1
|
Li M, Chu G, Gao J, Ye X, Hou M, Guo S, Li Y, Zhou Z, Yang L, Briois P. Electrochemical deposition of bimetallic sulfides on novel BDD electrode for bifunctional alkaline seawater electrolysis. Sci Rep 2025; 15:2862. [PMID: 39843530 PMCID: PMC11754473 DOI: 10.1038/s41598-025-87104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025] Open
Abstract
Seawater electrolysis is an ideal technology for obtaining clean energy-green hydrogen. Developing efficient bifunctional catalysts is crucial for hydrogen production through direct seawater electrolysis. Currently, metal substrates loaded with active catalysts are widely employed as electrodes for seawater electrolysis. However, the challenge of metal corrosion cannot be ignored. In this work, the boron-doped diamond (BDD) with excellent corrosion resistance was explored as a substrate for loading active catalysts in seawater electrolysis. A step-by-step electrodeposition method was used to fabricate the FeCoS/Ni/BDD electrode, effectively addressing the poor adhesion of the FeCoS active layer to the BDD substrate. The resulting electrode demonstrated interesting bifunctional catalytic performance, achieving oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) overpotentials of 425 mV and 360 mV, respectively, in alkaline simulated seawater (1 M KOH and 3.5 wt% NaCl) at a current density of 100 mA cm- 2. Furthermore, by increasing the KOH concentration in the alkaline simulated seawater to 3 M, the OER and HER overpotentials of the electrode significantly decreased to 383 and 300 mV, respectively. This work offers a novel approach for utilizing BDD substrates in the design of corrosion-resistant electrodes for alkaline seawater electrolysis.
Collapse
Affiliation(s)
- Mingxu Li
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Genjie Chu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Jiyun Gao
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650093, China
| | - Xiaolei Ye
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Ming Hou
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Shenghui Guo
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Yunchuan Li
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Ziqi Zhou
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Li Yang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China.
| | - Pascal Briois
- FEMTO-ST Institute (UMR CNRS 6174), UBFC/UTBM. Site de Montbéliard, 90010, Belfort, France
| |
Collapse
|
2
|
Wang S, Lin C, Zhang X, Tan Y, Xiao B, Zeng Y, Tian J, Cao M, Jiang Y, Li M. Engineering Internal and External Low-Coordination Atoms in Nickel-Organic Framework Nanoarrays to Promote the Electrochemical Oxygen Evolution Reaction. Inorg Chem 2024; 63:11242-11251. [PMID: 38843107 DOI: 10.1021/acs.inorgchem.4c01086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Monometallic nickel-organic frameworks based on a carboxylated ligand [2,6-naphthalenedicarboxylic acid (Ni-NDC)] have abundant and uniformly distributed single-atom Ni sites, enabling superior oxygen evolution reaction (OER) activity. In theory, most of the Ni atoms inside Ni-NDC microcrystals are coordinatively saturated except for the surface. Therefore, there are no accessible low-coordination atoms (LCAs) as electrocatalytic sites for the OER. One effective way is to expose more LCAs by preparing self-supporting Ni-NDC nanoarrays (Ni-NDC NAs) with hierarchical secondary structural units. Another effective method is to create more internal LCAs by removing partial ligands or coordination atoms attached to the Ni atoms. Herein, by combining the two strategies, we engineered LCAs in the interior and exterior of Ni-NDC to synergistically accelerate the OER. In brief, ultrathick "brick-like" Ni-NDC NAs were first prepared with dissolution and coordination effects of NDC on self-sacrificial templates of "agaric-like" nickel hydroxide nanoarrays [Ni(OH)2 NAs]. Subsequently, dual-coordinated NDC was partially replaced by monocoordinated 2-naphthoic acid (NA). The Ni-NDC NAs were further tailed into ultrathin "liner leaf-like" nanoneedle arrays (LCAs-Ni-NDC NAs). As a consequence, the LCAs-Ni-NDC NAs have more internal and external LCAs, which can deliver an OER performance that is superior to that of Ni-NDC NAs.
