1
|
Zhang M, Liu T, Chen XQ, Jin H, Lv JJ, Wang S, Yu X, Yang C, Wang ZJ. Recent advances in electrochemical 1,2-difunctionalization of alkenes: mechanisms and perspectives. Org Biomol Chem 2025; 23:2323-2357. [PMID: 39932496 DOI: 10.1039/d4ob01673d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
In recent years, significant achievements have been made in the field of electroorganic chemistry regarding the difunctionalization of alkenes. Researchers have developed innovative strategies utilizing the unique reactivity of electrochemical processes to synthesize complex molecules with high regioselectivity and stereoselectivity. This technology is widely applied in the total synthesis of natural products and in the pharmaceutical industry. This article reviews the research progress in the electrochemical difunctionalization of alkenes through three different radical-mediated pathways over the past five years. It includes discussions on 1,2-stereoselective and non-diastereoselective difunctionalization reactions, rearrangements, intramolecular migrations, and cyclization processes. The summary emphasizes innovative electrode designs, reaction mechanisms, and the integration with other emerging technologies, highlighting the potential of this method in modern organic chemistry. Additionally, it aims to address current challenges and propose possible solutions, providing a promising direction for electrochemically mediated difunctionalization reactions of alkenes.
Collapse
Affiliation(s)
- Mingming Zhang
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Ting Liu
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Xue-Qiu Chen
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Huile Jin
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Jing-Jing Lv
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Shun Wang
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Xiaochun Yu
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Chuntian Yang
- Wenzhou Institute of Industry & Science, Wenzhou, 325035, P. R. China
| | - Zheng-Jun Wang
- Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Zhang J, Li X, Chen G, Liu H, Luo H. Electro-catalyzed, solvent-controlled divergent decarboxylative annulation and hydroaminomethylation of cyclic aldimines with N-arylglycines. Chem Commun (Camb) 2025; 61:1669-1672. [PMID: 39744981 DOI: 10.1039/d4cc05582a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Herein, we reported a sustainable and simple method involving electrochemical-catalyzed decarboxylative annulation and hydroaminomethylation of cyclic aldimines with N-arylglycines by switching the reaction solvents. When the reaction was carried out in MeCN/H2O or H2O, the resulting products included imidazolidine-fused sulfamidates and C4-aminomethylated cyclic aldimines, obtained in moderate to good yields, respectively. Mechanistically, a radical pathway was proposed to be involved in this approach.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China.
| | - Xiaolan Li
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China.
- College of Chemistry, Nanchang University, Nanchang, 330031, China
| | - Guisheng Chen
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China.
| | - Haidong Liu
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China.
| | - Haiqing Luo
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China.
| |
Collapse
|
3
|
Zeng X. The Strategies Towards Electrochemical Generation of Aryl Radicals. Chemistry 2024; 30:e202402220. [PMID: 39012680 DOI: 10.1002/chem.202402220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
The advancement in electrochemical techniques has unlocked a new path for achieving unprecedented oxidations and reductions of aryl radical precursors in a controlled and selective manner. This approach facilitates the construction of aromatic carbon-carbon and carbon-heteroatom bonds. In light of the green merits and the growing importance of this technique in aryl radical chemistry, this review aims to provide an overview of the recent advance in the electrochemical generation of aryl radicals organized by the aryl radical precursor type, with a focus on the substrate scope, limitation, and underlying mechanism, thereby inspiring future work on electrochemical aryl radical generation.
