1
|
Chen H, Xing Y, Liu S, Fu J, Shi H, Liang Y, Wang L, Wang W. Efficient pollutant degradation under ultraviolet to near-infrared light irradiation and dark condition using CuSe nanosheets: Mechanistic insight into degradation. J Colloid Interface Sci 2022; 613:103-116. [PMID: 35032771 DOI: 10.1016/j.jcis.2022.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 11/25/2022]
Abstract
The hydrothermally prepared two-dimensional copper selenide nanosheets (2D CuSe NSs) have been employed for the first time to degrade rhodamine B (RhB) in the presence of hydrogen peroxide (H2O2) under ultraviolet to near-infrared (NIR) light irradiation and dark condition. The experimental measurements demonstrate that 99.7% RhB is degraded under NIR light irradiation for 120 min. Moreover, the experimental tests clearly demonstrate that the 2D CuSe NSs display excellent ability to degrade RhB under dark condition. The different degradation mechanisms under the light irradiation and dark condition have been revealed by the experimental tests through the investigation of H2O2 role and the evaluation of hydroxyl radicals (•OH) and H2O2 concentration during the degradation reaction. Under light irradiation, the H2O2 traps the photogenerated electrons of the CuSe to generate •OH and hydroxide ion (OH-), and the holes react with OH- to produce •OH, making RhB to be degraded efficiently. Under dark conduction, the 2D CuSe NSs react with H2O2 to exhibit Fenton-like process to degrade RhB with a degradation rate of 90.0% within 120 min. This work opens a pathway for developing nanostructures with full-solar-responsive and strong near-infrared photocatalytic activity as well as Fenton-like reaction to efficiently degrade pollutants under light irradiation and dark condition.
Collapse
Affiliation(s)
- Huabin Chen
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China
| | - Yujin Xing
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China
| | - Sitong Liu
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China
| | - Junli Fu
- School of Science, Minzu University of China, Beijing 100081, PR China
| | - Honglong Shi
- School of Science, Minzu University of China, Beijing 100081, PR China
| | - Yujie Liang
- School of Science, Minzu University of China, Beijing 100081, PR China
| | - Lijuan Wang
- School of Science, Minzu University of China, Beijing 100081, PR China
| | - Wenzhong Wang
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China; School of Science, Minzu University of China, Beijing 100081, PR China.
| |
Collapse
|
2
|
Mourdikoudis S, Antonaropoulos G, Antonatos N, Rosado M, Storozhuk L, Takahashi M, Maenosono S, Luxa J, Sofer Z, Ballesteros B, Thanh NTK, Lappas A. Heat-Up Colloidal Synthesis of Shape-Controlled Cu-Se-S Nanostructures-Role of Precursor and Surfactant Reactivity and Performance in N 2 Electroreduction. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3369. [PMID: 34947718 PMCID: PMC8707546 DOI: 10.3390/nano11123369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022]
Abstract
Copper selenide-sulfide nanostructures were synthesized using metal-organic chemical routes in the presence of Cu- and Se-precursors as well as S-containing compounds. Our goal was first to examine if the initial Cu/Se 1:1 molar proportion in the starting reagents would always lead to equiatomic composition in the final product, depending on other synthesis parameters which affect the reagents reactivity. Such reaction conditions were the types of precursors, surfactants and other reagents, as well as the synthesis temperature. The use of 'hot-injection' processes was avoided, focusing on 'non-injection' ones; that is, only heat-up protocols were employed, which have the advantage of simple operation and scalability. All reagents were mixed at room temperature followed by further heating to a selected high temperature. It was found that for samples with particles of bigger size and anisotropic shape the CuSe composition was favored, whereas particles with smaller size and spherical shape possessed a Cu2-xSe phase, especially when no sulfur was present. Apart from elemental Se, Al2Se3 was used as an efficient selenium source for the first time for the acquisition of copper selenide nanostructures. The use of dodecanethiol in the presence of trioctylphosphine and elemental Se promoted the incorporation of sulfur in the materials crystal lattice, leading to Cu-Se-S compositions. A variety of techniques were used to characterize the formed nanomaterials such as XRD, TEM, HRTEM, STEM-EDX, AFM and UV-Vis-NIR. Promising results, especially for thin anisotropic nanoplates for use as electrocatalysts in nitrogen reduction reaction (NRR), were obtained.