Collapse
Affiliation(s)
- Shan Wang
- Jiangxi Province Key Laboratory of Functional Organic Polymers, School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Chong Lin
- Jiangxi Province Key Laboratory of Functional Organic Polymers, School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Xuetong Zhang
- Jiangxi Province Key Laboratory of Functional Organic Polymers, School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Ye Tan
- Jiangxi Province Key Laboratory of Functional Organic Polymers, School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Bin Xiao
- Jiangxi Province Key Laboratory of Functional Organic Polymers, School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Yepeng Zeng
- Jiangxi Province Key Laboratory of Functional Organic Polymers, School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Jingyang Tian
- Jiangxi Province Key Laboratory of Functional Organic Polymers, School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Minghui Cao
- Jiangxi Province Key Laboratory of Functional Organic Polymers, School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Yuanping Jiang
- Jiangxi Province Key Laboratory of Functional Organic Polymers, School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| | - Min Li
- Jiangxi Province Key Laboratory of Functional Organic Polymers, School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi 330013, P. R. China
| |
Collapse
|
3
|
Gan M, Li L, Yang X, Rong H, Wang Z, Li Y, Zhang Y, Chen X, Peng X. A Comprehensive Pyrolysis Mechanism of Binuclear Chromium-Based Complexes for Superior OER Activity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28664-28672. [PMID: 38787643 DOI: 10.1021/acsami.4c04688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Transition metal oxides are widely pursued as potent electrocatalysts for the oxygen evolution reaction (OER). However, single-metal chromium catalysts remain underexplored due to their intrinsic activity limitations. Herein, we successfully synthesize mixed-valence, nitrogen-doped Cr2O3/CrO3/CrN@NC nanoelectrocatalysts via one-step targeted pyrolysis techniques from a binuclear Cr-based complex (Cr2(Salophen)2(CH3OH)2), which is strategically designed as a precursor. Comprehensive pyrolysis mechanisms were thoroughly delineated by using coupled thermogravimetric analysis and mass spectrometry (TG-MS) alongside X-ray diffraction. Below 800 °C, the generation of a reducing atmosphere was noted, while continuous pyrolysis at temperatures exceeding 800 °C promoted highly oxidized CrO3 species with an elevated +6 oxidation state. The optimized catalyst pyrolyzed at 1000 °C (Cr2O3/CrO3/CrN@NCs-1000) demonstrated remarkable OER activity with a low overpotential of 290 mV in 1 M KOH and excellent stability. Further density functional theory (DFT) calculations revealed a much smaller reaction energy barrier of CrO3 than the low oxidation state species for OER reactivity. This work reveals fresh strategies for rationally engineering chromium-based electrocatalysts and overcoming intrinsic roadblocks to enable efficient OER catalysis through a deliberate oxidation state and compositional tuning.
Collapse
Affiliation(s)
- Meixing Gan
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry & Chemical Engineering, Research Institute of Qianjiang Industry Technology, Hubei University, No. 368 Youyi Avenue, Wuhan 430062, P. R. China
| | - Li Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry & Chemical Engineering, Research Institute of Qianjiang Industry Technology, Hubei University, No. 368 Youyi Avenue, Wuhan 430062, P. R. China
| | - Xixian Yang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry & Chemical Engineering, Research Institute of Qianjiang Industry Technology, Hubei University, No. 368 Youyi Avenue, Wuhan 430062, P. R. China
| | - Hongwei Rong
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry & Chemical Engineering, Research Institute of Qianjiang Industry Technology, Hubei University, No. 368 Youyi Avenue, Wuhan 430062, P. R. China
| | - Zheng Wang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry & Chemical Engineering, Research Institute of Qianjiang Industry Technology, Hubei University, No. 368 Youyi Avenue, Wuhan 430062, P. R. China
| | - Yuebin Li
