1
|
Tverjanovich A, Benmore CJ, Khomenko M, Sokolov A, Fontanari D, Bereznev S, Bokova M, Kassem M, Bychkov E. Decoding the Atomic Structure of Ga 2Te 5 Pulsed Laser Deposition Films for Memory Applications Using Diffraction and First-Principles Simulations. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2137. [PMID: 37513148 PMCID: PMC10386151 DOI: 10.3390/nano13142137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Neuromorphic computing, reconfigurable optical metamaterials that are operational over a wide spectral range, holographic and nonvolatile displays of extremely high resolution, integrated smart photonics, and many other applications need next-generation phase-change materials (PCMs) with better energy efficiency and wider temperature and spectral ranges to increase reliability compared to current flagship PCMs, such as Ge2Sb2Te5 or doped Sb2Te. Gallium tellurides are favorable compounds to achieve the necessary requirements because of their higher melting and crystallization temperatures, combined with low switching power and fast switching rate. Ga2Te3 and non-stoichiometric alloys appear to be atypical PCMs; they are characterized by regular tetrahedral structures and the absence of metavalent bonding. The sp3 gallium hybridization in cubic and amorphous Ga2Te3 is also different from conventional p-bonding in flagship PCMs, raising questions about its phase-change mechanism. Furthermore, gallium tellurides exhibit a number of unexpected and highly unusual phenomena, such as nanotectonic compression and viscosity anomalies just above their melting points. Using high-energy X-ray diffraction, supported by first-principles simulations, we will elucidate the atomic structure of amorphous Ga2Te5 PLD films, compare it with the crystal structure of tetragonal gallium pentatelluride, and investigate the electrical, optical, and thermal properties of these two materials to assess their potential for memory applications, among others.
Collapse
Affiliation(s)
- Andrey Tverjanovich
- Institute of Chemistry, St. Petersburg State University, 198504 St. Petersburg, Russia
| | - Chris J Benmore
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Maxim Khomenko
- ILIT RAS-Branch of the FSRC "Crystallography and Photonics" RAS, 140700 Moscow, Russia
- Laboratory of Biophotonics, Tomsk State University, 634050 Tomsk, Russia
| | - Anton Sokolov
- Laboratoire de Physico-Chimie de l'Atmosphère, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
| | - Daniele Fontanari
- Laboratoire de Physico-Chimie de l'Atmosphère, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
| | - Sergei Bereznev
- Department of Materials and Environmental Technology, Tallinn University of Technology, 19086 Tallinn, Estonia
| | - Maria Bokova
- Laboratoire de Physico-Chimie de l'Atmosphère, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
| | - Mohammad Kassem
- Laboratoire de Physico-Chimie de l'Atmosphère, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
| | - Eugene Bychkov
- Laboratoire de Physico-Chimie de l'Atmosphère, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
| |
Collapse
|
2
|
Selvam SP, Phan LMT, Cho S. SARS‐CoV‐2 N Gene‐Targeted Anodic Stripping Voltammetry Sensor Using a Novel CoS‐NGQD/Pt@Pd Platform and Au‐DNA‐CdTe QD Probe. ADVANCED MATERIALS TECHNOLOGIES 2023; 8. [DOI: 10.1002/admt.202201344] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 05/14/2025]
Abstract
AbstractRapid screening of individuals infected with severe acute respiratory syndrome‐coronavirus‐2 (SARS‐CoV‐2) is necessary to contain contagion in a large population. Nucleic acid‐based gold standard assays are time‐consuming, and nucleic acid amplification is mandatory and expensive, impeding the containment of the coronavirus disease 2019 (COVID‐19) outbreak. To overcome the aforementioned disadvantages, this study deals with a specially designed gold (Au)‐deoxyribonucleic acid (DNA)‐cadmium telluride (CdTe) quantum dot (QD) probe to target two sections of the nucleocapsid (N) gene of SARS‐CoV‐2 ribonucleic acid (RNA) of three variants (B.1.1.529, B.1.617.2, and B.1.351). A duplex‐specific nuclease (DSN)‐assisted highly selective release of signaling probes enable higher specificity, and an Au‐supported DNA probe is incorporated to carry many CdTe QD signaling probes. After dissolution, the generated Cd2+ ions are quantified at the novel cobalt sulfide (CoS)‐nitrogen‐doped graphene QD (NGQD)/platinum (Pt)@palladium (Pd) electrode with extraordinary sensitivity through square wave anodic stripping voltammetry (SWASV). The developed sensor exhibits a wide range of detection (10 to 108 copies µL−1) and a lower detection limit (0.12 copies µL−1), without any amplification. The selectivity of the sensor is tested against MERS and HCoV‐NL63, and real‐time detection is performed on heat‐inactivated viral samples, which show excellent selectivity.
