1
|
Bharati K, Gupta M, Rajkumari, Tiwari PR, Singh RP, Bhardwaj B, Singh KA, Yadav BC, Tripathi S, Kumar S. LPG Sensing Study of Calcium-Doped Praseodymium Orthoferrite Nanomaterial. Anal Chem 2024; 96:19491-19503. [PMID: 39572400 DOI: 10.1021/acs.analchem.4c04076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Liquefied petroleum gas (LPG) is a modern fuel for kitchens, vehicles, and industry. Leakage of LPG is extremely fatal for humans and the atmosphere; therefore, quick detection is a vital need. The sol-gel self-combustion process was applied to synthesize the calcium-doped praseodymium orthoferrite (PrFeO3) nanomaterials. Synthesized nanoparticles were analyzed by powder X-ray diffraction (PXRD) for phase and crystallite size, energy dispersive X-ray (EDX) for elemental composition and field emission scanning electron microscopy (FESEM) for surface morphology, high-resolution transmission electron microscopy (HR-TEM) for structural and morphology, ultraviolet-visible (UV-vis) spectroscopy for absorption behavior and energy band gap, Brunauer-Emmett-Teller (BET) for surface analysis, and Fourier transform infrared spectroscopy (FTIR) for the vibrational study. The PXRD illustrates that the crystallite size reduces from 27.72 to 20.49 with the rising content of calcium. The FESEM and EDX interpret the morphology and elemental composition/mapping. The UV-vis spectroscopy reveals that the band gap is decreasing from 2.25 to 1.87 eV with the increasing concentration of calcium. The optimized nanomaterials were explored for LPG sensing. Recovery time, response time, sensor response, etc., were determined and discussed. This study divulges that the composition Pr0.8Ca0.2FeO3 has optimum sensor response, selectivity, and least response and recovery times of 7.5 and 7.1 s, respectively. The designed sensor shows good selectivity for LPG at ambient temperature. The current study points out that the developed sensor outperforms in terms of response and recovery times when compared with other LPG sensors based on perovskite materials. The gas sensing mechanism has been explained.
Collapse
Affiliation(s)
- Keval Bharati
- Nano Materials Laboratory, Department of Physics, Faculty of Engineering and Technology, V. B. S. Purvanchal University, Jaunpur, Uttar Pradesh 222003, India
| | - Monu Gupta
- Nanomaterials and Sensors Research Laboratory, Department of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Rajkumari
- Department of Physics, T. D. P. G. College Jaunpur, Jaunpur, Uttar Pradesh 222001, India
| | - Prabhat Ranjan Tiwari
- Nano Materials Laboratory, Department of Physics, Faculty of Engineering and Technology, V. B. S. Purvanchal University, Jaunpur, Uttar Pradesh 222003, India
| | - Rahul Pratap Singh
- Nano Materials Laboratory, Department of Physics, Faculty of Engineering and Technology, V. B. S. Purvanchal University, Jaunpur, Uttar Pradesh 222003, India
| | - Bala Bhardwaj
- Nano Materials Laboratory, Department of Physics, Faculty of Engineering and Technology, V. B. S. Purvanchal University, Jaunpur, Uttar Pradesh 222003, India
| | - Kuwar Ankur Singh
- Nano Materials Laboratory, Department of Physics, Faculty of Engineering and Technology, V. B. S. Purvanchal University, Jaunpur, Uttar Pradesh 222003, India
| | - Bal Chandra Yadav
- Nanomaterials and Sensors Research Laboratory, Department of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh 226025, India
| | - Shipra Tripathi
- Department of Physics, Faculty of Science and Technology, Dr. Shakuntala Misra National Rehabilitation University, Lucknow, Uttar Pradesh 226017, India
| | - Santosh Kumar
- Nano Materials Laboratory, Department of Physics, Faculty of Engineering and Technology, V. B. S. Purvanchal University, Jaunpur, Uttar Pradesh 222003, India
| |
Collapse
|
2
|
Sun X, Lan Z, Wang M, Geng Q, Lv X, Li M. Multifunctional Role of Ag-Substitution in Enhancing the Photoelectrochemical Properties of LaFeO 3 Photocathodes. CHEMSUSCHEM 2023; 16:e202300645. [PMID: 37438975 DOI: 10.1002/cssc.202300645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/17/2023] [Accepted: 07/10/2023] [Indexed: 07/14/2023]
Abstract
Earth-abundant LaFeO3 is a promising p-type semiconductor for photoelectrochemical cells due to its stable photoresponses, high photovoltages and appropriate band alignments, but the photoelectrochemical properties of LaFeO3 , especially the incident-photon-to-current conversion efficiency, need to be further improved. Herein, we propose to partially substitute La3+ of LaFeO3 with Ag+ to enhance the photoelectrochemical performance of LaFeO3 . The combined experimental and computational studies show that Ag-substitution improves surface charge transfer kinetics through introducing active electronic states and increasing electrochemically active surface areas. Furthermore, Ag-substitution decreases grain boundary number and increases majority carrier density, which promotes bulk charge transports. Ag-substitution also reduces the bandgap energy, increasing the flux of carriers involved in photoelectrochemical reactions. As a result, after 8 % Ag-substitution, the photocurrent density of LaFeO3 is enhanced by more than 6 times (-0.64 mA cm-2 at 0.5 V vs RHE) in the presence of oxygen, which is the highest photocurrent gain compared with other cation substitution or doping. The corresponding photocurrent onset potential also demonstrates a positive shift of 30 mV. This work highlights the versatile effects of Ag-substitution on the photoelectrochemical properties of LaFeO3 , which can provide useful insights into the mechanism of enhanced photoelectrochemical performance by doping or substitution.
