1
|
Wahid E, Ocheja OB, Oguntomi SO, Pan R, Grattieri M, Guaragnella N, Guaragnella C, Marsili E. Immobilized Saccharomyces cerevisiae viable cells for electrochemical biosensing of Cu(II). Sci Rep 2025; 15:2678. [PMID: 39838043 PMCID: PMC11751108 DOI: 10.1038/s41598-025-86702-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
Electrodes functionalised with weak electroactive microorganisms offer a viable alternative to conventional chemical sensors for detecting priority pollutants in bioremediation processes. Biofilm-based biosensors have been proposed for this purpose. However, biofilm formation and maturation require 24-48 h, and the microstructure and coverage of the electrode surface cannot be controlled, leading to poorly reproducible signal and sensitivity. Alternatively, semiconductive biocompatible coatings can be used for viable cell immobilization, achieving reproducible coverage and resulting in a stable biosensor response. In this work, we use a polydopamine (PDA)-based coating to immobilize Saccharomyces cerevisiae yeast viable cells on carbon screen printed electrodes (SPE) for Cu(II) detection, with potassium ferricyanide (K3[Fe (CN)6]) as a redox mediator. Under these conditions, the current output correlates with Cu (II) concentration, reaching a limit of detection of 2.2 µM, as calculated from the chronoamperometric response. The bioelectrochemical results are supported by standard viability assays, microscopy, and electrochemical impedance spectroscopy. The PDA coatings can be functionalised with different mutant strains, thus expanding the toolbox for biosensor design in bioremediation.
Collapse
Affiliation(s)
- Ehtisham Wahid
- DEI - Department of Electrical and Information Engineering, Polytechnic of Bari, Via E. Orabona 4, 70125, Bari, Italy
| | - Ohiemi Benjamin Ocheja
- Department of Biosciences, Biotechnology and Environment, University of Bari, Via E. Orabona 4, 70125, Bari, Italy
| | - Sunday Olakunle Oguntomi
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
| | - Run Pan
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
| | - Matteo Grattieri
- Department of Chemistry, University of Bari, Via E. Orabona 4, 70125, Bari, Italy
- Institute for Physicochemical Processes (CNR-IPCF), National Research Council, Via E. Orabona 4, 70125, Bari, Italy
| | - Nicoletta Guaragnella
- Department of Biosciences, Biotechnology and Environment, University of Bari, Via E. Orabona 4, 70125, Bari, Italy
| | - Cataldo Guaragnella
- DEI - Department of Electrical and Information Engineering, Polytechnic of Bari, Via E. Orabona 4, 70125, Bari, Italy
| | - Enrico Marsili
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China.
| |
Collapse
|
2
|
Eghtesadi N, Olaifa K, Perna FM, Capriati V, Trotta M, Ajunwa O, Marsili E. Electroactivity of weak electricigen Bacillus subtilis biofilms in solution containing deep eutectic solvent components. Bioelectrochemistry 2022; 147:108207. [PMID: 35839687 DOI: 10.1016/j.bioelechem.2022.108207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 11/02/2022]
Abstract
Bacillus subtilis is a Gram-positive, spore-forming bacterium with a versatile and adaptable metabolism, which makes it a viable cell factory for microbial production. Electroactivity has recently been identified as a cellular characteristic linked with the metabolic activity of B. subtilis. The enhancement of B. subtilis electroactivity can positively enhance bioproduction of high-added value metabolites under electrofermentative conditions. Here, we explored the use of deep eutectic solvents (DESs) and DES components as biocompatible nutrient additives for enhancing electroactivity of B. subtilis. The strongest electroactivity was obtained in an aqueous choline chloride: glycerol (1:2 mol mol-1) eutectic mixture. At low concentration (50-500 mM), this mixture induced a pseudo-diauxic increase in planktonic growth and increased biofilm formation, likely due to a nutritional and osmoprotectant effect. Similarities in electroactivity enhancements of choline chloride-based eutectic mixtures and quinone redox metabolism in B. subtilis were detected using high performance liquid chromatography and differential pulse voltammetry. Results show that choline chloride-based aqueous eutectic mixtures can enhance biomass and productivity in biofilm-based electrofermentation. However, the specific mechanism needs to be fully elucidated.