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry & Chemical Engineering, Research Institute of Qianjiang Industry Technology, Hubei University, No. 368 Youyi Avenue, Wuhan 430062, P. R. China
| | - Yuexing Zhang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, P. R. China
| | - Xueli Chen
- Jiangxi Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Xu Peng
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry & Chemical Engineering, Research Institute of Qianjiang Industry Technology, Hubei University, No. 368 Youyi Avenue, Wuhan 430062, P. R. China
| |
Collapse
|
4
|
Khan S, Noor T, Iqbal N, Pervaiz E, Yaqoob L. A zeolitic imidazolate framework (ZIF-67) and graphitic carbon nitride (g-C 3N 4) composite based efficient electrocatalyst for overall water-splitting reaction. RSC Adv 2023; 13:24973-24987. [PMID: 37614795 PMCID: PMC10442768 DOI: 10.1039/d3ra04783k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Abstract
Designing of non-noble, cost-effective, sustainable catalysts for water splitting is essential for hydrogen production. In this research work, ZIF-67, g-C3N4, and their composite (1, 3, 5, 6, 8 wt% g-C3N4@ZIF-67) are synthesized, and various techniques, XRD, FTIR, SEM, EDX and BET are used to examine their morphological properties for electrochemical water-splitting. The linkage of ZIF-67 with g-C3N4 synergistically improves the electrochemical kinetics. An appropriate integration of g-C3N4 in ZIF-67 MOF improves the charge transfer between the electrode and electrolyte and makes it a suitable option for electrochemical applications. In alkaline media, the composite of ZIF-67 MOF with g-C3N4 over a Ni-foam exhibits a superior catalyst activity for water splitting application. Significantly, the 3 wt% g-C3N4@ZIF67 composite material reveals remarkable results with low overpotential values of -176 mV@10 mA cm-2, 152 mV@10 mA cm-2 for HER and OER. The catalyst remained stable for 24 h without distortion. The 3 wt% composite also shows a commendable performance for overall water-splitting with a voltage yield of 1.34 v@10 mA cm-2. The low contact angle (54.4°) proves the electrocatalyst's hydrophilic nature. The results of electrochemical water splitting illustrated that 3 wt% g-C3N4@ZIF-67 is an electrically conductive, stable, and hydrophilic-nature catalyst and is suggested to be a promising candidate for electrochemical water-splitting application.
Collapse
Affiliation(s)
- Sadia Khan
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan +92 51 90855121
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan +92 51 90855121
| | - Naseem Iqbal
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan
| | - Erum Pervaiz
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan +92 51 90855121
| | - Lubna Yaqoob
- U.S.-Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST) Islamabad 44000 Pakistan
| |
Collapse
|
5
|
Yan X, Liu D, Klok JBM, de Smit SM, Buisman CJN, ter Heijne A. Enhancement of Ammonium Oxidation at Microoxic Bioanodes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11561-11571. [PMID: 37498945 PMCID: PMC10413939 DOI: 10.1021/acs.est.3c02227] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Bioelectrochemical systems (BESs) are considered to be energy-efficient to convert ammonium, which is present in wastewater. The application of BESs as a technology to treat wastewater on an industrial scale is hindered by the slow removal rate and lack of understanding of the underlying ammonium conversion pathways. This study shows ammonium oxidation rates up to 228 ± 0.4 g-N m-3 d-1 under microoxic conditions (dissolved oxygen at 0.02-0.2 mg-O2/L), which is a significant improvement compared to anoxic conditions (120 ± 21 g-N m-3 d-1). We found that this enhancement was related to the formation of hydroxylamine (NH2OH), which is rate limiting in ammonium oxidation by ammonia-oxidizing microorganisms. NH2OH was intermediate in both the absence and presence of oxygen. The dominant end-product of ammonium oxidation was dinitrogen gas, with about 75% conversion efficiency in the presence of a microoxic level of dissolved oxygen and 100% conversion efficiency in the absence of oxygen. This work elucidates the dominant pathways under microoxic and anoxic conditions which is a step toward the application of BESs for ammonium removal in wastewater treatment.