Collapse
Affiliation(s)
- Xin Sun
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing, 102206, China
| | - Zhineng Lan
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing, 102206, China
| | - Min Wang
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing, 102206, China
| | - Qi Geng
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing, 102206, China
| | - Xiaojun Lv
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing, 102206, China
| | - Meicheng Li
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing, 102206, China
| |
Collapse
|
3
|
Photoelectrochemical Conversion of Sewage Water into H2 Fuel over the CuFeO2/CuO/Cu Composite Electrode. Catalysts 2023. [DOI: 10.3390/catal13030456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
This study describes the synthesis of delafossite, CuFeO2, as a primary photocatalytic material for hydrogen generation. A photoelectrode, CuFeO2/CuO/Cu, was prepared by combusting a Cu foil dipped in FeCl3 in ambient air. This photoelectrode showed excellent optical behavior for the hydrogen generation reaction from sewage water, producing 90 µmol/h of H2. The chemical structure was confirmed through XRD and XPS analyses, and the crystalline rhombohedral shape of CuFeO2 was confirmed using SEM and TEM analyses. With a bandgap of 1.35 ev, the prepared material displayed excellent optical properties. Electrochemical measurements for H2 gas generation were carried out using the CuFeO2/CuO/Cu photoelectrode, comparing the effect of light and dark and monochromatic wavelength light. The electrode exhibited significant enhancement in light compared to dark, with current density (Jph) values of −0.83 and −0.1 mA·cm−2, respectively. The monochromatic light also had a noticeable effect, with the Jph value increasing from −0.45 to −0.79 mA·cm−2 as the wavelength increased from 640 to 390 nm. This system is cheap and durable, making it a promising solution for hydrogen gas fuel generation in the industry.
Collapse
|
4
|
ATO/Polyaniline/PbS Nanocomposite as Highly Efficient Photoelectrode for Hydrogen Production from Wastewater with Theoretical Study for the Water Splitting. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/5628032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polyaniline-assisted deposition of PbS is carried out on antimony tin oxide (ATO) glass for ATO/PANI/PbS composite formation. The deposition of PbS was carried out inside and outside the polymer chains using the ionic adsorption deposition process. Various analyses were conducted to confirm the chemical structure and morphological, optical, and electrical properties of the resulting composite. TEM and SEM analyses demonstrated the spherical shape of PbS particles inside and outside the PANI network with more dark or white color, respectively. Moreover, the ImageJ program confirmed the composite formation. The XRD characterization showed the shifts in the PANI peaks after the composite formation with the appearance of a new additional peak related to PbS nanoparticles. The optical analyses were massively enhanced after the composite formation with more broadening in the Vis region at 630 nm, in which there was more enhancement in the bandgap that reached 1.5 eV. The electrode application in the H2 generation process was carried out from wastewater (sewage water, third treatment) without any additional sacrificing agent. The electrode responded well to light, where the current density (
) changed from 10-6 to 0.13 mA.cm-2 under dark and light, respectively. The electrode had high reproducibility and stability. The numbers of generated H2 moles were 0.1 mmol/cm2.h. The produced
and
were 7.3 kJ/mol and 273.4 J/mol.K, respectively. Finally, the mechanism explains the H2 generation reaction using three-electrode cell.