Collapse
Affiliation(s)
- Xiaobao Zeng
- School of Pharmacy and Nantong Key Laboratory of Small Molecular Drug Innovation, Nantong University, Nantong, 226019, People's Republic of China
| |
Collapse
|
4
|
Huang J, Li X, Liu P, Wei Y, Liu S, Ma X. Selective Oxidative Cleavage of Benzyl C-N Bond under Metal-Free Electrochemical Conditions. Molecules 2024; 29:2851. [PMID: 38930916 PMCID: PMC11206264 DOI: 10.3390/molecules29122851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
With the growing significance of green chemistry in organic synthesis, electrochemical oxidation has seen rapid development. Compounds undergo oxidation-reduction reactions through electron transfer at the electrode surface. This article proposes the use of electrochemical methods to achieve cleavage of the benzyl C-N bond. This method selectively oxidatively cleaves the C-N bond without the need for metal catalysts or external oxidants. Additionally, primary, secondary, and tertiary amines exhibit good adaptability under these conditions, utilizing water as the sole source of oxygen.
Collapse
Affiliation(s)
- Jiawei Huang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; (J.H.); (X.L.); (P.L.); (Y.W.)
| | - Xiaoman Li
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; (J.H.); (X.L.); (P.L.); (Y.W.)
| | - Ping Liu
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; (J.H.); (X.L.); (P.L.); (Y.W.)
| | - Yu Wei
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; (J.H.); (X.L.); (P.L.); (Y.W.)
| | - Shuai Liu
- Bingtuan Energy Development Institute, Shihezi University, Shihezi 832003, China
| | - Xiaowei Ma
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China; (J.H.); (X.L.); (P.L.); (Y.W.)
| |
Collapse
|
5
|
Zhang W, Jin D, Hu Y, Yin K, Zou Q, Tang L, Qian P. Electrochemically Enable N-Sulfenylation/Phosphinylation of Sulfoximines via Oxidative Dehydrocoupling Reaction. J Org Chem 2024; 89:6106-6116. [PMID: 38632856 DOI: 10.1021/acs.joc.4c00083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
An electrochemical oxidative cross-coupling strategy for the synthesis of N-sulfenylsulfoximines from sulfoximines and thiols was accomplished, giving diverse N-sulfenylsulfoximines in moderate to good yields. Moreover, this strategy can be extended to construct the N-P bond of N-phosphinylated sulfoximines. With electrons as reagents, the oxidative dehydrogenation cross-coupling reaction proceeds smoothly in the absence of traditional redox reagents.
Collapse
Affiliation(s)
- Wenbao Zhang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Biomass-Derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
- Experimental and Training Management Center, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Dongsheng Jin
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Biomass-Derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Yongkang Hu
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Biomass-Derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Kun Yin
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Biomass-Derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
- Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Quan Zou
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Biomass-Derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Liang Tang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Biomass-Derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Peng Qian
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Anhui Province Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Biomass-Derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| |
Collapse
|
6
|
Zhang W, Zou Q, Wang Q, Jin D, Jiang S, Qian P. Electrocatalytic C-H/S-H Coupling of Amino Pyrazoles and Thiophenols: Synthesis of Amino Pyrazole Thioether Derivatives. J Org Chem 2024; 89:5434-5441. [PMID: 38581391 DOI: 10.1021/acs.joc.3c02888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
A mild method for the C-H/S-H coupling of pyrazol-5-amines and thiophenols was developed via electrochemistry, giving diverse amino pyrazole thioether derivatives in 37-98% yields. This electrochemical reaction is sustainable and an atom-efficient approach with good functional group tolerance and scalability by avoiding metal and external chemical oxidants.
Collapse
Affiliation(s)
- Wenbao Zhang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
- Experimental and Training Management Center, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Quan Zou
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Qian Wang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Dongsheng Jin
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Shan Jiang
- Experimental and Training Management Center, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Peng Qian
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Biomass-derived Functional Oligosaccharides Engineering Technology Research Center of Anhui Province, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| |
Collapse
|
7
|
Wu J, Zhang M, He J, Li K, Ye L, Zhou J, Xu X, Li Z, Xu H. Electrochemical oxidative decarboxylative of α-oxocarboxylic acids towards the synthesis of quinazolines and quinazolinones. RSC Adv 2024; 14:7551-7556. [PMID: 38440270 PMCID: PMC10910557 DOI: 10.1039/d4ra01318b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024] Open
Abstract
A mild and environmentally electrochemical method for the synthesis of quinazolines and quinazolinones has been developed through anodic oxidation decarboxylative of α-oxocarboxylic acids. The present reaction was efficiently conducted by using simple and cheap NH4I as the N-source and electrolyte in an undivided cell. The desired products, quinazolines and quinazolinones, were isolated in high yield under chemical oxidant free conditions.
