1
|
Khamis A, Mahmoud AS, El Naga AOA, Shaban SA, Youssef NA. Activation of peroxymonosulfate with ZIF-67-derived Co/N-doped porous carbon nanocubes for the degradation of Congo red dye. Sci Rep 2024; 14:12313. [PMID: 38811620 PMCID: PMC11137160 DOI: 10.1038/s41598-024-62029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
In this study, porous carbon nanocubes encapsulated magnetic metallic Co nanoparticles (denoted as Co@N-PCNC) was prepared via pyrolyzing ZIF-67 nanocubes precursor at 600 °C and characterized by various technologies. It was used to activate peroxymonosulfate (PMS) to degrade Congo red (CR) dye efficiently. Over 98.45% of 50 mg L-1 CR was degraded using 0.033 mM PMS activated by 75 mg L-1 Co@N-PCNC within 12 min. The free radical quenching experiments were performed to reveal the nature of the reactive oxygen species radicals generated throughout the catalytic oxidation of CR. The effects of common inorganic anions and the water matrix on CR removal were studied. Moreover, the results of the kinetic study revealed the suitability of the pseudo-first-order and Langmuir-Hinshelwood kinetic models for illustrating CR degradation using the Co@N-PCNC/PMS system. Ultimately, the Co@N-PCNC displayed good operational stability, and after five cycles, the CR removal rate can still maintain over 90% after 12 min.
Collapse
Affiliation(s)
- Aya Khamis
- Chemistry Department, Faculty of Women, Ain Shams University, Cairo, Egypt
| | - Aya S Mahmoud
- Chemistry Department, Faculty of Women, Ain Shams University, Cairo, Egypt
| | - Ahmed O Abo El Naga
- Catalysis Department, Refining Division, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt.
| | - Seham A Shaban
- Catalysis Department, Refining Division, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt.
| | - Nadia A Youssef
- Chemistry Department, Faculty of Women, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Tomer VK, Malik R, Tjong J, Sain M. State and future implementation perspectives of porous carbon-based hybridized matrices for lithium sulfur battery. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
3
|
Wang C, Lu JH, Wang AB, Zhang H, Wang WK, Jin ZQ, Fan LZ. Oxygen Vacancies in Bismuth Tantalum Oxide to Anchor Polysulfide and Accelerate the Sulfur Evolution Reaction in Lithium-Sulfur Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3551. [PMID: 36296742 PMCID: PMC9607072 DOI: 10.3390/nano12203551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The shuttling effect of soluble lithium polysulfides (LiPSs) and the sluggish conversion kinetics of polysulfides into insoluble Li2S2/Li2S severely hinders the practical application of Li-S batteries. Advanced catalysts can capture and accelerate the liquid-solid conversion of polysulfides. Herein, we try to make use of bismuth tantalum oxide with oxygen vacancies as an electrocatalyst to catalyze the conversion of LiPSs by reducing the sulfur reduction reaction (SRR) nucleation energy barrier. Oxygen vacancies in Bi4TaO7 nanoparticles alter the electron band structure to improve instinct electronic conductivity and catalytic activity. In addition, the defective surface could provide unsaturated bonds around the vacancies to enhance the chemisorption capability with LiPSs. Hence, a multidimensional carbon (super P/CNT/Graphene) standing sulfur cathode is prepared by coating oxygen vacancies Bi4TaO7-x nanoparticles, in which the multidimensional carbon (MC) with micropores structure can host sulfur and provide a fast electron/ion pathway, while the outer-coated oxygen vacancies with Bi4TaO7-x with improved electronic conductivity and strong affinities for polysulfides can work as an adsorptive and conductive protective layer to achieve the physical restriction and chemical immobilization of lithium polysulfides as well as speed up their catalytic conversion. Benefiting from the synergistic effects of different components, the S/C@Bi3TaO7-x coin cell cathode shows superior cycling and rate performance. Even under a high level of sulfur loading of 9.6 mg cm-2, a relatively high initial areal capacity of 10.20 mAh cm-2 and a specific energy density of 300 Wh kg-1 are achieved with a low electrolyte/sulfur ratio of 3.3 µL mg-1. Combined with experimental results and theoretical calculations, the mechanism by which the Bi4TaO7 with oxygen vacancies promotes the kinetics of polysulfide conversion reactions has been revealed. The design of the multiple confined cathode structure provides physical and chemical adsorption, fast charge transfer, and catalytic conversion for polysulfides.