Collapse
|
5
|
Bunch of Grape-Like Shape PANI/Ag2O/Ag Nanocomposite Photocatalyst for Hydrogen Generation from Wastewater. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/4282485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polyaniline (PANI) and PANI/Ag2O/Ag composites I and II were prepared under different AgNO3 oxidant concentrations using the oxidative photopolymerization method. The chemical structure and optical, electrical, and morphological properties were determined for the prepared nanocomposite. The PANI/Ag2O/Ag composite II has the optimum optical properties, in which the bandgaps of PANI, composite I, and composite II are 3.02, 1.71, and 1.68 eV, respectively, with the morphology of a bunch of grape-like shapes with average particles sizes of 25 nm. Under the optimum optical properties, glass/PANI/Ag2O/Ag composite II electrode is used for hydrogen generation from sewage water. The measurements are carried out from a three-electrode cell under a xenon lamp. The effects of light wavelengths and temperature on the produced current density (
) are mentioned. Under the applied voltage (at 30°C), the current density values (
) increase from 0.003 to 0.012 mA.cm-2 in dark and light, respectively. While increasing the temperature,
values increase to 0.032 mAcm-2 at 60°C. The thermodynamic parameters are calculated, in which the activation energy (
), enthalpy (
), and entropy (
) values are 27.1 kJ·mol-1, 24.5 J mol-1, and 140.5 J K-1 mol-1, respectively. Finally, a simple mechanism for the produced hydrogen generation rate is mentioned. The prepared electrode is a very cheap (1$ for
) electrode.
Collapse
|
6
|
Conversion of Sewage Water into H 2 Gas Fuel Using Hexagonal Nanosheets of the Polyaniline-Assisted Deposition of PbI 2 as a Nanocomposite Photocathode with the Theoretical Qualitative Ab-Initio Calculation of the H 2O Splitting. Polymers (Basel) 2022; 14:polym14112148. [PMID: 35683821 PMCID: PMC9183036 DOI: 10.3390/polym14112148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
This study is very promising for providing a renewable enrgy (H2 gas fuel) under the elctrochemical splitting of the wastwater (sewage water). This study has double benefits: hydrogen generation and contaminations removel. This study is carried out on sewage water, third stage treated, from Beni-Suef city, Egypt. Antimony tin oxide (ATO)/polyaniline (PANI)/PbI2 photoelectrode is prepared through the in situ oxidative polymerization of PANI on ATO, then PANI is used as an assistant for PbI2 deposition using the ionic adsorption deposition method. The chemical structural, morphological, electrical, and optical properties of the composite are confirmed using different analytical tools such as X-ray diffreaction (XRD), scanning electron microscope (SEM), transmision electron microscope (TEM), Fourier-transform infrared spectroscopy (FTIR), and UV-Vis spectroscopy. The prepared PbI2 inside the composite has a crystal size of 33 nm (according to the peak at 12.8°) through the XRD analyses device. SEM and TEM confirm the hexagonal PbI2 sheets embedded on the PANI nanopores surface. Moreover, the bandgap values are enhanced very much after the composite formation, in which the bandgap values for PANI and PANI/PbI2 are 3 and 2.51 eV, respectively. The application of ATO/PANI/PbI2 nanocomposite electrode for sewage splitting and H2 generation is carried out through a three-electrode cell. The measurements carreid out using the electrocehical worksattion under th Xenon lamp (100 mW.cm−2). The produced current density (Jph) is 0.095 mA.cm−2 at 100 mW.cm−2 light illumination. The photoelectrode has high reproducibility and stability, in which and the number of H2 moles is 6 µmole.h−1.cm−1. The photoelectrode response to different monochromatic light, in which the produced Jph decreases from 0.077 to 0.072 mA.cm−2 with decreasing of the wavelengths from 390 to 636 nm, respectively. These values confirms the high response of the ATO/PANI/PbI2 nanocomposite electrode for the light illuminaton and hydrogen genration under broad light region. The thermodynamic parameters: activation energy (Ea), enthalpy (ΔH*), and entropy (ΔS*) values are 7.33 kJ/mol, −4.7 kJ/mol, and 203.3 J/mol.K, respectively. The small values of ΔS* relted to the high sesnivity of the prepared elctrode for the water splitting and then the hydrogen gneration. Finally, a theoretical study was mentioned for calculation geometry, electrochemical, and thermochemistry properties of the polyaniline/PbI2 nanocomposite as compared with that for the polyaniline.