Collapse
Affiliation(s)
- Jiwei Wu
- College of Chemistry and Materials Engineering, Anhui Science and Technology University Fengyang 233100 China
| | - Mengru Zhang
- College of Chemistry and Materials Engineering, Anhui Science and Technology University Fengyang 233100 China
| | - Jun He
- College of Chemistry and Materials Engineering, Anhui Science and Technology University Fengyang 233100 China
| | - Kaixuan Li
- College of Chemistry and Materials Engineering, Anhui Science and Technology University Fengyang 233100 China
| | - Longqiang Ye
- College of Chemistry and Materials Engineering, Anhui Science and Technology University Fengyang 233100 China
| | - Jie Zhou
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| | - Xiaolan Xu
- School of Medical Science, Anhui Medical University Hefei 230009 China
| | - Zirong Li
- College of Chemistry and Materials Engineering, Anhui Science and Technology University Fengyang 233100 China
| | - Huajian Xu
- School of Food and Biological Engineering, Hefei University of Technology Hefei 230009 China
| |
Collapse
|
8
|
Jiang W, Wang B, Song C, Liu J. Electrocatalytic Desulfurizative Amination of Thioureas to Guanidines. J Org Chem 2023; 88:14601-14609. [PMID: 37788335 DOI: 10.1021/acs.joc.3c01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Guanidine has been known as an important class of N-containing molecules with a wide range of applications. Described here is a selective and efficient electrochemical approach to the synthesis of guanidines from easily accessible thioureas and amines. The key to success for this reaction is the in situ generation of a hypervalent iodine reagent as a catalyst from iodoarene by anodic oxidation. This mild desulfurizative amination presents ample substrate scope and good functional group tolerance without the use of extra stoichiometric chemical oxidants. As only electrons serve as the oxidation reagents, this method offers a more straightforward and sustainable manner toward versatile guanidines, including late-stage functionalization of pharmaceutically relevant molecules.
Collapse
Affiliation(s)
- Wei Jiang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China
| | - Bing Wang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China
| | - Chunlan Song
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China
| | - Jie Liu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, 410082, Changsha, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, China
| |
Collapse
|
9
|
Wang Y, Dana S, Long H, Xu Y, Li Y, Kaplaneris N, Ackermann L. Electrochemical Late-Stage Functionalization. Chem Rev 2023; 123:11269-11335. [PMID: 37751573 PMCID: PMC10571048 DOI: 10.1021/acs.chemrev.3c00158] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Indexed: 09/28/2023]
Abstract
Late-stage functionalization (LSF) constitutes a powerful strategy for the assembly or diversification of novel molecular entities with improved physicochemical or biological activities. LSF can thus greatly accelerate the development of medicinally relevant compounds, crop protecting agents, and functional materials. Electrochemical molecular synthesis has emerged as an environmentally friendly platform for the transformation of organic compounds. Over the past decade, electrochemical late-stage functionalization (eLSF) has gained major momentum, which is summarized herein up to February 2023.