Collapse
Affiliation(s)
- Xiaofang Yan
- Environmental
Technology, Wageningen University &
Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Dandan Liu
- Paqell
B.V., Reactorweg 301, 3542 AD Utrecht, The Netherlands
| | - Johannes B. M. Klok
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Sanne M. de Smit
- Environmental
Technology, Wageningen University &
Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Cees J. N. Buisman
- Environmental
Technology, Wageningen University &
Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
- Wetsus,
European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, The Netherlands
| | - Annemiek ter Heijne
- Environmental
Technology, Wageningen University &
Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
6
|
Stuhr R, Bayer P, von Wangelin AJ. The Diverse Modes of Oxygen Reactivity in Life & Chemistry. CHEMSUSCHEM 2022; 15:e202201323. [PMID: 36214486 PMCID: PMC10100308 DOI: 10.1002/cssc.202201323] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Oxygen is a molecule of utmost importance in our lives. Beside its vital role for the respiration and sustaining of organisms, oxygen is involved in numerous chemical and physical processes. Upon combination of the different forms of molecular oxygen species with various activation modes, substrates, and reaction conditions an extremely wide chemical space can be covered that enables rich applications of diverse oxygenation processes. This Review provides an instructive overview of the individual properties and reactivities of oxygen species and illustrates their importance in nature, everyday life, and in the context of chemical synthesis.
Collapse
Affiliation(s)
- Robin Stuhr
- Department of ChemistryUniversity of HamburgMartin-Luther-King Platz 620146HamburgGermany
| | - Patrick Bayer
- Pantheon AustriaThermo Fisher ScientificSt. Peter Str. 254020LinzAustria
| | | |
Collapse
|
7
|
Kumar N, Sharma A, Rajput K, Kataria R, Mehta S. Cobalt-based co-ordination complex-derived nanostructure for efficient oxygen evolution reaction in acidic and alkaline medium. Heliyon 2022; 8:e10939. [PMID: 36247167 PMCID: PMC9562245 DOI: 10.1016/j.heliyon.2022.e10939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/13/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Electrochemical water splitting is one of the most important method for energy conversion and storage. For this, the design and development of a low-cost robust electrocatalyst are highly desirable. In this study, Cobalt-based electrocatalyst for Oxygen Evolution Reaction was synthesized by thermal treatment of Cobalt-dehydroacetic acid (Co-DHA). The as-synthesized Co nanostructures and Co-DHA crystals were characterized with powder X-ray diffraction, X-ray photoelectron spectroscopy thermo-gravimetric analysis, and field emission scanning electron microscopy. The electrochemical O2 evolution study shows the overpotential (at 10 mV/cm−2) correspond to 294 mV vs reference hydrogen electrode (RHE) for K-300 (Co3O4@300), whereas K-500 (Co3O4@500) shows 170 mV vs RHE values in 1 M KOH solution, respectively. Similar trends have been observed for electrochemical O2 evolution studies in 0.5 M H2SO4, where K-300 and K-500 shows the overpotential (at 10mV/cm−2) of 234 mV vs RHE, and 199 mV vs RHE, respectively. The outcomes show better catalytic efficiency of K-500 as compared to K-300. Simple one pot synthesis for precursor of Co3O4. Enhanced activity for oxygen evolution reaction. Efficient performance and stability in both acidic and alkaline medium.
Collapse
Affiliation(s)
- Naveen Kumar
- Department of Chemistry, Panjab University, Sector-14, Chandigarh, India
| | - Aashima Sharma
- Department of Chemistry, Panjab University, Sector-14, Chandigarh, India
| | - Kritika Rajput
- Department of Physics, Panjab University, Sector-14, Chandigarh, India
| | - Ramesh Kataria
- Department of Chemistry, Panjab University, Sector-14, Chandigarh, India
| | - S.K. Mehta
- Department of Chemistry, Panjab University, Sector-14, Chandigarh, India,Corresponding author.