Collapse
Affiliation(s)
- Neda Eghtesadi
- Biofilm Laboratory, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nur-Sultan 01000, Kazakhstan
| | - Kayode Olaifa
- Biofilm Laboratory, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nur-Sultan 01000, Kazakhstan
| | - Filippo Maria Perna
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro," via E. Orabona 4, I-70125 Bari, Italy
| | - Vito Capriati
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro," via E. Orabona 4, I-70125 Bari, Italy
| | - Massimo Trotta
- Istituto per i Processi Chimico Fisici, CNR, via E. Orabona 4, I-70125 Bari, Italy
| | - Obinna Ajunwa
- Biofilm Laboratory, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nur-Sultan 01000, Kazakhstan; Department of Microbiology, Modibbo Adama University, Yola, Nigeria.
| | - Enrico Marsili
- Biofilm Laboratory, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nur-Sultan 01000, Kazakhstan.
| |
Collapse
|
3
|
Asare EO, Mun EA, Marsili E, Paunov VN. Nanotechnologies for control of pathogenic microbial biofilms. J Mater Chem B 2022; 10:5129-5153. [PMID: 35735175 DOI: 10.1039/d2tb00233g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biofilms are formed at interfaces by microorganisms, which congregate in microstructured communities embedded in a self-produced extracellular polymeric substance (EPS). Biofilm-related infections are problematic due to the high resistance towards most clinically used antimicrobials, which is associated with high mortality and morbidity, combined with increased hospital stays and overall treatment costs. Several new nanotechnology-based approaches have recently been proposed for targeting resistant bacteria and microbial biofilms. Here we discuss the impacts of biofilms on healthcare, food processing and packaging, and water filtration and distribution systems, and summarize the emerging nanotechnological strategies that are being developed for biofilm prevention, control and eradication. Combination of novel nanomaterials with conventional antimicrobial therapies has shown great potential in producing more effective platforms for controlling biofilms. Recent developments include antimicrobial nanocarriers with enzyme surface functionality that allow passive infection site targeting, degradation of the EPS and delivery of high concentrations of antimicrobials to the residing cells. Several stimuli-responsive antimicrobial formulation strategies have taken advantage of the biofilm microenvironment to enhance interaction and passive delivery into the biofilm sites. Nanoparticles of ultralow size have also been recently employed in formulations to improve the EPS penetration, enhance the carrier efficiency, and improve the cell wall permeability to antimicrobials. We also discuss antimicrobial metal and metal oxide nanoparticle formulations which provide additional mechanical factors through externally induced actuation and generate reactive oxygen species (ROS) within the biofilms. The review helps to bridge microbiology with materials science and nanotechnology, enabling a more comprehensive interdisciplinary approach towards the development of novel antimicrobial treatments and biofilm control strategies.
Collapse
Affiliation(s)
- Evans O Asare
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan.
| | - Ellina A Mun
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan.
| | - Enrico Marsili
- Department of Chemical Engineering, School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan
| | - Vesselin N Paunov
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Nursultan city, 010000, Kazakhstan.
| |
Collapse
|
4
|
Su D, Chen Y. Advanced bioelectrochemical system for nitrogen removal in wastewater. CHEMOSPHERE 2022; 292:133206. [PMID: 34922956 DOI: 10.1016/j.chemosphere.2021.133206] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) pollution in water has become a serious issue that cannot be ignored due to the harm posed by excessive nitrogen to environmental safety and human health; as such, N concentrations in water are strictly limited. The bioelectrochemical system (BES) is a new method to remove excessive N from water, and has attracted considerable attention. Compared with other methods, it is highly efficient and has low energy consumption. However, the BES has not been applied for N removal in practice due to lack of in-depth research on the mechanism and construction of high-performance electrodes, separators, and reactor configurations; this highlights a need to review and examine the efforts in this field. This paper provides a comprehensive review on the current BES research for N removal focusing on the reaction principles, reactor configurations, electrodes and separators, and treatment of actual wastewater; the corresponding performances in these realms are also discussed. Finally, the prospects for N removal in water using the BES are presented.
Collapse
Affiliation(s)
- Dexin Su
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, PR China
| | - Yupeng Chen
- School of Chemistry, Beihang University, Beijing, 100191, PR China.