Collapse
|
7
|
Hadia NMA, Abdelazeez AAA, Alzaid M, Shaban M, Mohamed SH, Hoex B, Hajjiah A, Rabia M. Converting Sewage Water into H 2 Fuel Gas Using Cu/CuO Nanoporous Photocatalytic Electrodes. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1489. [PMID: 35208029 PMCID: PMC8879772 DOI: 10.3390/ma15041489] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 11/17/2022]
Abstract
This work reports on H2 fuel generation from sewage water using Cu/CuO nanoporous (NP) electrodes. This is a novel concept for converting contaminated water into H2 fuel. The preparation of Cu/CuO NP was achieved using a simple thermal combustion process of Cu metallic foil at 550 °C for 1 h. The Cu/CuO surface consists of island-like structures, with an inter-distance of 100 nm. Each island has a highly porous surface with a pore diameter of about 250 nm. X-ray diffraction (XRD) confirmed the formation of monoclinic Cu/CuO NP material with a crystallite size of 89 nm. The prepared Cu/CuO photoelectrode was applied for H2 generation from sewage water achieving an incident to photon conversion efficiency (IPCE) of 14.6%. Further, the effects of light intensity and wavelength on the photoelectrode performance were assessed. The current density (Jph) value increased from 2.17 to 4.7 mA·cm-2 upon raising the light power density from 50 to 100 mW·cm-2. Moreover, the enthalpy (ΔH*) and entropy (ΔS*) values of Cu/CuO electrode were determined as 9.519 KJ mol-1 and 180.4 JK-1·mol-1, respectively. The results obtained in the present study are very promising for solving the problem of energy in far regions by converting sewage water to H2 fuel.
Collapse
Affiliation(s)
- N. M. A. Hadia
- Physics Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia;
- Basic Sciences Research Unit, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Ahmed Adel A. Abdelazeez
- Nanoscale Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA;
- State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Meshal Alzaid
- Physics Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia;
| | - Mohamed Shaban
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (M.S.); (M.R.)
- Department of Physics, Faculty of Science, Islamic University of Madinah, Prince Naifbin Abdulaziz, Al Jamiah, Madinah 42351, Saudi Arabia;
| | - S. H. Mohamed
- Department of Physics, Faculty of Science, Islamic University of Madinah, Prince Naifbin Abdulaziz, Al Jamiah, Madinah 42351, Saudi Arabia;
- Physics Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Bram Hoex
- School of Photovoltaics and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Ali Hajjiah
- Electrical Engineering Department, College of Engineering and Petroleum, Kuwait University, Safat 13113, Kuwait
| | - Mohamed Rabia
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (M.S.); (M.R.)
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
8
|
Effect of Au Plasmonic Material on Poly M-Toluidine for Photoelectrochemical Hydrogen Generation from Sewage Water. Polymers (Basel) 2022; 14:polym14040768. [PMID: 35215683 PMCID: PMC8878796 DOI: 10.3390/polym14040768] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
This study provides H2 gas as a renewable energy source from sewage water splitting reaction using a PMT/Au photocathode. So, this study has a dual benefit for hydrogen generation; at the same time, it removes the contaminations of sewage water. The preparation of the PMT is carried out through the polymerization process from an acid medium. Then, the Au sputter was carried out using the sputter device under different times (1 and 2 min) for PMT/Au-1 min and PMT/Au-2min, respectively. The complete analyses confirm the chemical structure, such as XRD, FTIR, HNMR, SEM, and Vis-UV optical analyses. The prepared electrode PMT/Au is used for the hydrogen generation reaction using Na2S2O3 or sewage water as an electrolyte. The PMT crystalline size is 15 nm. The incident photon to current efficiency (IPCE) efficiency increases from 2.3 to 3.6% (at 390 nm), and the number of H2 moles increases from 8.4 to 33.1 mmol h−1 cm−2 for using Na2S2O3 and sewage water as electrolyte, respectively. Moreover, all the thermodynamic parameters, such as activation energy (Ea), enthalpy (ΔH*), and entropy (ΔS*), were calculated; additionally, a simple mechanism is mentioned for the water-splitting reaction.