| |
Collapse
|
8
|
Tan C, Wang F, Lv K, Shi Y, Dong B, Hao L, Yin L, Xu X, Xian Y, Agathopoulos S. TiN ceramic membrane supported nitrogen-incorporating NiCo2 nanowires as bifunctional electrode for overall water splitting in alkaline solution. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Roy A, Tariq MZ, La M, Choi D, Park SJ. A comparative study on the oxygen evolution reaction of cobalt and nickel based hydroxide electrodes in alkaline electrolyte. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Wang M, Zhu W, Ma M, Fan Z, Yang J, Liao F, Shao M. Lattice Strain Enhance the Activity of Ir‐IrO2/C for Acidic Oxygen Evolution Reaction. ChemElectroChem 2022. [DOI: 10.1002/celc.202200732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Meng Wang
- Soochow University Institute of Functional Nano & Soft Materials CHINA
| | - Wenxiang Zhu
- Soochow University Institute of Functional Nano & Soft Materials CHINA
| | - Mengjie Ma
- Soochow University Institute of Functional Nano & Soft Materials CHINA
| | - Zhenglong Fan
- Soochow University Institute of Functional Nano & Soft Materials CHINA
| | - Junjun Yang
- Soochow University Institute of Functional Nano & Soft Materials CHINA
| | - Fan Liao
- Soochow University Institute of Functional Nano & Soft Materials CHINA
| | - Mingwang Shao
- Soochew University Functional nanomaterials & soft materials Laboratory Ren-ai Road 215123 SuZhou CHINA
| |
Collapse
|
11
|
Huang QQ, Zhang LL, Wu P, Zhang MC, Liu JL, Wu JS, Pei WB, Ren XM. The morphology, crystal structure and oxygen evolution reaction electrocatalysis performance of scandium-doped MIL-101(Fe). J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
12
|
Liu L, Twight LP, Fehrs JL, Ou Y, Sun D, Boettcher S. Purification of residual Ni and Co hydroxides from Fe‐free alkaline electrolyte for electrocatalysis studies. ChemElectroChem 2022. [DOI: 10.1002/celc.202200279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lu Liu
- Chongqing University of Science and Technology School of Materials Science and Engineering CHINA
| | - Liam P Twight
- University of Oregon Chemistry and Biochemistry; Oregon Center for Electrochemistry UNITED STATES
| | - Jessica L Fehrs
- University of Oregon Chemistry and Biochemistry; Oregon Center for Electrochemistry UNITED STATES
| | - Yingqing Ou
- Chongqing University School of Chemistry and Chemical Engineering CHINA
| | - Deen Sun
- Chongqing University School of Materials Science and Engineering CHINA
| | - Shannon Boettcher
- University of Oregon Chemistry and Biochemistry and the Oregon Center for Electrochemistry 1253 University of Oregon 97403 Eugene UNITED STATES
| |
Collapse
|
13
|
Ali A, Iqbal N, Noor T, Imtiaz U. Nanostructured Mn-doped Zn N C @reduced graphene oxide as high performing electrocatalyst for oxygen reduction reaction. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Abstract
Noble-metal nanoparticles (NMNPs), with their outstanding properties, have been arousing the interest of scientists for centuries. Although our knowledge of them is much more significant today, and we can obtain NMNPs in various sizes, shapes, and compositions, our interest in them has not waned. When talking about noble metals, gold, silver, and platinum come to mind first. Still, we cannot forget about elements belonging to the so-called platinum group, such as ruthenium, rhodium, palladium, osmium, and iridium, whose physical and chemical properties are very similar to those of platinum. It makes them highly demanded and widely used in various applications. This review presents current knowledge on the preparation of all noble metals in the form of nanoparticles and their assembling with carbon supports. We focused on the catalytic applications of these materials in the fuel-cell field. Furthermore, the influence of supporting materials on the electrocatalytic activity, stability, and selectivity of noble-metal-based catalysts is discussed.
