1
|
Ji B, Li W, Zhang F, Geng P, Li CM. MOF-Derived Transition Metal Phosphides for Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409273. [PMID: 40007089 DOI: 10.1002/smll.202409273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/03/2025] [Indexed: 02/27/2025]
Abstract
Transition metal phosphides (TMPs) in supercapacitors (SCs) applications are increasingly attracting attention because of their exceptional electrochemical performance. MOF-derived TMPs, possess high specific surface areas, rich pore structure, and controllable chemical compositions, offering promising opportunities for supercapacitor applications. There is a wide variety of MOF-derived TMPs, and they exhibit different properties in SCs. This work mainly categorizes MOF-derived TMPs (FexP, CoxP, NixP, NixCoyP, CuxP), and then outlines the latest research advancements regarding their use as electrode materials in SCs, including the latest results of synthesis methods and structural modulation. Subsequently, the applications of MOF-derived TMPs as electrode materials in SCs are discussed. At the end, perspectives of future developments and key challenges in the applications of MOF-derived TMPs in SCs are highlighted, with the aim of providing guidance for future research.
Collapse
Affiliation(s)
- Bing Ji
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215004, P. R. China
| | - Wenxiang Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215004, P. R. China
| | - Feiqing Zhang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215004, P. R. China
| | - Pengbiao Geng
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215004, P. R. China
| | - Chang Ming Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215004, P. R. China
| |
Collapse
|
2
|
One-step solvothermal synthesis of heterostructured nanocomposite Ni0.85Se/MnSe as the high-performance electrode material for supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
Wang X, Li W, Xu Y, Xue Y, Si D, Zhu R, Liu J, Zhou C, Chen Y, Wang G. NiCoP/C composite with hollow sphere as electrodes for high performance supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Patil SS, Patil PS. Status review of nickel phosphides for hybrid supercapacitors. NANOSCALE 2022; 14:16731-16748. [PMID: 36345777 DOI: 10.1039/d2nr05139g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Transition metal phosphides are a new class of materials that have attracted enormous attention as a potential electrode for supercapacitors (SCs) compared to metal oxides/hydroxides and metal sulfides due to their strong redox-active behaviour, good electrical conductivity, layered structure, low cost, and high chemical and thermal stability. Recently, several efforts have been made to develop nickel phosphides (NixPy) (NPs) for high-performance SCs. The electrochemical properties of NPs can be easily tuned by several innovative approaches, such as heteroatom doping, defect engineering, and developing a hollow architecture. The prospects of NPs as a positive electrode in hybrid SCs are summarized to understand the material's practical relevance. Finally, the challenges and perspectives are provided for the development of high-performance NPs for SCs. The thorough elucidation of the structure-property-performance relationship offers a guide for developing NP-based next-generation energy-storage devices.
Collapse
Affiliation(s)
- Satyajeet S Patil
- Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004, M.S., India.
| | - Pramod S Patil
- Thin Film Materials Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004, M.S., India.
