1
|
Liang K, Zhao H, Li J, Huang X, Jia S, Chen W, Ren Y. Engineering Crystal Growth and Surface Modification of Na 3 V 2 (PO 4 ) 2 F 3 Cathode for High-Energy-Density Sodium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207562. [PMID: 36799138 DOI: 10.1002/smll.202207562] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/20/2023] [Indexed: 05/11/2023]
Abstract
Na3 V2 (PO4 )2 F3 (NVPF) is a suitable cathode for sodium-ion batteries owing to its stable structure. However, the large radius of Na+ restricts diffusion kinetics during charging and discharging. Thus, in this study, a phosphomolybdic acid (PMA)-assisted hydrothermal method is proposed. In the hydrothermal process, the NVPF morphologies vary from bulk to cuboid with varying PMA contents. The optimal channel for accelerated Na+ transmission is obtained by cuboid NVPF. With nitrogen-doping of carbon, the conductivity of NVPF is further enhanced. Combined with crystal growth engineering and surface modification, the optimal nitrogen-doped carbon-covered NVPF cuboid (c-NVPF@NC) exhibits a high initial discharge capacity of 121 mAh g-1 at 0.2 C. Coupled with a commercial hard carbon (CHC) anode, the c-NVPF@NC||CHC full battery delivers 118 mAh g-1 at 0.2 C, thereby achieving a high energy density of 450 Wh kg-1 . Therefore, this work provides a novel strategy for boosting electrochemical performance by crystal growth engineering and surface modification.
Collapse
Affiliation(s)
- Kang Liang
- School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou Key Laboratory of Intelligent Manufacturing and Advanced Technology for Power Battery, Changzhou University, Changzhou, 213164, P. R. China
| | - Hongshun Zhao
- School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou Key Laboratory of Intelligent Manufacturing and Advanced Technology for Power Battery, Changzhou University, Changzhou, 213164, P. R. China
| | - Jianbin Li
- School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou Key Laboratory of Intelligent Manufacturing and Advanced Technology for Power Battery, Changzhou University, Changzhou, 213164, P. R. China
| | - Xiaobing Huang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan, 415000, P. R. China
| | - Shuyong Jia
- School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou Key Laboratory of Intelligent Manufacturing and Advanced Technology for Power Battery, Changzhou University, Changzhou, 213164, P. R. China
| | - Wenkai Chen
- Department of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yurong Ren
- School of Materials Science and Engineering, Jiangsu Province Engineering Research Center of Intelligent Manufacturing Technology for the New Energy Vehicle Power Battery, Changzhou Key Laboratory of Intelligent Manufacturing and Advanced Technology for Power Battery, Changzhou University, Changzhou, 213164, P. R. China
| |
Collapse
|
2
|
The recent advances of NASICON-Na3V2(PO4)3 cathode materials for sodium-ion batteries. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
3
|
Facial construction of high rate Na3V2(PO4)2F3/C microspheres with fluorocarbon layer by deep-eutectic solvent synthesis. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Research progress on Na3V2(PO4)2F3-based cathode materials for sodium-ion batteries. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Yu X, Lu T, Li X, Qi J, Yuan L, Man Z, Zhuo H. Ionic Liquid-Acrylic Acid Copolymer Derived Nitrogen-Boron Codoped Carbon-Covered Na 3V 2(PO 4) 2F 3 as Cathode Material of High-Performance Sodium-Ion Batteries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7815-7824. [PMID: 35700132 DOI: 10.1021/acs.langmuir.2c01028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, a nitrogen-boron codoped carbon layer, Na3V2(PO4)2F3 sample, obtained by using an ionic liquid-acrylic acid copolymer as the nitrogen-boron source was used as the cathode material for sodium-ion batteries. The optimized and modified nitrogen and boron codoped carbon layer, Na3V2(PO4)2F3 (denoted as NVPF-PCNB-20), illustrated better rate capability and cycling performance. The discharge capacities of NVPF-PCNB-20 at 0.5C and 10C were 109 and 90 mAh g-1, respectively, and the capacity retention rate was 93.2% after 100 cycles at 0.5C and 92.8% after 750 cycles at 10C. Through in situ X-ray diffraction analysis of NVPF-PCNB-20, the results show that the modified Na3V2(PO4)2F3 has excellent cycle reversibility. The scanning electron microscopy and transmission electron microscopy images reveal that NVPF-PCNB-20 particles were finer and covered by a uniform coating. The results show that the ionic liquid-acrylic acid copolymer not only make the material dispersion more uniform but also enhance the electronic conductivity and sodium storage performance of Na3V2(PO4)3F3 effectively. This study may provide an effective way to synthesize nitrogen and boron codoped carbon-coated Na3V2(PO4)2F3 with excellent electrochemical performance.