Collapse
Affiliation(s)
| | | | | | - Yang Xu
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Yanjun Li
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Nikolaos Kaplaneris
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Lutz Ackermann
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| |
Collapse
|
10
|
Wan J, Huang J. Electrochemical Dearomative Amination of Phenol Derivatives: Access to Spirooxazolidinones. Adv Synth Catal 2023. [DOI: 10.1002/adsc.202300118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Jin‐Lin Wan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou Guangdong 510640 People's Republic of China
| | - Jing‐Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou Guangdong 510640 People's Republic of China
| |
Collapse
|
11
|
Luo MJ, Zhou W, Yang R, Ding H, Song XR, Xiao Q. Electrochemically enabled decyanative C(sp 3)-H oxygenation of N-cyanomethylamines to formamides. Org Biomol Chem 2023; 21:2917-2921. [PMID: 36942930 DOI: 10.1039/d3ob00313b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Selective oxygenation of C(sp3)-H bonds adjacent to nitrogen atoms is a highly attractive strategy for synthesizing various formamide derivatives while preserving the substrate skeletons. Herein, an environmentally benign electrochemically enabled decyanative C(sp3)-H oxygenation of N-cyanomethylamines using H2O as a carbonyl oxygen atom source is described, leading to the synthesis of a large class of formamides in good to excellent yields with a broad substrate scope under metal- and oxidant-free conditions. This electrochemical technology highlights the facile incorporation of N-formyl into some important bioactive molecules.
Collapse
Affiliation(s)
- Mu-Jia Luo
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Wei Zhou
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Ruchun Yang
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Haixin Ding
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Xian-Rong Song
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Qiang Xiao
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| |
Collapse
|
12
|
Prudlik A, Mohebbati N, Hildebrandt L, Heck A, Nuhn L, Francke R. TEMPO-Modified Polymethacrylates as Mediators in Electrosynthesis: Influence of the Molecular Weight on Redox Properties and Electrocatalytic Activity. Chemistry 2023; 29:e202202730. [PMID: 36426862 DOI: 10.1002/chem.202202730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/13/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
Homogeneous catalysts ("mediators") are frequently employed in organic electrosynthesis to control selectivity. Despite their advantages, they can have a negative influence on the overall energy and mass balance if used only once or recycled inefficiently. Polymediators are soluble redox-active polymers applicable as electrocatalysts, enabling recovery by dialysis or membrane filtration. Using anodic alcohol oxidation as an example, we have demonstrated that TEMPO-modified polymethacrylates (TPMA) can act as efficient and recyclable catalysts. In the present work, the influence of the molecular size on the redox properties and the catalytic activity was carefully elaborated using a series of TPMAs with well-defined molecular weight distributions. Cyclic voltammetry studies show that the polymer chain length has a pronounced impact on the key-properties. Together with preparative-scale electrolysis experiments, an optimum size range was identified for polymediator-guided sustainable reaction control.
Collapse
Affiliation(s)
- Adrian Prudlik
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany.,Institute of Chemistry, Rostock University, Albert-Einstein-Str. 3a, 18059, Rostock, Germany
| | - Nayereh Mohebbati
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany.,Institute of Chemistry, Rostock University, Albert-Einstein-Str. 3a, 18059, Rostock, Germany
| | - Laura Hildebrandt
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| | - Alina Heck
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Chair of Macromolecular Chemistry, Faculty of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070, Würzburg, Germany
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Chair of Macromolecular Chemistry, Faculty of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070, Würzburg, Germany
| | - Robert Francke
- Leibniz Institute for Catalysis, Albert-Einstein-Str. 29a, 18059, Rostock, Germany.,Institute of Chemistry, Rostock University, Albert-Einstein-Str. 3a, 18059, Rostock, Germany
| |
Collapse
|
13
|
Cui JF, Zhong WQ, Huang JM. Annulation Reaction of Quinoxalin-2(1 H)-ones Initiated by Electrochemical Decarboxylation of N-Arylglycines. J Org Chem 2023; 88:1147-1154. [PMID: 36630409 DOI: 10.1021/acs.joc.2c02654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A new methodology for the synthesis of tetrahydroimidazo[1,5-a]quinoxalin-4(5H)-ones has been accomplished through annulation of quinoxalin-2(1H)-ones initiated by electrochemical decarboxylation of N-arylglycines catalyzed by ferrocene. With a pair of oxidative and reductive processes occurring among the substrates and intermediates instead of on the electrodes, the electricity consumption was decreased.