Collapse
Affiliation(s)
- Sathish Panneer Selvam
- Department of Electronic Engineering Gachon University Seongnam‐si Gyeonggi‐do 13210 Korea
| | - Le Minh Tu Phan
- Department of Electronic Engineering Gachon University Seongnam‐si Gyeonggi‐do 13210 Korea
| | - Sungbo Cho
- Department of Electronic Engineering Gachon University Seongnam‐si Gyeonggi‐do 13210 Korea
- Gachon Advanced Institute for Health Science & Technology Gachon University Incheon 21999 Korea
| |
Collapse
|
3
|
Azeem MM, Shafa M, Aamir M, Zubair M, Souayeh B, Alam MW. Nucleotide detection mechanism and comparison based on low-dimensional materials: A review. Front Bioeng Biotechnol 2023; 11:1117871. [PMID: 36937765 PMCID: PMC10018150 DOI: 10.3389/fbioe.2023.1117871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
The recent pandemic has led to the fabrication of new nucleic acid sensors that can detect infinitesimal limits immediately and effectively. Therefore, various techniques have been demonstrated using low-dimensional materials that exhibit ultrahigh detection and accuracy. Numerous detection approaches have been reported, and new methods for impulse sensing are being explored. All ongoing research converges at one unique point, that is, an impetus: the enhanced limit of detection of sensors. There are several reviews on the detection of viruses and other proteins related to disease control point of care; however, to the best of our knowledge, none summarizes the various nucleotide sensors and describes their limits of detection and mechanisms. To understand the far-reaching impact of this discipline, we briefly discussed conventional and nanomaterial-based sensors, and then proposed the feature prospects of these devices. Two types of sensing mechanisms were further divided into their sub-branches: polymerase chain reaction and photospectrometric-based sensors. The nanomaterial-based sensor was further subdivided into optical and electrical sensors. The optical sensors included fluorescence (FL), surface plasmon resonance (SPR), colorimetric, and surface-enhanced Raman scattering (SERS), while electrical sensors included electrochemical luminescence (ECL), microfluidic chip, and field-effect transistor (FET). A synopsis of sensing materials, mechanisms, detection limits, and ranges has been provided. The sensing mechanism and materials used were discussed for each category in terms of length, collectively forming a fusing platform to highlight the ultrahigh detection technique of nucleotide sensors. We discussed potential trends in improving the fabrication of nucleotide nanosensors based on low-dimensional materials. In this area, particular aspects, including sensitivity, detection mechanism, stability, and challenges, were addressed. The optimization of the sensing performance and selection of the best sensor were concluded. Recent trends in the atomic-scale simulation of the development of Deoxyribonucleic acid (DNA) sensors using 2D materials were highlighted. A critical overview of the challenges and opportunities of deoxyribonucleic acid sensors was explored, and progress made in deoxyribonucleic acid detection over the past decade with a family of deoxyribonucleic acid sensors was described. Areas in which further research is needed were included in the future scope.
Collapse
Affiliation(s)
- M. Mustafa Azeem
- Department of Civil, Architectural, and Environmental Engineering, Missouri University of Science and Technology, Rolla, MO, United States
- *Correspondence: M. Mustafa Azeem, ; Muhammad Aamir,
| | - Muhammad Shafa
- Yunnan Key Laboratory of Metal-Organic Molecular Materials and Devices, Kunming University, Kunming, Yunnan, China
| | - Muhammad Aamir
- Department of Basic Science, Deanship of Preparatory Year, King Faisal University, Hofuf, Saudi Arabia
- *Correspondence: M. Mustafa Azeem, ; Muhammad Aamir,
| | - Muhammad Zubair
- Mechanical and Nuclear Engineering Department, University of Sharjah, Sharjah, United Arab Emirates
| | - Basma Souayeh
- Department of Physics, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| | - Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
| |
Collapse
|
4
|
Fuku X, Bilibana MP, Iwuoha E. Genosensor design and strategies towards electrochemical deoxyribonucleic acid (DNA) signal transduction: Mechanism of interaction. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Deng M, Li J, Xiao B, Ren Z, Li Z, Yu H, Li J, Wang J, Chen Z, Wang X. Ultrasensitive Label-Free DNA Detection Based on Solution-Gated Graphene Transistors Functionalized with Carbon Quantum Dots. Anal Chem 2022; 94:3320-3327. [PMID: 35147418 DOI: 10.1021/acs.analchem.1c05309] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Developing highly sensitive, reliable, cost-effective label-free DNA biosensors is challenging with traditional fluorescence, electrochemical, and other techniques. Most conventional methods require labeling fluorescence, enzymes, or other complex modification. Herein, we fabricate carbon quantum dot (CQD)-functionalized solution-gated graphene transistors for highly sensitive label-free DNA detection. The CQDs are immobilized on the surface of the gate electrode through mercaptoacetic acid with the thiol group. A single-stranded DNA (ssDNA) probe is immobilized on CQDs by strong π-π interactions. The ssDNA probe can hybridize with the ssDNA target and form double-stranded DNA, which led to a shift of Dirac voltage and the channel current response. The limit of detection can reach 1 aM which is 2-5 orders of magnitude lower than those of other methods reported previously. The sensor also exhibits a good linear range from 1 aM to 0.1 nM and has good specificity. It can effectively distinguish one-base mismatched target DNA. The response time is about 326 s for the 1 aM target DNA molecules. This work provides good perspectives on the applications in biosensors.
Collapse
Affiliation(s)
- Minghua Deng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Jinhua Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Bichen Xiao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Zhanpeng Ren
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Ziqin Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Haiyang Yu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Jiashen Li
- Department of Materials, The University of Manchester, Manchester M13 9PL, U.K
| | - Jianying Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Xianbao Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|