16357-16369. [PMID: 34669382 DOI: 10.1021/acs.inorgchem.1c02174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Organic rigid ligand-modified polyoxometalate-based materials possess complex and diverse structures, promising electrochemical energy storage properties and outstanding photocatalytic capabilities. Hence, two new [BW12O40]5-(abbreviated as {BW12O40})-based inorganic-organic hybrids [{Cu(en)2(H2O)}][{Cu(pdc)(en)}{Cu(en)2}(BW12O40)]·2H2O (1) and [{CuI5(pz)6(H2O)4}(BW12O40)] (2) (pdc = 2-picolinate, en = ethylenediamine, pz = pyrazine) were successfully synthesized through a hydrothermal method. Among them, pdc and pz were obtained by in situ transformation from 2,6-pyridinedicarboxylic acid (H2 pydc) and 2,3-pyrazinedicarboxylic acid (H2pzdc), respectively. In compound 1, the {BW12O40} clusters as an intermediate junction connect with {Cu(pdc)(en)}{Cu(en)2} and {Cu(en)2(H2O)} to form monomers, which in turn form supramolecular chains, sheets, and space network via hydrogen bonding. The {BW12O40} clusters are packed into copper-pyrazine frameworks in compound 2, and a unique polyoxometalate-based metal organic frameworks (POMOFs) structure with a new topology of {12}2{6.123.142}2{62.12.142.18}{62.123.16}{6}6 is formed via covalent bonds. When used as electrode materials for supercapacitors, the values of specific capacitance are 651.56 F g-1 for 1-GCE and 584.43 F g-1 for 2-GCE at a current density of 2.16 A g-1 and good cycling stability (90.94%, 94.81% of the initial capacity after 5000 cycles at 15.12 A g-1, respectively). The kinetic analysis reveals that surface capacitance plays a major role. Furthermore, both compounds can effectively degrade Rhodamine B (RhB) and Methylene blue (MB), showing the outstanding photocatalytic performance.
Collapse
Affiliation(s)
- Wenjia Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, People's Republic of China
| | - Lige Gong
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, People's Republic of China.,Key Laboratory of Synthesis of Functional Materials and Green Catalysis, Colleges of Heilongjiang Province, Harbin Normal University, Harbin 150025, People's Republic of China
| | - Nana Du
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, People's Republic of China
| | - Chunxiao Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, People's Republic of China
| | - Kai Yu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, People's Republic of China.,Key Laboratory of Synthesis of Functional Materials and Green Catalysis, Colleges of Heilongjiang Province, Harbin Normal University, Harbin 150025, People's Republic of China
| | - Chunmei Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, People's Republic of China
| | - Baibin Zhou
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, People's Republic of China.,Key Laboratory of Synthesis of Functional Materials and Green Catalysis, Colleges of Heilongjiang Province, Harbin Normal University, Harbin 150025, People's Republic of China
| |
Collapse
|
15
|
Two Novel Catalysts Based on Nickel-Substituted POMs Hybrids for Photocatalytic H2 Evolution from Water Splitting. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02112-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
16
|
Zhong R, Cui L, Yu K, Lv J, Guo Y, Zhang E, Zhou B. Wells-Dawson Arsenotungstate Porous Derivatives for Electrochemical Supercapacitor Electrodes and Electrocatalytically Active Materials. Inorg Chem 2021; 60:9869-9879. [PMID: 34121406 DOI: 10.1021/acs.inorgchem.1c01136] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Two Wells-Dawson arsenotungstate coordination polymers, [{CuII(bim)2}3(As2W18O62)] (1) and [(CuI10pz10Cl4)(As2W18O62)] (bim = 2,2'-biimidazole; pz = pyrazine), have been assembled via a hydrothermal method and fully characterized. Compound 1 exhibits a 2,6-connected two-dimensional hybrid layer based on asymmetrically modified {As2W18} anions and {Cu(bim)2} linkers, which is extended to a three-dimensional network with a special interlayer structure and a one-dimensional tunnel. Compound 2 is a host-guest framework that consists of a Cu-pz-Cl network with 20-member square rings, 16-member irregular rings, and embedded eight-node {As2W18} guest molecules. Compounds 1 and 2 show uncommon specific capacitance (834.8 and 960.1 F g-1, respectively, at a current density of 2.4 A g-1), enduring cycling stability (capacitance retention rates of 89.3% and 91.9%, respectively, after 5000 cycles), and good electrical conductivity, which are superior to those of the unmodified zero-dimensional Dawson arsenotungstate compound and most reported electrode materials in terms of their stable structure, special layer spacing, and orderly channels. Moreover, the title compounds exhibit excellent electrocatalytic activity for oxidizing ascorbic acid and reducing nitrite.