Collapse
Affiliation(s)
- Jian-Feng Cui
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Wei-Qiang Zhong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Jing-Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| |
Collapse
|
14
|
Enders P, Májek M, Lam CM, Little D, Francke R. How to Harness Electrochemical Mediators for Photocatalysis – A Systematic Approach Using the Phenanthro[9,10‐d]imidazole Framework as a Test Case. ChemCatChem 2022. [DOI: 10.1002/cctc.202200830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Patrick Enders
- Leibniz Institute for Catalysis: Leibniz-Institut fur Katalyse eV Electrochemistry & Catalysis GERMANY
| | - Michal Májek
- Comenius University in Bratislava: Univerzita Komenskeho v Bratislave Institute of Chemistry SLOVAKIA
| | - Chiu Marco Lam
- University of California Santa Barbara Chemistry & Biochemistry UNITED STATES
| | - Daniel Little
- University of California Santa Barbara Chemistry & Biochemistry UNITED STATES
| | - Robert Francke
- Rostock University Institute of Chemistry Albert-Einstein-Str. 3a 18059 Rostock GERMANY
| |
Collapse
|
15
|
Luo MJ, Xiao Q, Li JH. Electro-/photocatalytic alkene-derived radical cation chemistry: recent advances in synthetic applications. Chem Soc Rev 2022; 51:7206-7237. [PMID: 35880555 DOI: 10.1039/d2cs00013j] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alkene-derived radical cations are versatile reactive intermediates and have been widely applied in the construction of complex functionalized molecules and cyclic systems for chemical synthesis. Therefore, the synthetic application of these alkene-derived radical cations represents a powerful and green tool that can be used to achieve the functionalization of alkenes partially because the necessity of stoichiometric external chemical oxidants and/or hazardous reaction conditions is eliminated. This review summarizes the recent advances in the synthetic applications of the electro-/photochemical alkene-derived radical cations, emphasizing the key single-electron oxidation steps of the alkenes, the scope and limitations of the substrates, and the related reaction mechanisms. Using electrocatalysis and/or photocatalysis, single electron transfer (SET) oxidation of the CC bonds in the alkenes occurs, generating the alkene-derived radical cations, which sequentially enables the functionalization of translocated radical cations to occur in two ways: the first involves direct reaction with a nucleophile/radical or two molecules of nucleophiles to realize hydrofunctionalization, difunctionalization and cyclization; and the second involves the transformation of the alkene-derived radical cations into carbon-centered radicals using a base followed by radical coupling or oxidative nucleophilic coupling.
Collapse
Affiliation(s)
- Mu-Jia Luo
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Qiang Xiao
- Key Laboratory of Organic Chemistry of Jiangxi Province, Jiangxi Science & Technology Normal University, Nanchang, 330013, China.
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China. .,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 475004, China
| |
Collapse
|
16
|
Qian P, Jiang S, Fan H, Jiang S, Xu L, Liu J. Electrochemically Enabled Cascade Cyclization Reaction of Aromatic Aldehydes and Pyrazol-5-amines: Synthesis of Bis-pyrazolo[3,4- b:4',3'- e]pyridines. J Org Chem 2022; 87:9242-9249. [PMID: 35795996 DOI: 10.1021/acs.joc.2c00988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A facile method for the synthesis of bis-pyrazolo[3,4-b:4',3'-e]pyridines from easily available aromatic aldehydes and pyrazol-5-amines was developed via electrochemistry. The reaction proceeded smoothly under metal and external chemical oxidant-free conditions, giving a variety of bis-pyrazolo[3,4-b:4',3'-e]pyridines in moderate yields.