Collapse
Affiliation(s)
- Xiaobo Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Tianyi Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Xiaokai Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Jiawei Qi
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Luchen Yuan
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Zu Man
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Haitao Zhuo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| |
Collapse
|
6
|
Yu X, Lu T, Li X, Qi J, Yuan L, Man Z, Zhuo H. Realizing outstanding electrochemical performance with Na 3V 2(PO 4) 2F 3 modified with an ionic liquid for sodium-ion batteries. RSC Adv 2022; 12:14007-14017. [PMID: 35558847 PMCID: PMC9092440 DOI: 10.1039/d2ra01292h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/01/2022] [Indexed: 11/21/2022] Open
Abstract
Na3V2(PO4)2F3 is a typical NASICON structure with a high voltage plateau and capacity. Nevertheless, its applications are limited due to its low conductivity and poor rate performance. In this study, nitrogen-boron co-doped carbon-coated Na3V2(PO4)2F3 (NVPF-CNB) was prepared by a simple sol-gel method using an ionic liquid (1-vinyl-3-methyl imidazole tetrafluoroborate) as a source of nitrogen and boron for the first time. The morphology and electrochemical properties of NVPF-CNB composites were investigated. The results show that a nitrogen-boron co-doped carbon layer could increase the electron and ion diffusion rate, reduce internal resistance, and help alleviate particle agglomeration. NVPF-CNB-30 exhibited better rate performance under 5C and 10C charge/discharge with initial reversible capacities of 99 and 90 mA h g-1, respectively. Furthermore, NVPF-CNB-30 illustrates excellent cyclic performance with the capacity retention rate reaching 91.9% after 500 cycles at 5C, as well as a capacity retention rate of about 95.5% after 730 cycles at 10C. The evolution of the material's structure during charge/discharge processes studied by in situ X-ray diffraction confirms the stable structure of nitrogen-boron co-doped carbon-coated Na3V2(PO4)2F3. Co-doping of nitrogen and boron also provides more active sites on the surface of Na3V2(PO4)2F3, revealing a new strategy for the modification of sodium-ion batteries.
Collapse
Affiliation(s)
- Xiaobo Yu
- College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Tianyi Lu
- College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Xiaokai Li
- College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Jiawei Qi
- College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Luchen Yuan
- College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Zu Man
- College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518060 P. R. China
| | - Haitao Zhuo
- College of Chemistry and Environmental Engineering, Shenzhen University Shenzhen 518060 P. R. China
| |
Collapse
|
7
|
Abstract
Lithium-ion batteries (LIBs) are widely used in applications ranging from electric vehicles to wearable devices. Before the invention of secondary LIBs, the primary lithium-thionyl chloride (Li-SOCl2) battery was developed in the 1970s using SOCl2 as the catholyte, lithium metal as the anode and amorphous carbon as the cathode1-7. This battery discharges by lithium oxidation and catholyte reduction to sulfur, sulfur dioxide and lithium chloride, is well known for its high energy density and is widely used in real-world applications; however, it has not been made rechargeable since its invention8-13. Here we show that with a highly microporous carbon positive electrode, a starting electrolyte composed of aluminium chloride in SOCl2 with fluoride-based additives, and either sodium or lithium as the negative electrode, we can produce a rechargeable Na/Cl2 or Li/Cl2 battery operating via redox between mainly Cl2/Cl- in the micropores of carbon and Na/Na+ or Li/Li+ redox on the sodium or lithium metal. The reversible Cl2/NaCl or Cl2/LiCl redox in the microporous carbon affords rechargeability at the positive electrode side and the thin alkali-fluoride-doped alkali-chloride solid electrolyte interface stabilizes the negative electrode, both are critical to secondary alkali-metal/Cl2 batteries.
Collapse
|