Collapse
Affiliation(s)
- Rui Zhong
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China.,Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Heilongjiang Province, Harbin Normal University, Harbin 150025, People's Republic of China
| | - Liping Cui
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China.,Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Heilongjiang Province, Harbin Normal University, Harbin 150025, People's Republic of China
| | - Kai Yu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China.,Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Heilongjiang Province, Harbin Normal University, Harbin 150025, People's Republic of China
| | - Jinghua Lv
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Yuhang Guo
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China.,Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Heilongjiang Province, Harbin Normal University, Harbin 150025, People's Republic of China
| | - Enmin Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China.,Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Heilongjiang Province, Harbin Normal University, Harbin 150025, People's Republic of China
| | - Baibin Zhou
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China.,Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Heilongjiang Province, Harbin Normal University, Harbin 150025, People's Republic of China
| |
Collapse
|
17
|
Three-dimensional supramolecular crystalline materials based on Keggin-based polyoxometalates and 1,2-Bis (4-pyridyl) ethylene for supercapacitor electrodes. TRANSIT METAL CHEM 2021. [DOI: 10.1007/s11243-021-00450-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Zhao Y, Yang M, Rong S, Wang X, Ma H, Pang H, Tan L, Gao K. Polyoxotungstates-supported NiII/CoII-containing 3D inorganic-organic hybrids as supercapacitor electrodes toward boosting capacitor performance. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Zhu JJ, Benages-Vilau R, Gomez-Romero P. Can polyoxometalates enhance the capacitance and energy density of activated carbon in organic electrolyte supercapacitors? Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.137007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Ma X, Yu K, Yuan J, Cui L, Lv J, Dai W, Zhou B. Multinuclear Transition Metal Sandwich-Type Polytungstate Derivatives for Enhanced Electrochemical Energy Storage and Bifunctional Electrocatalysis Performances. Inorg Chem 2020; 59:5149-5160. [DOI: 10.1021/acs.inorgchem.0c00382] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xinyue Ma
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of chemistry and chemical engineering, Harbin Normal University, Harbin 150025, P. R. China
- Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Heilongjiang Province, Harbin Normal University, Harbin 150025, People’s Republic of China
| | - Kai Yu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of chemistry and chemical engineering, Harbin Normal University, Harbin 150025, P. R. China
- Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Heilongjiang Province, Harbin Normal University, Harbin 150025, People’s Republic of China
| | - Jie Yuan
- Harbin Medical University Daqing Campus, Daqing 163319, Heilongjiang, China
| | - Liping Cui
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of chemistry and chemical engineering, Harbin Normal University, Harbin 150025, P. R. China
- Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Heilongjiang Province, Harbin Normal University, Harbin 150025, People’s Republic of China
| | - Jinghua Lv
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of chemistry and chemical engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Wenting Dai
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of chemistry and chemical engineering, Harbin Normal University, Harbin 150025, P. R. China
- Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Heilongjiang Province, Harbin Normal University, Harbin 150025, People’s Republic of China
| | - Baibin Zhou
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of chemistry and chemical engineering, Harbin Normal University, Harbin 150025, P. R. China
- Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Heilongjiang Province, Harbin Normal University, Harbin 150025, People’s Republic of China
| |
Collapse
|
21
|
Lu B, Li S, Pan J, Zhang L, Xin J, Chen Y, Tan X. pH-Controlled Assembly of Five New Organophosphorus Strandberg-Type Cluster-Based Coordination Polymers for Enhanced Electrochemical Capacitor Performance. Inorg Chem 2020; 59:1702-1714. [DOI: 10.1021/acs.inorgchem.9b02858] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Borong Lu
- College of Materials Science and Engineering, Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, Qiqihar University, Qiqihar 161006, P. R. China
| | - Shaobin Li
- College of Materials Science and Engineering, Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, Qiqihar University, Qiqihar 161006, P. R. China
| | - Jing Pan
- College of Materials Science and Engineering, Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, Qiqihar University, Qiqihar 161006, P. R. China
| | - Li Zhang
- College of Materials Science and Engineering, Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, Qiqihar University, Qiqihar 161006, P. R. China
| | - Jianjiao Xin
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, P. R. China
| | - Yue Chen
- College of Materials Science and Engineering, Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, Qiqihar University, Qiqihar 161006, P. R. China
| | - Xiaoguo Tan
- College of Materials Science and Engineering, Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, Qiqihar University, Qiqihar 161006, P. R. China
| |
Collapse
|
22
|
Wang KB, Bi R, Wang ZK, Chu Y, Wu H. Metal–organic frameworks with different spatial dimensions for supercapacitors. NEW J CHEM 2020. [DOI: 10.1039/c9nj05198h] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent progress in MOF materials for SCs with different spatial dimensions, such as 2D MOFs, including conductive MOFs and nanosheets, and 3D MOFs, categorized as single metallic and multiple metallic MOFs, are reviewed.