Collapse
|
15
|
Zaman N, Iqbal N, Noor T. Advances and challenges of MOF derived carbon-based electrocatalysts and photocatalyst for water splitting: a review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103906] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
16
|
Yuan S, Gao Q, Ke C, Zuo T, Hou J, Zhang J. Mesoporous Carbon Materials for Electrochemical Energy Storage and Conversion. ChemElectroChem 2022. [DOI: 10.1002/celc.202101182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shu Yuan
- Institute of Fuel Cells, School of Mechanical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P.R. China
| | - Qian Gao
- Institute of Fuel Cells, School of Mechanical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P.R. China
| | - Changchun Ke
- Institute of Fuel Cells, School of Mechanical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P.R. China
| | - Tao Zuo
- CEMT Co Ltd 107 Changjiang Road Jiashan 314100 P. R. China
| | - Junbo Hou
- Institute of Fuel Cells, School of Mechanical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P.R. China
| | - Junliang Zhang
- Institute of Fuel Cells, School of Mechanical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P.R. China
| |
Collapse
|
17
|
Wei L, Hu J, Liu H, Zhang W, Zheng H, Wu S, Tang K. Hexagonal perovskite Sr6(Co0.8Fe0.2)5O15 as an efficient electrocatalyst towards the oxygen evolution reaction. Dalton Trans 2022; 51:7100-7108. [DOI: 10.1039/d2dt00706a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The high overpotential required for the oxygen evolution reaction (OER)—due to the transfer of four protons and four electrons—has greatly hindered the commercial viability of water electrolysis. People have been...
Collapse
|
18
|
Liu Y, Zhou D, Deng T, He G, Chen A, Sun X, Yang Y, Miao P. Research Progress of Oxygen Evolution Reaction Catalysts for Electrochemical Water Splitting. CHEMSUSCHEM 2021; 14:5359-5383. [PMID: 34704377 DOI: 10.1002/cssc.202101898] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/21/2021] [Indexed: 06/13/2023]
Abstract
The development of a low-cost and high-efficiency oxygen evolution reaction (OER) catalyst is essential to meet the future industrial demand for hydrogen production by electrochemical water splitting. Given the limited reserves of noble metals and many competitive applications in environmental protection, new energy, and chemical industries, many studies have focused on exploring new and efficient non-noble metal catalytic systems, improving the understanding of the OER mechanism of non-noble metal surfaces, and designing electrocatalysts with higher activity than traditional noble metals. This Review summarizes the research progress of anode OER catalysts for hydrogen production by electrochemical water splitting in recent years, for noble metal and non-noble metal catalysts, where non-noble metal catalysts are highlighted. The categories are as follows: (1) Transition metal-based compounds, including transition metal-based oxides, transition metal-based layered hydroxides, and transition metal-based sulfides, phosphides, selenides, borides, carbides, and nitrides. Transition metal-based oxides can also be divided into perovskite, spinel, amorphous, rock-salt-type, and lithium oxides according to their different structures. (2) Carbonaceous materials and their composite materials with transition metals. (3) Transition metal-based metal-organic frameworks and their derivatives. Finally, the challenges and future development of the OER process of water splitting are discussed.
Collapse
Affiliation(s)
- Yanying Liu
- New Energy Technology Development Center, National Institute of Clean-and-Low-Carbon Energy, P.O. Box, 102211, Beijing, China
| | - Daojin Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box, 100029, Beijing, China
| | - Tianyin Deng
- New Energy Technology Development Center, National Institute of Clean-and-Low-Carbon Energy, P.O. Box, 102211, Beijing, China
| | - Guangli He
- New Energy Technology Development Center, National Institute of Clean-and-Low-Carbon Energy, P.O. Box, 102211, Beijing, China
| | - Aibing Chen
- College of Chemical and Pharmaceutical Engineering, Shijiazhuang, Hebei University of Science and Technology, P.O. Box, 050018, Hebei Province, China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box, 100029, Beijing, China
| | - Yuhua Yang
- Logistics Department, Beijing University of Chemical Technology, P.O. Box, 100029, Beijing, China
| | - Ping Miao
- New Energy Technology Development Center, National Institute of Clean-and-Low-Carbon Energy, P.O. Box, 102211, Beijing, China
| |
Collapse
|
19
|
Elakkiya R, Maduraiveeran G. Iron sulphide rice grain nanostructures as potential electrocatalysts for an improved oxygen evolution reaction. NANOSCALE 2021; 13:14837-14846. [PMID: 34533173 DOI: 10.1039/d1nr04138j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Iron based chalcogenides are considered a promising group of electro-active materials for various electrochemical technologies. Herein we demonstrate a facile fabrication of various iron sulphide (FeS) nanostructures, including rice grains (RGS)-, nanoflowers (NFS)- and nanoparticles (NPS)-like surface morphologies via electrochemical, solvothermal and chemical strategies, respectively. The as-developed FeS nanostructures have been employed as electrocatalysts for the oxygen evolution reaction (OER) in an alkaline electrolyte. Among other FeS nanostructures, FeS rice grains (FeS-RGS) exhibited an outstanding OER activity with a low onset potential (∼1.37 V), low overpotential (∼0.20 V), small Tafel slope (∼54.2 mV dec-1), high mass activity (∼5.4 A g-1), and high durability, outperforming the commercial state-of-the-art RuO2 catalyst. The high-performance OER activity of the FeS-RGS is associated not only to the synergistic effect of Fe and S, but also to the direct growth (binder-free) and edges of rice grain structures, offering a large number of electrochemical active sites and ensuring fast-diffusion of OH- ions of the nanostructures. The present one-step, low-cost and highly scalable preparation of FeS-RGS nanostructures provides new possibilities of morphology and synthetic methodology dependence of OER electrocatalysts for effective hydrogen production.
