1
|
Whittingham AWH, Boke M, Smith RDL. Tuning the Oxygen Reduction Reactivity of Layered Perovskites Using the Jahn-Teller Effect. ACS APPLIED MATERIALS & INTERFACES 2024; 16:66961-66970. [PMID: 38602275 DOI: 10.1021/acsami.4c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Compositional tuning of layered perovskite oxides provides a means of systematically studying how local distortions affect fundamental aspects of electrochemical reaction pathways. Structural analysis of a family of samples La1.2Sr0.8Ni1-yCoyO4 shows that Ni-rich compositions have an expanded crystalline c axis, which is anisotropically compressed by systematic Co incorporation. Raman spectra reveal the strong growth of a symmetry forbidden mode, which suggests that Co acts through localized distortions. Crystallographic and spectroscopic parameters describing this structural distortion correlate to the measured Tafel slopes for the oxygen reduction reaction for all Ni-containing samples, which is attributed to the distortion of potential energy surfaces by the Jahn-Teller expansion of d7 Ni(III) cations. Incorporation of Co not only minimizes the distortion but alters the apparent selectivity of the oxygen reduction reaction away from H2O2 and toward H2O. Rotating ring-disk electrochemical measurements, however, indicate that the apparent change in selectivity is due to activation of a first-order chemical disproportionation of H2O2 that is activated by Co in the lattice. These outcomes will support efforts to design electrocatalysts and reactors for the electrochemical synthesis of H2O2.
Collapse
Affiliation(s)
- Alexander W H Whittingham
- Department of Chemistry, University of Waterloo, 200 University Avenue W., Waterloo, Ontario, Canada N2L 3G1
- Advanced Materials Research Facility, National Research Council of Canada, 2620 Speakman Drive, Mississauga, Ontario, Canada L5K 1B4
| | - Marlyn Boke
- Department of Chemistry, University of Waterloo, 200 University Avenue W., Waterloo, Ontario, Canada N2L 3G1
| | - Rodney D L Smith
- Department of Chemistry, University of Waterloo, 200 University Avenue W., Waterloo, Ontario, Canada N2L 3G1
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue W., Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
2
|
Wang D, Jung HD, Liu S, Chen J, Yang H, He Q, Xi S, Back S, Wang L. Revealing the structural evolution of CuAg composites during electrochemical carbon monoxide reduction. Nat Commun 2024; 15:4692. [PMID: 38824127 PMCID: PMC11144262 DOI: 10.1038/s41467-024-49158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/23/2024] [Indexed: 06/03/2024] Open
Abstract
Comprehending the catalyst structural evolution during the electrocatalytic process is crucial for establishing robust structure/performance correlations for future catalysts design. Herein, we interrogate the structural evolution of a promising Cu-Ag oxide catalyst precursor during electrochemical carbon monoxide reduction. By using extensive in situ and ex situ characterization techniques, we reveal that the homogenous oxide precursors undergo a transformation to a bimetallic composite consisting of small Ag nanoparticles enveloped by thin layers of amorphous Cu. We believe that the amorphous Cu layer with undercoordinated nature is responsible for the enhanced catalytic performance of the current catalyst composite. By tuning the Cu/Ag ratio in the oxide precursor, we find that increasing the Ag concentration greatly promotes liquid products formation while suppressing the byproduct hydrogen. CO2/CO co-feeding electrolysis and isotopic labelling experiments suggest that high CO concentrations in the feed favor the formation of multi-carbon products. Overall, we anticipate the insights obtained for Cu-Ag bimetallic systems for CO electroreduction in this study may guide future catalyst design with improved performance.
Collapse
Affiliation(s)
- Di Wang
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Hyun Dong Jung
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, Republic of Korea
| | - Shikai Liu
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Jiayi Chen
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Haozhou Yang
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Qian He
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Seoin Back
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, Republic of Korea.