Collapse
Affiliation(s)
- Kuai-Bing Wang
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing
- P. R. China
| | - Rong Bi
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing
- P. R. China
| | - Zi-Kai Wang
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing
- P. R. China
| | - Yang Chu
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing
- P. R. China
| | - Hua Wu
- Department of Chemistry
- College of Sciences
- Nanjing Agricultural University
- Nanjing
- P. R. China
| |
Collapse
|
23
|
Hou Y, Pang H, Gómez-García CJ, Ma H, Wang X, Tan L. Polyoxometalate Metal-Organic Frameworks: Keggin Clusters Encapsulated into Silver-Triazole Nanocages and Open Frameworks with Supercapacitor Performance. Inorg Chem 2019; 58:16028-16039. [PMID: 31738057 DOI: 10.1021/acs.inorgchem.9b02516] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
To investigate the relationship between the structures of polyoxometalate host-guest materials and their energy-storage performance, three novel polyoxometalate-based metal-organic compounds, [Ag10(C2H2N3)8][HVW12O40], [Ag10(C2H2N3)6][SiW12O40], and [Ag(C2H2N3)][Ag12(C2H2N3)9][H2BW12O40] are synthesized by a one-step hydrothermal method and further confirmed by single-crystal X-ray diffraction analyses and other numerous characterization techniques. In compound [Ag10(C2H2N3)8][HVW12O40], the Keggin clusters are intersected into channels formed by a 3D open metal-organic framework. In contrast, in compounds [Ag10(C2H2N3)6][SiW12O40] and [Ag(C2H2N3)][Ag12(C2H2N3)9][H2BW12O40], the Keggin clusters are encapsulated into silver-triazole metal-organic nanocages to construct core-shell structures, which are further fused together by covalent bonds to form 3D polyoxometalate-based metal-organic frameworks. The electrochemical properties of three compound-based electrodes are estimated by cyclic voltammetry, galvanostatic charge-discharge, electrochemically active surface area, and electrochemical impedance spectroscopy. The results of the electrochemical performance tests indicate that these compounds possess high specific capacitance and cycling stability, especially [Ag10(C2H2N3)8][HVW12O40], showing a specific capacitance of 93.5 F g-1, which is higher than that of many other polyoxometalate-based electrode materials. A possible mechanism of the electrochemical performance is explored, which is mainly related to the redox capacity of polyoxometalate, the electrochemically active surface area, the electrochemical impedance spectroscopy, and the microstructures of polyoxometalate-based metal-organic frameworks.
Collapse
Affiliation(s)
- Yan Hou
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering , Harbin University of Science and Technology , Harbin 150040 , P. R. China
| | - Haijun Pang
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering , Harbin University of Science and Technology , Harbin 150040 , P. R. China
| | - Carlos J Gómez-García
- Instituto de Ciencia Molecular , Departamento de Química Inorgánica Universidad de Valencia C/Catedrático José Beltrán, 2 , 46980 Paterna , Spain
| | - Huiyuan Ma
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering , Harbin University of Science and Technology , Harbin 150040 , P. R. China
| | - Xinming Wang
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering , Harbin University of Science and Technology , Harbin 150040 , P. R. China
| | - Lichao Tan
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering , Harbin University of Science and Technology , Harbin 150040 , P. R. China
| |
Collapse
|
24
|
Hou Y, Chai D, Li B, Pang H, Ma H, Wang X, Tan L. Polyoxometalate-Incorporated Metallacalixarene@Graphene Composite Electrodes for High-Performance Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20845-20853. [PMID: 31117450 DOI: 10.1021/acsami.9b04649] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Composites of polyoxometalate (POM)/metallacalixarene/graphene-based electrode materials not only integrate the superiority of the individual components perfectly but also ameliorate the demerits to some extent, providing a promising route to approach high-performance supercapacitors. Herein, first, we report the preparations, structures, and electrochemical performance of two fascinating POM-incorporated metallacalixarene compounds [Ag5(C2H2N3)6][H5 ⊂ SiMo12O40] (1) and [Ag5(C2H2N3)6][H5 ⊂ SiW12O40] (2); (C2H2N3 = 1 H-1,2,4-triazole). Single-crystal X-ray diffraction analyses illustrated that both 1 and 2 possess intriguing POM-sandwiched metallacalix[6]arene frameworks. Nevertheless, our investigations, including the electrochemical cyclic voltammetry, galvanostatic charge-discharge tests, and electrochemical impedance spectroscopy, reveal that the oxidation ability of the Keggin ions is a primary effect in electrochemical performance of these POM-incorporated metallacalixarene compounds. Namely, the electrodes containing Mo as metal atoms in the Keggin POM shows much higher capacitance than the corresponding W-containing ones. Moreover, compound 1@graphene oxide (GO) composite electrodes are fabricated and systematically explored for their supercapacitor performance. Thanks to the synergetic effects of GO and POM-incorporated metallacalixarenes, the compound 1@15%GO-based electrode exhibits the highest specific capacitance of up to 230.2 F g-1 (current density equal to 0.5 A g-1), which is superior to majority of the reported POM-based electrode materials.