Collapse
Affiliation(s)
- Peng Qian
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P.R. China
| | - Shan Jiang
- Experimental and Training Management Center, Fuyang Normal University, Fuyang, Anhui 236037, P.R. China
| | - Hua Fan
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P.R. China
| | - Siqi Jiang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P.R. China
| | - Longlong Xu
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P.R. China
| | - Jiaojiao Liu
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P.R. China
| |
Collapse
|
17
|
Chu Y, Zhang X, Liu X, Tang H, Zhou W, Li K, Liu X, Chen Z, Zhu Y, Zhao F. Effect of chloride ions on the indirect electrosynthesis of 2,6-dichlorobenzonitrile mediated by iodide. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Wan JL, Huang JM. Bromide‐catalyzed electrochemical Csp<sup>3</sup>‐H oxidation of acetonitrile: Stereoselective synthesis of heteroaryl vinyl sulfides. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Peng Q, Xu L, Wang W, Zhang L, Tang L, Liu J, Sheng L. Electrochemical synthesis of dipyrazolo/dipyrimidine-fused pyridines via oxidative domino cyclization of C(sp3)–H bonds. Org Chem Front 2022. [DOI: 10.1039/d1qo01641e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An electrochemically oxidative domino cyclization reaction of methyl azaarenes/ketones with pyrazol-5-amines and 6-amino-pyrimidine-2,4-diones was developed, providing a variety of dipyrazolo[3,4-b:4',3'-e]pyridines and dipyrimidine-fused pyridines with moderate to good yields. The reaction...
Collapse
|
20
|
Electrochemical intramolecular haloheterocyclization reactions using 1,2-dihaloethanes as halogenating reagents. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Li Y, Wang H, Zhang H, Lei A. Electrochemical Dimethyl
Sulfide‐Mediated
Esterification of Amino Acids. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yongli Li
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS) Wuhan University Wuhan Hubei 430072 China
| | - Huamin Wang
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS) Wuhan University Wuhan Hubei 430072 China
| | - Heng Zhang
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS) Wuhan University Wuhan Hubei 430072 China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS) Wuhan University Wuhan Hubei 430072 China
- National Research Center for Carbohydrate Synthesis Jiangxi Normal University Nanchang Jiangxi 330022 China
| |
Collapse
|
22
|
Mohebbati N, Prudlik A, Scherkus A, Gudkova A, Francke R. TEMPO‐Modified Polymethacrylates as Mediators in Electrosynthesis – Redox Behavior and Electrocatalytic Activity toward Alcohol Substrates. ChemElectroChem 2021. [DOI: 10.1002/celc.202100768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nayereh Mohebbati
- Leibniz Institute for Catalysis Albert-Einstein-Str. 29a 18059 Rostock Germany
- Institute of Chemistry Rostock University Albert-Einstein-Str. 3a 18059 Rostock Germany
| | - Adrian Prudlik
- Leibniz Institute for Catalysis Albert-Einstein-Str. 29a 18059 Rostock Germany
- Institute of Chemistry Rostock University Albert-Einstein-Str. 3a 18059 Rostock Germany
| | - Anton Scherkus
- Institute of Chemistry Rostock University Albert-Einstein-Str. 3a 18059 Rostock Germany
| | - Aija Gudkova
- Institute of Chemistry Rostock University Albert-Einstein-Str. 3a 18059 Rostock Germany
| | - Robert Francke
- Leibniz Institute for Catalysis Albert-Einstein-Str. 29a 18059 Rostock Germany
- Institute of Chemistry Rostock University Albert-Einstein-Str. 3a 18059 Rostock Germany
| |
Collapse
|
23
|
Kong X, Lin L, Chen X, Chen Y, Wang W, Xu B. Electrochemical Oxidative Syntheses of NH-Sulfoximines, NH-Sulfonimidamides and Dibenzothiazines via Anodically Generated Hypervalent Iodine Intermediates. CHEMSUSCHEM 2021; 14:3277-3282. [PMID: 34292660 DOI: 10.1002/cssc.202101002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Herein, we report a general method for the synthesis of NH-sulfoximines and NH-sulfonimidamides through direct electrochemical oxidative catalysis involving an iodoarene(I)/iodoarene(III) redox couple. In addition, dibenzothiazines can be synthesized from [1,1'-biaryl]-2-sulfides under standard conditions. Notably, only a catalytic amount of iodoarene is required for the generation in situ of an active hypervalent iodine catalyst, which avoids the need for an excess of a hypervalent iodine reagent relative to conventional approaches. Moreover, this protocol features broad substrate scope and wide functional group tolerance, delivering the target compounds with good-to-excellent yields even for a scale of more than 10 g.