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- Centre for Hydrogen Innovations, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
Whittingham AWH, Liu X, Smith RDL. How Cation Substitutions Affect the Oxygen Reduction Reaction on La
2−x
Sr
x
Ni
1−y
Fe
y
O
4. ChemCatChem 2022. [DOI: 10.1002/cctc.202101684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alexander W. H. Whittingham
- Department of Chemistry University of Waterloo 200 University Avenue W. Waterloo Ontario N2L 3G1 Canada) E-mail: smithgroup.uwaterloo.ca
| | - Xinran Liu
- Department of Chemistry University of Waterloo 200 University Avenue W. Waterloo Ontario N2L 3G1 Canada) E-mail: smithgroup.uwaterloo.ca
| | - Rodney D. L. Smith
- Department of Chemistry University of Waterloo 200 University Avenue W. Waterloo Ontario N2L 3G1 Canada) E-mail: smithgroup.uwaterloo.ca
- Waterloo Institute for Nanotechnology University of Waterloo 200 University Avenue W. Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
4
|
Zhu J, Wang Y, Zhi A, Chen Z, Shi L, Zhang Z, Zhang Y, Zhu Y, Qiu X, Tian X, Bai X, Zhang Y, Zhu Y. Cation‐Deficiency‐Dependent CO
2
Electroreduction over Copper‐Based Ruddlesden–Popper Perovskite Oxides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiawei Zhu
- School of Chemical and Material Engineering Jiangnan University Wuxi Jiangsu 214122 China
| | - Yanying Wang
- School of Chemical and Material Engineering Jiangnan University Wuxi Jiangsu 214122 China
| | - Aomiao Zhi
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences Beijing 100190 China
| | - Zitao Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences Beijing 100190 China
| | - Lei Shi
- College of Materials Science and Engineering Nanjing Forestry University Nanjing 210037 China
| | - Zhenbao Zhang
- Department of Chemistry College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Yu Zhang
- School of Mechanical and Power Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Yinlong Zhu
- Department of Chemical Engineering Monash University Clayton Victoria 3800 Australia
| | - Xiaoyu Qiu
- School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Xuezeng Tian
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences Beijing 100190 China
| | - Xuedong Bai
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences Beijing 100190 China
| | - Ying Zhang
- School of Chemical and Material Engineering Jiangnan University Wuxi Jiangsu 214122 China
| | - Yongfa Zhu
- Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
5
|
Zhu J, Wang Y, Zhi A, Chen Z, Shi L, Zhang Z, Zhang Y, Zhu Y, Qiu X, Tian X, Bai X, Zhang Y, Zhu Y. Cation-Deficiency-Dependent CO 2 Electroreduction over Copper-Based Ruddlesden-Popper Perovskite Oxides. Angew Chem Int Ed Engl 2021; 61:e202111670. [PMID: 34668284 DOI: 10.1002/anie.202111670] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/01/2021] [Indexed: 01/28/2023]
Abstract
We report an effective strategy to enhance CO2 electroreduction (CER) properties of Cu-based Ruddlesden-Popper (RP) perovskite oxides by engineering their A-site cation deficiencies. With La2-x CuO4-δ (L2-x C, x=0, 0.1, 0.2, and 0.3) as proof-of-concept catalysts, we demonstrate that their CER activity and selectivity (to C2+ or CH4 ) show either a volcano-type or an inverted volcano-type dependence on the x values, with the extreme point at x=0.1. Among them, at -1.4 V, the L1.9 C delivers the optimal activity (51.3 mA cm-2 ) and selectivity (41.5 %) for C2+ , comparable to or better than those of most reported Cu-based oxides, while the L1.7 C exhibits the best activity (25.1 mA cm-2 ) and selectivity (22.1 %) for CH4 . Such optimized CER properties could be ascribed to the favorable merits brought by the cation-deficiency-induced oxygen vacancies and/or CuO/RP hybrids, including the facilitated adsorption/activation of key reaction species and thus the manipulated reaction pathways.
Collapse
Affiliation(s)
- Jiawei Zhu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yanying Wang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Aomiao Zhi
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zitao Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lei Shi
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhenbao Zhang
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Yu Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yinlong Zhu
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Xiaoyu Qiu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xuezeng Tian
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xuedong Bai
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ying Zhang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
6
|
Whittingham AW, Lau J, Smith RD. Mechanistic insights into the spontaneous reaction between CO2 and La2–xSrxCuO4. CAN J CHEM 2021. [DOI: 10.1139/cjc-2021-0059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Layered perovskites such as La2–xSrxCuO4 are active electrocatalysts for CO2 reduction, but they suffer from structural instability under catalytic conditions. This structural instability is found to arise from the reaction of CO2 with surface sites. Variable scan rate voltammetry shows the growth of a Cu-based redox couple when potentials cathodic of 0.6 V vs. RHE are applied in the presence of CO2. Electrochemical impedance spectroscopy identifies a redox active surface state at this voltage, whose concentration is increased by electrochemical reduction in the presence of CO2. In situ spectroelectrochemical FTIR identifies surface bound carbonates as being involved in the formation of these surface sites. The orthorhombic lattice for La2CuO4 is found to uniquely enable binding bidentate binding of carbonate ions to the surface through reaction with CO2. The incorporation of Sr(II) induces a transition to a tetragonal lattice, for which only monodentate carbonate ions are observed. It is proposed that the binding of carbonate ions in a bidentate fashion generates sufficient strain at the surface to result in amorphization at the surface, yielding the observed Cu(II)/Cu(I) redox couple.
Collapse
Affiliation(s)
| | - Jordan Lau
- Department of Chemistry, University of Waterloo, 200 University Avenue W., Waterloo, ON N2L 3G1, Canada
| | - Rodney D.L. Smith
- Department of Chemistry, University of Waterloo, 200 University Avenue W., Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue W., Waterloo, ON N2L 3G1, Canada N2L 3G1
| |
Collapse
|