Collapse
Affiliation(s)
- Chong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Jian-Hao Lu
- Military Power Sources Research and Development Center, Research Institute of Chemical Defense, Beijing 100191, China
| | - An-Bang Wang
- Military Power Sources Research and Development Center, Research Institute of Chemical Defense, Beijing 100191, China
| | - Hao Zhang
- Military Power Sources Research and Development Center, Research Institute of Chemical Defense, Beijing 100191, China
| | - Wei-Kun Wang
- Military Power Sources Research and Development Center, Research Institute of Chemical Defense, Beijing 100191, China
| | - Zhao-Qing Jin
- Military Power Sources Research and Development Center, Research Institute of Chemical Defense, Beijing 100191, China
| | - Li-Zhen Fan
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
4
|
Carbon Nanotube-Modified Nickel Hydroxide as Cathode Materials for High-Performance Li-S Batteries. NANOMATERIALS 2022; 12:nano12050886. [PMID: 35269373 PMCID: PMC8912414 DOI: 10.3390/nano12050886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/19/2022] [Accepted: 02/26/2022] [Indexed: 02/01/2023]
Abstract
The advantages of high energy density and low cost make lithium–sulfur batteries one of the most promising candidates for next-generation energy storage systems. However, the electrical insulativity of sulfur and the serious shuttle effect of lithium polysulfides (LiPSs) still impedes its further development. In this regard, a uniform hollow mesoporous Ni(OH)2@CNT microsphere was developed to address these issues. The SEM images show the Ni(OH)2 delivers an average size of about 5 μm, which is composed of nanosheets. The designed Ni(OH)2@CNT contains transition metal cations and interlayer anions, featuring the unique 3D spheroidal flower structure, decent porosity, and large surface area, which is highly conducive to conversion systems and electrochemical energy storage. As a result, the as-fabricated Li-S battery delivers the reversible capacity of 652 mAh g−1 after 400 cycles, demonstrating excellent capacity retention with a low average capacity loss of only 0.081% per cycle at 1 C. This work has shown that the Ni(OH)2@CNT sulfur host prepared by hydrothermal embraces delivers strong physical absorption as well as chemical affinity.
Collapse
|
5
|
Ma Z, Sui W, Liu J, Wang W, Li S, Chen T, Yang G, Zhu K, Li Z. Pomelo peel-derived porous carbon as excellent LiPS anchor in lithium-sulfur batteries. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05138-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Zhang F, Wang H, Ji S, Linkov V, Wang X, Wang R. Highly catalytically active CoSe2 supported on nitrogen-doped three dimensional porous carbon as a cathode for high-stability lithium-sulfur battery. Chemphyschem 2022; 23:e202100811. [PMID: 34984780 DOI: 10.1002/cphc.202100811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/27/2021] [Indexed: 11/09/2022]
Abstract
Lithium-sulfur batteries, promising secondary energy storage devices, were mainly limited by its unsatisfactory cyclability owing to inefficient reversible conversion of sulfur and lithium sulfide on the cathode during the discharge/charging process. In this study, nitrogen-doped three-dimensional porous carbon material loaded with CoSe 2 nanoparticles (CoSe 2 -PNC) is developed as a cathode for lithium-sulfur battery application. A combination of CoSe 2 and nitrogen-doped porous carbon can efficiently improve the cathode activity and its conductivity, resulting in enhanced redox kinetics of the charge/discharge process. The obtained electrode exhibits a high discharge specific capacity of 1139.6 mAh g -1 at a current density of 0.2 C. After 100 cycles, its capacity remained at 865.7 mAh g -1 corresponding to a capacity retention of 75.97%. In a long-term cycling test, a discharge specific capacity of 546.7 mAh g -1 was observed after 300 cycles performed at a current density of 1 C.