| |
Collapse
|
5
|
Olaifa K, Ajunwa O, Marsili E. Electroanalytic evaluation of antagonistic effect of azole fungicides on Acinetobacter baumannii biofilms. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
6
|
Mukherjee A, Patel R, Zaveri P, Shah MT, Munshi NS. Microbial fuel cell performance for aromatic hydrocarbon bioremediation and common effluent treatment plant wastewater treatment with bioelectricity generation through series-parallel connection. Lett Appl Microbiol 2021; 75:785-795. [PMID: 34821400 DOI: 10.1111/lam.13612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/07/2022]
Abstract
Microbial fuel cell (MFC) is an emerging technology which has been immensely investigated for wastewater treatment along with electricity generation. In the present study, the treatment efficiency of MFC was investigated for hydrocarbon containing wastewater by optimizing various parameters of MFC. Mediator-less MFC (1·2 l) was constructed, and its performance was compared with mediated MFC with Escherichia coli as a biocatalyst. MFC with electrode having biofilm proved to be better compared with MFC inoculated with suspended cells. Analysis of increasing surface area of electrode by increasing their numbers indicated increase in COD reduction from 55 to 75%. Catholyte volume was optimized to be 750 ml. Sodium benzoate (0·721 g l-1 ) and actual common effluent treatment plant (CETP) wastewater as anolyte produced 0·8 and 0·6 V voltage and 89 and 50% COD reduction, respectively, when a novel consortium of four bacterial strains were used. Twenty MFC systems with the developed consortium when electrically connected in series-parallel connection were able to generate 2·3 V and 0·5 mA current. This is the first report demonstrating the application of CETP wastewater in the MFC system, which shows potential of the system towards degradation of complex organic components present in industrial wastewater.
Collapse
Affiliation(s)
- A Mukherjee
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - R Patel
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - P Zaveri
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| | - M T Shah
- Department of Electrical Engineering, Institute of Technology, Nirma University, Ahmedabad, Gujarat, India
| | - N S Munshi
- Institute of Science, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
7
|
Olaifa K, Nikodinovic-Runic J, Glišić B, Boschetto F, Marin E, Segreto F, Marsili E. Electroanalysis of Candida albicans biofilms: A suitable real-time tool for antifungal testing. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Werwinski S, Wharton JA, Nie M, Stokes KR. Electrochemical Sensing and Characterization of Aerobic Marine Bacterial Biofilms on Gold Electrode Surfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31393-31405. [PMID: 34184862 DOI: 10.1021/acsami.1c02669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Reliable and accurate in situ sensors capable of detecting and quantifying troublesome marine biofilms on metallic surfaces are increasingly necessary. A 0.2 mm diameter gold electrochemical sensor was fully characterized using cyclic voltammetry in abiotic and biotic artificial seawater media within a continuous culture flow cell to detect the growth and development of an aerobic Pseudoalteromonas sp. biofilm. Deconvolution of the abiotic and biotic responses enable the constituent extracellular electron transfer and biofilm responses to be resolved. Differentiation of enhanced oxygen reduction kinetics within the aerobic bacterial biofilm is linked to enzyme and redox mediator activities.
Collapse
Affiliation(s)
- Stephane Werwinski
- National Centre for Advanced Tribology at Southampton (nCATS), School of Engineering, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Julian A Wharton
- National Centre for Advanced Tribology at Southampton (nCATS), School of Engineering, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
| | - Mengyan Nie
- UCL Institute for Materials Discovery, University College London, Malet Place, London WC1E 7JE, U.K
| | - Keith R Stokes
- National Centre for Advanced Tribology at Southampton (nCATS), School of Engineering, University of Southampton, Highfield, Southampton SO17 1BJ, U.K
- Physical Sciences Department, Dstl, Porton Down, Salisbury, Wiltshire SP4 0JQ, U.K
| |
Collapse
|
9
|
Zhang L, Fu Q, Tan Y, Li X, Deng Y, Zhou ZK, Zhou B, Xia H, Chen H, Qiu CW, Zhou J. Metaoptronic Multiplexed Interface for Probing Bioentity Behaviors. NANO LETTERS 2021; 21:2681-2689. [PMID: 33522816 DOI: 10.1021/acs.nanolett.0c04067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biointerface sensors have brought about remarkable advances in modern biomedicine. To accurately monitor bioentity's behaviors, biointerface sensors need to capture three main types of information, which are the electric, spectroscopic, and morphologic signals. Simultaneously obtaining these three types of information is of critical importance in the development of future biosensor, which is still not possible in the existing biosensors. Herein, by synergizing metamaterials, optical, and electronic sensing designs, we proposed the metaoptronic multiplexed interface (MMI) and built a MMI biosensor which can collectively record electric, spectroscopic, and morphologic information on bioentities. The MMI biosensor enables the real-time triple-monitoring of cellular dynamics and opens up the possibility for powerlessly monitoring ocular dryness. Our findings not only demonstrate an advanced multiplexed biointerface sensor with integrated capacities but also help to identify a uniquely significant arena for the nanomaterials, meta-optics, and nanotechnologies to play their roles in a complementary manner.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Quanying Fu
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yayin Tan