Collapse
Affiliation(s)
- Rajasekaran Elakkiya
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu-603203, India.
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu-603203, India.
| |
Collapse
|
20
|
Tan J, Li R, Raheem SA, Pan L, Shen H, Liu J, Gao M, Yang M. Facile Construction of Carbon Encapsulated of Earth‐Abundant Metal Sulfides for Oxygen Electrocatalysis. ChemElectroChem 2021. [DOI: 10.1002/celc.202101098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Junbin Tan
- State Key Laboratory of Heavy Oil Processing and Beijing Key Lab of Oil & Gas optical detection technology China University of Petroleum, Beijing 18 Fuxue Road, Changping District Beijing 102249 China
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences 1219 Zhongguan West Road Ningbo 315201 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 19 A Yuquan Road, Shijingshan District Beijing 100049 China
| | - Rongrong Li
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences 1219 Zhongguan West Road Ningbo 315201 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 19 A Yuquan Road, Shijingshan District Beijing 100049 China
| | - Saheed Abiola Raheem
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences 1219 Zhongguan West Road Ningbo 315201 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 19 A Yuquan Road, Shijingshan District Beijing 100049 China
| | - Longhai Pan
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences 1219 Zhongguan West Road Ningbo 315201 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 19 A Yuquan Road, Shijingshan District Beijing 100049 China
| | - Hangjia Shen
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences 1219 Zhongguan West Road Ningbo 315201 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 19 A Yuquan Road, Shijingshan District Beijing 100049 China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing and Beijing Key Lab of Oil & Gas optical detection technology China University of Petroleum, Beijing 18 Fuxue Road, Changping District Beijing 102249 China
| | - Manglai Gao
- State Key Laboratory of Heavy Oil Processing and Beijing Key Lab of Oil & Gas optical detection technology China University of Petroleum, Beijing 18 Fuxue Road, Changping District Beijing 102249 China
| | - Minghui Yang
- Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences 1219 Zhongguan West Road Ningbo 315201 China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 19 A Yuquan Road, Shijingshan District Beijing 100049 China
| |
Collapse
|
21
|
Ramakrishnan P, Beom Lee K, Choi GJ, Park IK, Inn Sohn J. Porous hollow nanorod structured chromium-substituted inverse spinel compound: An efficient oxygen evolution reaction catalyst. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
22
|
Xu K, Zhu Z, Guo W, Zhang H, Yu T, Wei W, Liang W, Zhang D, He M, Yang T. Cerium oxide modified iridium nanorods for highly efficient electrochemical water splitting. Chem Commun (Camb) 2021; 57:8798-8801. [PMID: 34382624 DOI: 10.1039/d1cc02580e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An Ir/CeO2 composite catalyst with Ir nanorods (NRs) on amorphous CeO2 was synthesized through a facile one-pot hydrothermal method, which shows excellent activity towards hydrogen evolution and oxygen evolution in alkaline media, even superior to the performance of commercial Pt/C, IrO2 and RuO2 catalysts. The enhanced performance could be attributed to the interfacial electron synergistic effect between Ir and CeO2.
Collapse
Affiliation(s)
- Kai Xu
- School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
|