Collapse
Affiliation(s)
- Fenglong Zhang
- Qingdao University of Science and Technology, College of Chemical Engineering, CHINA
| | - Hui Wang
- Qingdao University of Science and Technology, College of Chemical Engineering, CHINA
| | - Shan Ji
- Jiaxing University, Yuexiu Road, CHINA
| | - Vladimir Linkov
- University of the Western Cape, South African Insitute for Advanced Science Materials Chemistry, SOUTH AFRICA
| | - Xuyun Wang
- Qingdao University of Science and Technology, College of Chemical Engineering, CHINA
| | - Rongfang Wang
- Qingdao University of Science and Technology, College of Chemical Engineering, CHINA
| |
Collapse
|
7
|
Chronopoulos DD, Saini H, Tantis I, Zbořil R, Jayaramulu K, Otyepka M. Carbon Nanotube Based Metal-Organic Framework Hybrids From Fundamentals Toward Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104628. [PMID: 34894080 DOI: 10.1002/smll.202104628] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/14/2021] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs) materials constructed by the coordination chemistry of metal ions and organic ligands are important members of the crystalline materials family. Owing to their exceptional properties, for example, high porosity, tunable pore size, and large surface area, MOFs have been applied in several fields such as gas or liquid adsorbents, sensors, batteries, and supercapacitors. However, poor conductivity and low stability hamper their potential applications in several attractive fields such as energy and gas storage. The integration of MOFs with carbon nanotubes (CNTs), a well-established carbon allotrope that exhibits high conductivity and stability, has been proposed as an efficient strategy to overcome such limitations. By combining the advantages of MOFs and CNTs, a wide variety of composites can be prepared with properties superior to their parent materials. This review provides a comprehensive summary of the preparation of CNT@MOF composites and focuses on their recent applications in several important fields, such as water purification, gas storage and separation, sensing, electrocatalysis, and energy storage (supercapacitors and batteries). Future challenges and prospects for CNT@MOF composites are also discussed.
Collapse
Affiliation(s)
- Demetrios D Chronopoulos
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 77900, Czech Republic
| | - Haneesh Saini
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, Jammu & Kashmir, 181221, India
| | - Iosif Tantis
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 77900, Czech Republic
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 77900, Czech Republic
- Nanotechnology Centre, CEET, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 70800, Czech Republic
| | - Kolleboyina Jayaramulu
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 77900, Czech Republic
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, Jammu & Kashmir, 181221, India
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, Olomouc, 77900, Czech Republic
- IT4Innovations, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba, 70800, Czech Republic
| |
Collapse
|
8
|
Park JS, Kim JH, Yang SJ. Rational Design of Metal–Organic
Framework‐Based
Materials for Advanced LiS Batteries. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jae Seo Park
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials Inha University Incheon 22212 Republic of Korea
| | - Jae Ho Kim
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials Inha University Incheon 22212 Republic of Korea
| | - Seung Jae Yang
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials Inha University Incheon 22212 Republic of Korea
| |
Collapse
|
9
|
Song Z, Lu X, Hu Q, Lin D, Zheng Q. Construction of reduced graphene oxide wrapped yolk-shell vanadium dioxide sphere hybrid host for high-performance lithium-sulfur batteries. Dalton Trans 2020; 49:14921-14930. [PMID: 33078788 DOI: 10.1039/d0dt02275f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Owing to the considerable theoretical energy density, lithium-sulfur batteries have been deemed as a competitive candidate for the next-generation energy storage devices. However, its commercialization still depends on the moderation of the shuttle effect and the conductivity improvement of the sulfur cathode. Herein, a novel reduced graphene oxide (rGO) wrapped yolk-shell vanadium dioxide (VO2) sphere hybrid host (rGO/VO2) is reported to simultaneously tackle these barriers. In particular, the polar VO2 sphere can chemically anchor and catalyze the conversion of polysulfides effectively both on the yolk and the shell surfaces. Meanwhile, the highly conductive 3D porous rGO network not only allows sufficient penetration of electrolyte and provides efficient transport pathways for lithium ions and electrons, but also buffers the volume variation during the lithiation process. Besides, the dissolution of the polysulfides can also be alleviated by physical confinement via the interconnected carbon network. Benefiting from these synergistic features, such designed rGO/VO2/S cathode delivers outstanding cycle stability (718.6 mA h g-1 initially, and 516.1 mA h g-1 over 400 cycles at 1C) with a fading rate of 0.07% per cycle. Even at 3C, a capacity of 639.7 mA h g-1 is reached. This proposed unique structure could provide novel insights into high-energy batteries.