Collapse
Affiliation(s)
- Stefanos Mourdikoudis
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, UK;
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 16628 Prague, Czech Republic; (N.A.); (J.L.)
| | - George Antonaropoulos
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Vassilika Vouton, 71110 Heraklion, Greece;
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| | - Nikolas Antonatos
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 16628 Prague, Czech Republic; (N.A.); (J.L.)
| | - Marcos Rosado
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain;
| | - Liudmyla Storozhuk
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, UK;
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK
| | - Mari Takahashi
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan; (M.T.); (S.M.)
| | - Shinya Maenosono
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi 923-1292, Ishikawa, Japan; (M.T.); (S.M.)
| | - Jan Luxa
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 16628 Prague, Czech Republic; (N.A.); (J.L.)
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 16628 Prague, Czech Republic; (N.A.); (J.L.)
| | - Belén Ballesteros
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain;
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, UK;
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK
| | - Alexandros Lappas
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Vassilika Vouton, 71110 Heraklion, Greece;
| |
Collapse
|
3
|
Feng W, Pang W, Xu Y, Guo A, Gao X, Qiu X, Chen W. Transition Metal Selenides for Electrocatalytic Hydrogen Evolution Reaction. ChemElectroChem 2019. [DOI: 10.1002/celc.201901623] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wenshuai Feng
- School of Physics and ElectronicsCentral South University Changsha Hunan 410083 P. R. China
| | - Wenbin Pang
- School of Physics and ElectronicsCentral South University Changsha Hunan 410083 P. R. China
| | - Yan Xu
- College of Chemistry and Chemical EngineeringCentral South University Changsha Hunan 410083 P. R. China
| | - Aimin Guo
- School of Physics and ElectronicsCentral South University Changsha Hunan 410083 P. R. China
| | - Xiaohui Gao
- School of Physics and ElectronicsCentral South University Changsha Hunan 410083 P. R. China
| | - Xiaoqing Qiu
- School of Physics and ElectronicsCentral South University Changsha Hunan 410083 P. R. China
- College of Chemistry and Chemical EngineeringCentral South University Changsha Hunan 410083 P. R. China
| | - Wei Chen
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied ChemistryChinese Academy Science Changchun Jilin 130022 P.R. China
| |
Collapse
|
4
|
Xue JY, Li FL, Zhao ZY, Li C, Ni CY, Gu HW, Braunstein P, Huang XQ, Lang JP. A hierarchically-assembled Fe–MoS2/Ni3S2/nickel foam electrocatalyst for efficient water splitting. Dalton Trans 2019; 48:12186-12192. [DOI: 10.1039/c9dt02201e] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hierarchically-assembled Fe–MoS2/Ni3S2/NF demonstrates excellent HER, OER and full water splitting catalytic performances in an alkaline electrolyte.
Collapse
Affiliation(s)
- Jiang-Yan Xue
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- People's Republic of China
| | - Fei-Long Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- People's Republic of China
| | - Zhong-Yin Zhao
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- People's Republic of China
| | - Cong Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- People's Republic of China
| | - Chun-Yan Ni
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- People's Republic of China
| | - Hong-Wei Gu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- People's Republic of China
| | - Pierre Braunstein
- Institut de Chimie (UMR 7177 CNRS)
- Université de Strasbourg
- 67081 Strasbourg
- France
| | - Xiao-Qing Huang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- People's Republic of China
| | - Jian-Ping Lang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- People's Republic of China
| |
Collapse
|