Collapse
|
9
|
Seroglazova AS, Lebedev LA, Chebanenko MI, Sklyarova AS, Buryanenko IV, Semenov VG, Popkov VI. Ox/Red-controllable combustion synthesis of foam-like PrFeO3 nanopowders for effective photo-Fenton degradation of methyl violet. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2021.103398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
10
|
Abdelazeez AAA, El-Fatah GA, Shaban M, Ahmed AM, Rabia M. ITO/Poly-3-Methylaniline/Au Electrode for Electrochemical Water Splitting and Dye Removal. ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY 2021; 10:123009. [DOI: 10.1149/2162-8777/ac3d1a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Application of aniline derivative semiconductor nanopolymer and its Au composite for H2 generation and dye removal were investigated. Electrochemical polymerization of poly-3-methylaniline (P3MA) on ITO glass was carried out for acid medium. Au nanoparticles with crystal sizes of 15 and 30 nm were sputter coated on the surface. Chemical structure of the polymer and its composite was characterized using FTIR, XRD, 1HNMR, SEM, and UV-Vis. All function groups were confirmed using FTIR analyses. XRD confirmed the formation of nanopolymer with a crystal size of ∼15 nm. SEM confirmed the formation of smooth lamellar surface feature with a <20 nm nanoporous structure. Porosity and particle sizes increases with Au coating, confirmed using the modeling Image J program. Optical analysis also demonstrated that the strength of P3MA absorption peaks increases with rising Au coating time, in which the bandgap values changed from 1.64 to 1.63 eV for 15 and 30 nm Au, respectively. The photoelectrode ITO/PMT/30 nm Au was applied for H2 generation and dye removal. The current density (J
ph) values were −0.3 and −1.6 mA.cm−2 in the absence and presence of the Congo red dye, respectively. The incident photon-to-current conversion efficiency (IPCE%) for the electrode was 2.3 at 390 nm. The activation energy (E
a
) was 31.49 KJ mol−1. The enthalpy (∆H
*
) and entropy (∆S
*
) values were 114.49 and 160.46 JK−1 mol−1, respectively. A simple mechanism for the H2 generation and dye removal is mentioned.
Collapse
|
11
|
Almohammedi A, Shaban M, Mostafa H, Rabia M. Nanoporous TiN/TiO 2/Alumina Membrane for Photoelectrochemical Hydrogen Production from Sewage Water. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2617. [PMID: 34685061 PMCID: PMC8540468 DOI: 10.3390/nano11102617] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/25/2022]
Abstract
An aluminum oxide, Al2O3, template is prepared using a novel Ni imprinting method with high hexagonal pore accuracy and order. The pore diameter after the widening process is about 320 nm. TiO2 layer is deposited inside the template using atomic layer deposition (ALD) followed by the deposition of 6 nm TiN thin film over the TiO2 using a direct current (DC) sputtering unit. The prepared nanotubular TiN/TiO2/Al2O3 was fully characterized using different analytical tools such as X-ray diffraction (XRD), Energy-dispersive X-ray (EDX) spectroscopy, scanning electron microscopy (SEM), and optical UV-Vis spectroscopy. Exploring the current-voltage relationships under different light intensities, wavelengths, and temperatures was used to investigate the electrode's application before and after Au coating for H2 production from sewage water splitting without the use of any sacrificing agents. All thermodynamic parameters were determined, as well as quantum efficiency (QE) and incident photon to current conversion efficiency (IPCE). The QE was 0.25% and 0.34% at 400 mW·cm-2 for the photoelectrode before and after Au coating, respectively. Also, the activation energy was 27.22 and 18.84 kJ·mol-1, the enthalpy was 24.26 and 15.77 J·mol-1, and the entropy was 238.1 and 211.5 kJ-1·mol-1 before and after Au coating, respectively. Because of its high stability and low cost, the prepared photoelectrode may be suitable for industrial applications.
Collapse
Affiliation(s)
- Abdullah Almohammedi
- Department of Physics, Faculty of Science, Islamic University in Madinah, Al-Madinah Al-Munawarah 42351, Saudi Arabia;
| | - Mohamed Shaban
- Department of Physics, Faculty of Science, Islamic University in Madinah, Al-Madinah Al-Munawarah 42351, Saudi Arabia;
| | - Huda Mostafa
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (H.M.); (M.R.)
| | - Mohamed Rabia
- Nanophotonics and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt; (H.M.); (M.R.)