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xuemeng Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnosis, Department of Microbiology and Immunology, Guangdong Medical University, Dongguan 523808, China
| | - Yanhui Deng
- State Key Lab of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhang-Kai Zhou
- State Key Lab of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Bin Zhou
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Hongqi Xia
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Huanjun Chen
- Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583
| | - Jianhua Zhou
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
10
|
Hassan RY, Febbraio F, Andreescu S. Microbial Electrochemical Systems: Principles, Construction and Biosensing Applications. SENSORS (BASEL, SWITZERLAND) 2021; 21:1279. [PMID: 33670122 PMCID: PMC7916843 DOI: 10.3390/s21041279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
Microbial electrochemical systems are a fast emerging technology that use microorganisms to harvest the chemical energy from bioorganic materials to produce electrical power. Due to their flexibility and the wide variety of materials that can be used as a source, these devices show promise for applications in many fields including energy, environment and sensing. Microbial electrochemical systems rely on the integration of microbial cells, bioelectrochemistry, material science and electrochemical technologies to achieve effective conversion of the chemical energy stored in organic materials into electrical power. Therefore, the interaction between microorganisms and electrodes and their operation at physiological important potentials are critical for their development. This article provides an overview of the principles and applications of microbial electrochemical systems, their development status and potential for implementation in the biosensing field. It also provides a discussion of the recent developments in the selection of electrode materials to improve electron transfer using nanomaterials along with challenges for achieving practical implementation, and examples of applications in the biosensing field.
Collapse
Affiliation(s)
- Rabeay Y.A. Hassan
- Nanoscience Program, University of Science and Technology (UST), Zewail City of Science and Technology, 6th October City, Giza 12578, Egypt;
- National Research Centre (NRC), Applied Organic Chemistry Department, El Bohouth st., Dokki, Giza 12622, Egypt
| | - Ferdinando Febbraio
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy;
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| |
Collapse
|
11
|
Hu L, Wang N, Tao K, Miao J, Kim YJ. Circular steering of gold–nickel–platinum micro-vehicle using singular off-center nanoengine. INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS 2020. [DOI: 10.1007/s41315-020-00146-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Bharatula LD, Marsili E, Kwan JJ. Impedimetric detection of Pseudomonas aeruginosa attachment on flexible ITO-coated polyethylene terephthalate substrates. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
13
|
Li G, Wu Y, Li Y, Hong Y, Zhao X, Reyes PI, Lu Y. Early stage detection of Staphylococcus epidermidis biofilm formation using MgZnO dual-gate TFT biosensor. Biosens Bioelectron 2019; 151:111993. [PMID: 31999592 DOI: 10.1016/j.bios.2019.111993] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/04/2019] [Accepted: 12/23/2019] [Indexed: 12/20/2022]
Abstract
Early stage detection of biofilm formation is an important aspect of microbial research because once formed, biofilms show serious tolerance to antibiotics in contrast to the free-floating bacteria, which significantly increases the difficulty for clinical treatment of bacterial infections. The early stage detection technology is desired to improve the efficiency of medical treatments. In this work, we present a biosensor consisting of a magnesium zinc oxide (MZO) dual gate thin-film transistor (DGTFT) as the actuator and an MZO nanostructure (MZOnano) array coated conducting pad as the extended sensing gate for the early stage detection of Staphylococcus epidermidis (S. epidermidis) biofilm formation. S. epidermidis bacteria were cultured in vitro on the nanostructure modified sensing pad. Charge transfer occurs between microbial cells and the MZOnano during the initial bacterial adhesion stage. Such electrical signals, which represent the onset of biofilm formation, were dynamically detected by the DGTFT where the top gate electrode was connected to the extended MZOnano sensing pad and the bottom gate was used for biasing the device into the optimum characteristic region for high sensitivity and stable operation. The testing results show that a current change of ~80% is achieved after ~200 min of bacterial culturing. A crystal violet staining-based assay shows that tiny bacterial microcolonies just start to form at 200 min, and that it would take approximately 24 h to form matured biofilms. This technology enables medical professionals to act promptly on bacterial infection before biofilms get fully established.
Collapse
Affiliation(s)
- Guangyuan Li
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854-8058, United States
| | - Yifan Wu
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854-8058, United States
| | - Yuxuan Li
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854-8058, United States
| | - Yuzhi Hong
- Public Health Research Institute and Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, 07103-3535, United States
| | - Xilin Zhao
- Public Health Research Institute and Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, 07103-3535, United States
| | - Pavel Ivanoff Reyes
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854-8058, United States.
| | - Yicheng Lu
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854-8058, United States.
| |
Collapse
|