1
|
Okonye LU, Ren J. A comprehensive review of PETW recycling for supercapacitor applications. Heliyon 2024; 10:e35285. [PMID: 39170277 PMCID: PMC11336431 DOI: 10.1016/j.heliyon.2024.e35285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
The rising measure of waste produced from polyethene terephthalate (PET) and the interest in eco-accommodating energy storage arrangements have prompted escalated examination into reusing waste PET into supercapacitors. This review aims to provide a comprehensive overview of the most recent advancements in the recycling of polyethylene terephthalate waste (PETW), as a supercapacitor electrode precursor. The review looks at different methodologies for recovering PET from waste, including mechanical, chemical, enzyme, etc. It further explores the combination strategies for electrode materials produced using PET. Besides, PET-derived materials' electrochemical performance in supercapacitor application is likewise broken down, with an emphasis on key electrochemical boundaries like capacitive behaviour, cyclic stability, and electrochemical impedance spectroscopy. The need for scalable and cost-effective recycling methods, the creation of eco-friendly electrolytes, and the improvement of the electrochemical performance of recycled PET-based supercapacitors are just a few of the issues and opportunities highlighted in this expanding eco-friendly industry. Overall, the goal of this review is to provide a comprehensive understanding of the cutting-edge developments in the use of recycled PETW as a precursor for supercapacitor electrodes, highlighting the eco-friendly energy storage solution's potential and contributing to a sustainable future.
Collapse
Affiliation(s)
- Leonard U. Okonye
- Department of Mechanical Engineering Science, University of Johannesburg, Cnr Kingsway and University Roads, Auckland Park, 2092, Johannesburg, South Africa
| | - Jianwei Ren
- Department of Chemical Engineering, University of Pretoria, Cnr Lynwood Road and Roper Street, Hatfield, 0028, South Africa
| |
Collapse
|
2
|
Wang L, Wang T, Hao R, Wang Y. Synthesis and applications of biomass-derived porous carbon materials in energy utilization and environmental remediation. CHEMOSPHERE 2023; 339:139635. [PMID: 37495055 DOI: 10.1016/j.chemosphere.2023.139635] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/06/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
Renewable biomass and its waste are considered among the most promising applications materials owing to the depletion of fossil fuel and concerns about environmental pollution. Notably, advanced porous carbon materials derived from carbon-rich biomass precursors exhibit controllable pore structures, large surface areas, natural microstructures, and abundant functional groups. In addition, these three-dimensional structures provide sufficient reaction sites and fascinating physicochemical properties that are conducive to heteroatom doping and functional modification. This review systematically summarizes the design methods and related mechanisms of biomass-derived porous carbon materials (BDPCMs), discusses how the synthesis conditions influence the structure and performance of the carbon material, and emphasizes the importance of its use in energy utilization and environmental remediation applications. Current BDPCMs challenges and future development strategies are finally discussed to provide systematic information for further synthesis and performance optimization, which are expected to lead to novel ideas for the future development of bio-based carbon materials.
Collapse
Affiliation(s)
- Lei Wang
- College of Materials Science and Art Design, Inner Mongolia Agricultural University, Hohhot, China; Inner Mongolia Key Laboratory of Sandy Shrubs Fibrosis and Energy Development and Utilization, Hohhot, 010018, PR China
| | - Teng Wang
- College of Materials Science and Art Design, Inner Mongolia Agricultural University, Hohhot, China
| | - Ruidi Hao
- College of Materials Science and Art Design, Inner Mongolia Agricultural University, Hohhot, China
| | - Yamei Wang
- College of Materials Science and Art Design, Inner Mongolia Agricultural University, Hohhot, China; Inner Mongolia Key Laboratory of Sandy Shrubs Fibrosis and Energy Development and Utilization, Hohhot, 010018, PR China.
| |
Collapse
|
3
|
Li Z, Yao M, Zhang L, Gou S, Zhang Z, Yang Y, Hu Z. Preparation of flexible and free-standing polypyrrole/graphene film electrodes for supercapacitors. NEW J CHEM 2022. [DOI: 10.1039/d2nj03173f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A free-standing polypyrrole/graphene film (PGF) electrode with an excellent electrochemical performance was obtained using spin coating and hydrothermal methods.
Collapse
Affiliation(s)
- Zhimin Li
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Gansu Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Mingxiang Yao
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Gansu Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Lantian Zhang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Gansu Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Shuqi Gou
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Gansu Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Ziyu Zhang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Gansu Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Yuying Yang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Gansu Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| | - Zhongai Hu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Key Laboratory of Gansu Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, China
| |
Collapse
|