Collapse
Affiliation(s)
- Xianqiang Kong
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou, 213032, P. R. China
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai, 201620, P. R. China
| | - Long Lin
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai, 201620, P. R. China
| | - Xiaohui Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou, 213032, P. R. China
| | - Yiyi Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou, 213032, P. R. China
| | - Wei Wang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou, 213032, P. R. China
| | - Bo Xu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai, 201620, P. R. China
| |
Collapse
|
24
|
Qian P, Liu J, Zhang Y, Wang Z. Tunable Electrosynthesis of Anthranilic Acid Derivatives via a C-C Bond Cleavage of Isatins. J Org Chem 2021; 86:16008-16015. [PMID: 34260858 DOI: 10.1021/acs.joc.1c01017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A facile and direct electrocatalytic C-C bond cleavage/functionalization reaction of isatins was developed. With isatins as the amino-attached C1 sources, a variety of aminobenzoates, and aminobenzamides were synthesized in moderate to good yields under mild conditions.
Collapse
Affiliation(s)
- Peng Qian
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, People's Republic of China
| | - Jiaojiao Liu
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, People's Republic of China
| | - Yan Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, Technology & School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zhiyong Wang
- Hefei National Laboratory for Physical Sciences at Microscale, Technology & School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
25
|
Chicas-Baños DF, Frontana-Uribe BA. Electrochemical Generation and Use in Organic Synthesis of C-, O-, and N-Centered Radicals. CHEM REC 2021; 21:2538-2573. [PMID: 34047059 DOI: 10.1002/tcr.202100056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
During the last decade several research groups have been developing electrochemical procedures to access highly functionalized organic molecules. Among the most exciting advances, the possibility of using free radical chemistry has attracted the attention of the most important synthetic groups. Nowadays, electrochemical strategies based on these species with a synthetic purpose are published continuously in scientific journals, increasing the alternatives for the synthetic organic chemistry laboratories. Free radicals can be obtained in organic electrochemical reactions; thus, this review reassembles the last decade's (2010-2020) efforts of the electrosynthetic community to generate and take advantage of the C-, O-, and N-centered radicals' reactivity. The electrochemical reactions that occur, as well as the proposed mechanism, are discussed, trying to give clear information about the used conditions and reactivity of these reactive intermediate species.