Collapse
Affiliation(s)
- Zhicui Song
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China.
| | | | | | | | | |
Collapse
|
10
|
Tailored multifunctional hybrid cathode substrate configured with carbon nanotube-modified polar Co(PO3)2/CoP nanoparticles embedded nitrogen-doped porous-shell carbon polyhedron for high-performance lithium–sulfur batteries. J Colloid Interface Sci 2020; 575:220-230. [DOI: 10.1016/j.jcis.2020.04.104] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 11/19/2022]
|
11
|
Zhou F, Qiao Z, Zhang Y, Xu W, Zheng H, Xie Q, Luo Q, Wang L, Qu B, Peng DL. Bimetallic MOF-derived CNTs-grafted carbon nanocages as sulfur host for high-performance lithium–sulfur batteries. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136378] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
CoS2 embedded graphitic structured N-doped carbon spheres interlinked by rGO as anode materials for high-performance sodium-ion batteries. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135453] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Hao Y, Wang L, Liang Y, He B, Zhang Y, Cheng B, Kang W, Deng N. Bifunctional semi-closed YF 3-doped 1D carbon nanofibers with 3D porous network structure including fluorinating interphases and polysulfide confinement for lithium-sulfur batteries. NANOSCALE 2019; 11:21324-21339. [PMID: 31670739 DOI: 10.1039/c9nr07809f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, semi-closed YF3-doped 1D carbon nanofibers with 3D porous networks (SC-YF3-doped 3D in 1D CNFs) are fabricated for the first time via electro-blown spinning technology. The internal 3D porous networks not only offer a stable 3D electrode structure to accommodate the volume expansion, but also enable a high sulfur loading (80%). More importantly, the external semi-enclosed carbon layer maintains outstanding conductivity and further blocks polysulfide diffusion, which significantly breaks the limitation of a traditional carbon matrix. On the other hand, the YF3 nanoparticles are beneficial for forming more uniform fluorinating electrode interphases, achieving the excellent synergistic effect of chemical and physical adsorption to polysulfide. Therefore, the assembled Li-S batteries exhibit a high reversible discharge capacity of 954.2 mA h g-1 with a decay of merely 0.043% per cycle after 600 cycles at 1C rate. Moreover, the discharge capacity decay can be as low as 0.029% per cycle during 800 cycles at a high current density of 2C rate. Even at a high rate of 5C, the cells still possess a favorable capacity of 636.5 mA h g-1 while steadily operating for 700 cycles with a capacity decay rate of merely 0.056%, implying the great potential of this stable semi-closed cathode structure for industrialization.
Collapse
Affiliation(s)
- Yan Hao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Liyuan Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Yueyao Liang
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Benqiao He
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Yaofang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Bowen Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China. and School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Nanping Deng
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|