| |
Collapse
|
5
|
Zhao T, Wu H, Wen X, Zhang J, Tang H, Deng Y, Liao S, Tian X. Recent advances in MOFs/MOF derived nanomaterials toward high-efficiency aqueous zinc ion batteries. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Ji Z, Liu K, Chen L, Nie Y, Pasang D, Yu Q, Shen X, Xu K, Premlatha S. Hierarchical flower-like architecture of nickel phosphide anchored with nitrogen-doped carbon quantum dots and cobalt oxide for advanced hybrid supercapacitors. J Colloid Interface Sci 2021; 609:503-512. [PMID: 34809991 DOI: 10.1016/j.jcis.2021.11.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 01/20/2023]
Abstract
The exploitation of hybrid supercapacitors with excellent electrochemical properties is of great significance for energy storage systems. Herein, a three-dimensional hierarchical flower-like architecture of nickel phosphide (Ni2P) decorated with nitrogen-doped carbon quantum dots (N-CQDs) and cobalt oxide (Co3O4) is constructed by an effective two-step hydrothermal strategy followed by in situ phosphorization process. Introducing N-CQDs with superior electrochemical characteristics can not only induce the formation of N-CQDs deposited nickel hydroxide (Ni(OH)2) flower-like architecture but also significantly enhance the electrochemical features of Ni(OH)2 nanosheets. After combination with Co3O4 nanoparticles and phosphorization treatment, an advanced cathode of Ni2P/Co3O4/N-CQDs with enriched surface phosphate ions is obtained, which possesses an ultra-high capacity of 1044 C g-1 (2088 F g-1) at 1 A g-1 with a splendid rate capacity of 876 C g-1 (1752 F g-1) at 20 A g-1. Moreover, a device assembled by Ni2P/Co3O4/N-CQDs hierarchical flower-like architecture and p-phenylenediamine functionalized reduced graphene oxide (PPD/rGO) nanosheets depicts a commendable energy density of 53.5 Wh kg-1 at 772.9 W kg-1. This work provides a novel hierarchical multi-component electrode material with decent electrochemical capacities for hybrid supercapacitors, which has a broad prospect in energy storage devices.
Collapse
Affiliation(s)
- Zhenyuan Ji
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Kai Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lizhi Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yunjin Nie
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Drolma Pasang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qiang Yu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiaoping Shen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Keqiang Xu
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Subramanian Premlatha
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
7
|
Liu C, Yue W, Li Y, Huang A. Synthesis of Co 3 O 4 /Carbon Heteroaerogels with Ultrahigh Capacitance via Polyethyleneimine Intercalation of Co 2 BIM 4 Nanosheets. Chemistry 2021; 27:4876-4882. [PMID: 33377252 DOI: 10.1002/chem.202004935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/27/2020] [Indexed: 11/07/2022]
Abstract
The development of metal-organic frameworks (MOFs)-based supercapacitors have attracted intense concentration in recent years due to their regularly arranged porous and tunable pore sizes. However, the performance of the MOFs-derived supercapacitors is also low because of their poor electrical conductivity and rarely accessible active sites. In the present work, we developed a Co-MOF (namely Co2 BIM4 , BIM=benzimidazole) nanosheets derived Co3 O4 /nitrogen-doped carbon (Co2 BIM4 -Co3 O4 /NC) heteroaerogel as a novel supercapacitor electrode. The 3D Co2 BIM4 -Co3 O4 /NC heteroaerogels were obtained by directly intercalating polyethyleneimine (PEI) into the interlayers of Co2 BIM4 nanosheets and following by carbonizing the resulting Co2 BIM4 /PEI composite. The Co2 BIM4 -Co3 O4 /NC electrode possessed 3D conductive framework with an overlapped hetero-interface and expanded interlayers, leading to fast and stable charge transfer/diffusion and an enhanced pseudocapacitance performance. Therefore, the Co2 BIM4 -Co3 O4 /NC electrode showed ultrahigh capacitance of 2568 F g-1 at 1 A g-1 , 1747 F g-1 at 10 A g-1 , and excellent long cycling time with a capacitance preservation of 92.7 % following 10000 cycles at 10 A g-1 , which is very promising for applications in supercapacitors and other energy storage devices.