Collapse
Affiliation(s)
- Yan Hou
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering , Harbin University of Science and Technology , Harbin 150040 , P. R. China
| | - Dongfeng Chai
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering , Harbin University of Science and Technology , Harbin 150040 , P. R. China
| | - Bonan Li
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering , Harbin University of Science and Technology , Harbin 150040 , P. R. China
| | - Haijun Pang
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering , Harbin University of Science and Technology , Harbin 150040 , P. R. China
| | - Huiyuan Ma
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering , Harbin University of Science and Technology , Harbin 150040 , P. R. China
| | - Xinming Wang
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering , Harbin University of Science and Technology , Harbin 150040 , P. R. China
| | - Lichao Tan
- School of Materials Science and Engineering, College of Chemical and Environmental Engineering , Harbin University of Science and Technology , Harbin 150040 , P. R. China
| |
Collapse
|
25
|
Wang KP, Yu K, Lv JH, Zhang ML, Meng FX, Zhou B. A Host–Guest Supercapacitor Electrode Material Based on a Mixed Hexa-Transition Metal Sandwiched Arsenotungstate Chain and Three-Dimensional Supramolecular Metal–Organic Networks with One-Dimensional Cavities. Inorg Chem 2019; 58:7947-7957. [DOI: 10.1021/acs.inorgchem.9b00692] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kun-peng Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
- Key Laboratory of Synthesis of Functional Materials and Green Catalysis, College of Heilongjiang Province, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Kai Yu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
- Key Laboratory of Synthesis of Functional Materials and Green Catalysis, College of Heilongjiang Province, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Jing-hua Lv
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Mao-lin Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
- Key Laboratory of Synthesis of Functional Materials and Green Catalysis, College of Heilongjiang Province, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Fan-xue Meng
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
- Key Laboratory of Synthesis of Functional Materials and Green Catalysis, College of Heilongjiang Province, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Baibin Zhou
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
- Key Laboratory of Synthesis of Functional Materials and Green Catalysis, College of Heilongjiang Province, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| |
Collapse
|
26
|
Chai D, Xin J, Li B, Pang H, Ma H, Li K, Xiao B, Wang X, Tan L. Mo-Based crystal POMOFs with a high electrochemical capacitor performance. Dalton Trans 2019; 48:13026-13033. [DOI: 10.1039/c9dt02420d] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The capacitor performance of newly synthesized crystalline POMOFs was higher than those of the majority of reported POMOF-, state-of-the-art MOF- and POM-based materials.
Collapse
Affiliation(s)
- Dongfeng Chai
- School of Materials Science and Engineering
- College of Chemical and Environmental Engineering
- Harbin University of Science and Technology
- Harbin 150040
- P. R. China
| | - Jianjiao Xin
- School of Materials Science and Engineering
- College of Chemical and Environmental Engineering
- Harbin University of Science and Technology
- Harbin 150040
- P. R. China
| | - Bonan Li
- School of Materials Science and Engineering
- College of Chemical and Environmental Engineering
- Harbin University of Science and Technology
- Harbin 150040
- P. R. China
| | - Haijun Pang
- School of Materials Science and Engineering
- College of Chemical and Environmental Engineering
- Harbin University of Science and Technology
- Harbin 150040
- P. R. China
| | - Huiyuan Ma
- School of Materials Science and Engineering
- College of Chemical and Environmental Engineering
- Harbin University of Science and Technology
- Harbin 150040
- P. R. China
| | - Kunqi Li
- School of Materials Science and Engineering
- College of Chemical and Environmental Engineering
- Harbin University of Science and Technology
- Harbin 150040
- P. R. China
| | - Boxin Xiao
- School of Materials Science and Engineering
- College of Chemical and Environmental Engineering
- Harbin University of Science and Technology
- Harbin 150040
- P. R. China
| | - Xinming Wang
- School of Materials Science and Engineering
- College of Chemical and Environmental Engineering
- Harbin University of Science and Technology
- Harbin 150040
- P. R. China
| | - Lichao Tan
- School of Materials Science and Engineering
- College of Chemical and Environmental Engineering
- Harbin University of Science and Technology
- Harbin 150040
- P. R. China
| |
Collapse
|