- Polymer Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
12
|
Quiñonero J, Pastor FJ, Orts JM, Gómez R. Photoelectrochemical Behavior and Computational Insights for Pristine and Doped NdFeO 3 Thin-Film Photocathodes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14150-14159. [PMID: 33728897 PMCID: PMC8485327 DOI: 10.1021/acsami.0c21792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Among the different strategies that are being developed to solve the current energy challenge, harvesting energy directly from sunlight through a tandem photoelectrochemical cell (water splitting) is most attractive. Its implementation requires the development of stable and efficient photocathodes, NdFeO3 being a suitable candidate among ternary oxides. In this study, transparent NdFeO3 thin-film photocathodes have been successfully prepared by a citric acid-based sol-gel procedure, followed by thermal treatment in air at 640 °C. These electrodes show photocurrents for both the hydrogen evolution and oxygen reduction reactions. Doping with Mg2+ and Zn2+ has been observed to significantly enhance the photoelectrocatalytic performance of NdFeO3 toward oxygen reduction. Magnesium is slightly more efficient as a dopant than Zn, leading to a multiplication of the photocurrent by a factor of 4-5 for a doping level of 5 at % (with respect to iron atoms). This same trend is observed for hydrogen evolution. The beneficial effect of doping is primarily attributed to an increase in the density and a change in the nature of the majority charge carriers. DFT calculations help to rationalize the behavior of NdFeO3 by pointing to the importance of nanostructuring and doping. All in all, NdFeO3 has the potential to be used as a photocathode in photoelectrochemical applications, although efforts should be directed to limit surface recombination.
Collapse
Affiliation(s)
- Javier Quiñonero
- Departament
de Química Física, Institut Universitari d’Electroquímica, Universitat d’Alacant, Apartat 99, E-03080 Alicante, Spain
| | - Francisco J. Pastor
- Departament
de Química Física, Institut Universitari d’Electroquímica, Universitat d’Alacant, Apartat 99, E-03080 Alicante, Spain
| | - José M. Orts
- Departament
de Química Física, Institut Universitari d’Electroquímica, Universitat d’Alacant, Apartat 99, E-03080 Alicante, Spain
| | - Roberto Gómez
- Departament
de Química Física, Institut Universitari d’Electroquímica, Universitat d’Alacant, Apartat 99, E-03080 Alicante, Spain
| |
Collapse
|
13
|
Sun X, Tiwari D, Fermin DJ. Promoting Active Electronic States in LaFeO 3 Thin-Films Photocathodes via Alkaline-Earth Metal Substitution. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31486-31495. [PMID: 32539332 DOI: 10.1021/acsami.0c08174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The effects of alkaline-earth metal cation (AMC; Mg2+, Ca2+, Sr2+, and Ba2+) substitution on the photoelectrochemical properties of phase-pure LaFeO3 (LFO) thin-films are elucidated by X-ray photoemission spectroscopy (XPS), X-ray diffraction (XRD), diffuse reflectance, and electrochemical impedance spectroscopy (EIS). XRD confirms the formation of single-phase cubic LFO thin films with a rather complex dependence on the nature of the AMC and extent of substitution. Interestingly, subtle trends in lattice constant variations observed in XRD are closely correlated with shifts in the binding energies of Fe 2p3/2 and O 1s orbitals associated with the perovskite lattice. We establish a scaling factor between these two photoemission peaks, unveiling key correlation between Fe oxidation state and Fe-O covalency. Diffuse reflectance shows that optical transitions are little affected by AMC substitution below 10%, which are dominated by a direct bandgap transition close to 2.72 eV. Differential capacitance data obtained from EIS confirm the p-type characteristic of pristine LFO thin-films, revealing the presence of sub-bandgap electronic state (A-states) close to the valence band edge. The density of A-states is decreased upon AMC substitution, while the overall capacitance increases (increase in dopant level) and the apparent flat-band potential shifts toward more positive potentials. This behavior is consistent with the change in the valence band photoemission edge. In addition, capacitance data of cation-substituted films show the emergence of deeper states centered around 0.6 eV above the valence band edge (B-states). Photoelectrochemical responses toward the hydrogen evolution and oxygen reduction reactions in alkaline solutions show a complex dependence on alkaline-earth metal incorporation, reaching incident-photon-to-current conversion efficiency close to 20% in oxygen saturated solutions. We rationalize the photoresponses of the LFO films in terms of the effect sub-bandgap states on majority carrier mobility, charge transfer, and recombination kinetics.
Collapse
Affiliation(s)
- Xin Sun
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, U.K
| | - Devendra Tiwari
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, U.K
| | - David J Fermin
- School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, U.K
| |
Collapse
|