Collapse
Affiliation(s)
- Chuanyao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, P. R. China
| | - Wenzhe Yue
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, P. R. China
| | - Yanhong Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, P. R. China
| | - Aisheng Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 500 Dongchuan Road, 200241, Shanghai, P. R. China
| |
Collapse
|
8
|
Kang C, Fang J, Fu L, Li S, Liu Q. Hierarchical Carbon Nanowire/Ni@MnO
2
Nanocomposites for High‐Performance Asymmetric Supercapacitors. Chemistry 2020; 26:16392-16401. [DOI: 10.1002/chem.202002724] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/25/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Chenxia Kang
- Key Laboratory of Artificial Micro- and Nano-structures, of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 P. R. China
| | - Ju Fang
- Key Laboratory of Artificial Micro- and Nano-structures, of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 P. R. China
| | - Likang Fu
- Key Laboratory of Artificial Micro- and Nano-structures, of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 P. R. China
| | - Shuxian Li
- Key Laboratory of Artificial Micro- and Nano-structures, of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 P. R. China
| | - Qiming Liu
- Key Laboratory of Artificial Micro- and Nano-structures, of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 P. R. China
| |
Collapse
|
9
|
Kwon OH, Oh JH, Gu B, Jo MS, Oh SH, Kang YC, Kim J, Jeong SM, Cho JS. Porous SnO 2/C Nanofiber Anodes and LiFePO 4/C Nanofiber Cathodes with a Wrinkle Structure for Stretchable Lithium Polymer Batteries with High Electrochemical Performance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001358. [PMID: 32995129 PMCID: PMC7507473 DOI: 10.1002/advs.202001358] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/21/2020] [Indexed: 06/01/2023]
Abstract
Stretchable lithium batteries have attracted considerable attention as components in future electronic devices, such as wearable devices, sensors, and body-attachment healthcare devices. However, several challenges still exist in the bid to obtain excellent electrochemical properties for stretchable batteries. Here, a unique stretchable lithium full-cell battery is designed using 1D nanofiber active materials, stretchable gel polymer electrolyte, and wrinkle structure electrodes. A SnO2/C nanofiber anode and a LiFePO4/C nanofiber cathode introduce meso- and micropores for lithium-ion diffusion and electrolyte penetration. The stretchable full-cell consists of an elastic poly(dimethylsiloxane) (PDMS) wrapping film, SnO2/C and LiFePO4/C nanofiber electrodes with a wrinkle structure fixed on the PDMS wrapping film by an adhesive polymer, and a gel polymer electrolyte. The specific capacity of the stretchable full-battery is maintained at 128.3 mAh g-1 (capacity retention of 92%) even after a 30% strain, as compared with 136.8 mAh g-1 before strain. The energy densities are 458.8 Wh kg-1 in the released state and 423.4 Wh kg-1 in the stretched state (based on the electrode), respectively. The high capacity and stability in the stretched state demonstrate the potential of the stretchable battery to overcome its limitations.
Collapse
Affiliation(s)
- O. Hyeon Kwon
- Department of Energy Convergence EngineeringCheongju UniversityCheongjuChungbuk28503Republic of Korea
| | - Jang Hyeok Oh
- Department of Engineering ChemistryChungbuk National UniversityCheongjuChungbuk361‐763Republic of Korea
| | - Bobae Gu
- Department of Energy Convergence EngineeringCheongju UniversityCheongjuChungbuk28503Republic of Korea
| | - Min Su Jo
- Department of Engineering ChemistryChungbuk National UniversityCheongjuChungbuk361‐763Republic of Korea
| | - Se Hwan Oh
- Department of Engineering ChemistryChungbuk National UniversityCheongjuChungbuk361‐763Republic of Korea
| | - Yun Chan Kang
- Department of Materials Science and EngineeringKorea UniversityAnam‐Dong, Seongbuk‐GuSeoul136‐713Republic of Korea
| | - Jae‐Kwang Kim
- Department of Energy Convergence EngineeringCheongju UniversityCheongjuChungbuk28503Republic of Korea
| | - Sang Mun Jeong
- Department of Chemical EngineeringChungbuk National UniversityCheongjuChungbuk361‐763Republic of Korea
| | - Jung Sang Cho
- Department of Engineering ChemistryChungbuk National UniversityCheongjuChungbuk361‐763Republic of Korea
| |
Collapse
|
10
|
Three-dimensional coral-like Ni2P-ACC nanostructure as binder-free electrode for greatly improved supercapacitor. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|