Collapse
Affiliation(s)
- Diego Francisco Chicas-Baños
- Centro Conjunto Química Sustentable UAEMéx-UNAM, Km 14.5 Carretera Toluca-Ixtlahuaca, Toluca, 50200, Estado de México, Mexico
| | - Bernardo A Frontana-Uribe
- Centro Conjunto Química Sustentable UAEMéx-UNAM, Km 14.5 Carretera Toluca-Ixtlahuaca, Toluca, 50200, Estado de México, Mexico.,Universidad Nacional Autónoma de México, Instituto de Química, Ciudad Universitaria, Ciudad de México, 04510, Mexico
| |
Collapse
|
26
|
Zu B, Ke J, Guo Y, He C. Synthesis of Diverse Aryliodine(
III
) Reagents by Anodic Oxidation
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000501] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bing Zu
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang 150080 China
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Jie Ke
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Yonghong Guo
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
27
|
Chen J, Yang H, Zhang M, Chen H, Liu J, Yin K, Chen S, Shao A. Electrochemical-induced regioselective C-3 thiocyanation of imidazoheterocycles with hydrogen evolution. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Yang L, Hou H, Li L, Wang J, Zhou S, Wu M, Ke F. Electrochemically induced synthesis of quinazolinones via cathode hydration of o-aminobenzonitriles in aqueous solutions. Org Biomol Chem 2021; 19:998-1003. [PMID: 33448270 DOI: 10.1039/d0ob02286a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An efficient and practical electrochemically catalyzed transition metal-free process for the synthesis of substituted quinazolinones from simple and readily available o-aminobenzonitriles and aldehydes in water has been accomplished. I2/base and water play an unprecedented and vital role in the reaction. By electrochemically catalysed hydrolysis of o-aminobenzonitriles, the synthesis of quinazolinones with benzaldehyde was first proposed. The synthetic utility of this method was demonstrated by gram-scale operation, as well as the preparation of bioactive N-(2,5-dichlorophenyl)-6-(2,2,2-trifluoroethoxy) pteridin-4-amine, which enables straightforward, practical and environmentally benign quinazolinone formation.
Collapse
Affiliation(s)
- Li Yang
- College of Chemistry & Chemical Engineering, Yibin University, Yibin, Sichuan, China
| | | | | | | | | | | | | |
Collapse
|
29
|
Zhang L, He W. Research Progress in C(sp3)—H Functionalization Reaction via Molecular Iodine-Catalyzed Oxidation. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202008027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Jamshidi M, Amani A, Khazalpour S, Torabi S, Nematollahi D. Progress and perspectives of electrochemical insights for C–H and N–H sulfonylation. NEW J CHEM 2021. [DOI: 10.1039/d1nj03574f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A comprehensive electrosulfonylation study has been carried out via cathodic and anodic approaches for the production of organosulfone and sulfonamide derivatives.
Collapse
Affiliation(s)
- Mahdi Jamshidi
- Faculty of Chemistry, Bu-Ali-Sina University, Hamedan 65174, Iran
| | - Ameneh Amani
- Nahavand Higher Education Complex, Bu-Ali Sina University, Hamedan, Iran
| | | | - Sara Torabi
- Faculty of Chemistry, Bu-Ali-Sina University, Hamedan 65174, Iran
| | | |
Collapse
|
31
|
Lei N, Shen Y, Li Y, Tao P, Yang L, Su Z, Zheng K. Electrochemical Iodoamination of Indoles Using Unactivated Amines. Org Lett 2020; 22:9184-9189. [PMID: 33185451 DOI: 10.1021/acs.orglett.0c03158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An environmentally friendly electrochemical approach for iodoamination of various indole derivatives with a series of unactivated amines, amino acid derivatives, and benzotriazoles (more than 80 examples) has been developed. This strategy was further applied in late-stage functionalization of natural products and pharmaceuticals and gram-scale synthesis and radiosynthesis of 131I-labeled compounds. Fundamental insights into the mechanism of the reaction based on control experiments, density functional theory calculation, and cyclic voltammetry are provided.
Collapse
Affiliation(s)
- Ning Lei
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yanling Shen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yujun Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Pan Tao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Liquan Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Ke Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
32
|
Qian P, Zhou Z, Wang L, Wang Z, Wang Z, Zhang Z, Sheng L. Electrosynthesis of 2-(1,3,4-Oxadiazol-2-yl)aniline Derivatives with Isatins as Amino-Attached C1 Sources. J Org Chem 2020; 85:13029-13036. [DOI: 10.1021/acs.joc.0c01700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Peng Qian
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Zhenghong Zhou
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Li Wang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Zhicheng Wang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Zhongwei Wang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Zhenlei Zhang
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Liangquan Sheng
- School of Chemistry and Material Engineering, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| |
Collapse
|