1
|
Yu Y, Ma J, Zhang L, Sun T, Wang M, Zhu J, Wang J. Selective electrooxidation of 5-hydroxymethylfurfural to value-added 2,5-furanodiformic acid: mechanism, electrolyzer system, and electrocatalyst regulation. Chem Commun (Camb) 2025; 61:7751-7769. [PMID: 40341891 DOI: 10.1039/d5cc01853f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Value-added chemical products derived from biomass have attracted wide attention in addressing global warming and fossil fuel pollution. Among them, 2,5-furanodiformic acid (FDCA), the oxidized product of 5-hydroxymethylfurfural (HMF), is an effective substitute for terylene acid extracted from petroleum to synthesize biodegradable plastics. Electrochemical oxidation is an environmentally friendly, mild reaction condition, high-efficiency process for converting HMF to FDCA. However, the electrooxidation of HMF involves six-electron transfer, normally leading to the formation of many by-products. Thus, there is still a need to construct highly selective catalysts for HMF electrooxidation to FDCA. In this review, first we have investigated the mechanism of HMF electrooxidation and summarized the electrolytic cells and product analysis methods for electrooxidation of HMF to FDCA. The factors influencing HMF electrooxidation to FDCA are also discussed. Then, the electronic structure regulation methods of various electrocatalysts including heteroatom doping, heterostructure construction, interfacial engineering, and defect engineering are systematically summarized for the highly selective electrooxidation of HMF to FDCA. Finally, future challenges and prospects are proposed for further deep understanding. It is expected that this review could provide new guidance for large-scale electrooxidation of HMF to FDCA in industry.
Collapse
Affiliation(s)
- Yang Yu
- School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Junqing Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - LiLi Zhang
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Institute of Electrochemistry, School of Materials Science and Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Tongming Sun
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Minmin Wang
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Jinli Zhu
- College of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Jiacheng Wang
- School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, Zhejiang, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Institute of Electrochemistry, School of Materials Science and Engineering, Taizhou University, Taizhou 318000, Zhejiang, China
| |
Collapse
|
2
|
Huddleston M, Sun Y. Biomass Valorization via Paired Electrocatalysis. CHEMSUSCHEM 2025; 18:e202402161. [PMID: 39591501 DOI: 10.1002/cssc.202402161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 11/28/2024]
Abstract
Electrochemical valorization of biomass represents an emerging research frontier, capitalizing on renewable feedstocks to mitigate carbon emissions. Traditional electrochemical approaches often suffer from energy inefficiencies due to the requirement of a second electrochemical conversion at the counter electrode which might generate non-value-added byproducts. This review article presents the advancement of paired electrocatalysis as an alternative strategy, wherein both half-reactions in an electrochemical cell are harnessed to concurrently produce value-added chemicals from biomass-derived feedstocks, potentially doubling the Faradaic efficiency of the whole process. The operational principles and advantages of different cell configurations, including 1-compartment undivided cells, H-type cells, and flow cells, in the context of paired electrolysis are introduced and compared, followed by the analysis of various catalytic strategies, from catalyst-free systems to sophisticated homogeneous and heterogeneous electrocatalysts, tailored for optimized performance. Key substrates, such as CO2, 5-hydroxymethylfurfural (HMF), furfural, glycerol, and lignin are highlighted to demonstrate the versatility and efficacy of paired electrocatalysis. This work aims to provide a clear understanding of why and how both cathode and anode reactions can be effectively utilized in electrocatalytic biomass valorization leading to innovative industrial scalability.
Collapse
Affiliation(s)
- Morgan Huddleston
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, 45221, USA
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, 45221, USA
| |
Collapse
|
3
|
Tian C, Yu J, Zhou D, Ze H, Liu H, Chen Y, Xia R, Ou P, Ni W, Xie K, Sargent EH. Reduction of 5-Hydroxymethylfurfural to 2,5-Bis(hydroxymethyl)Furan at High Current Density using a Ga-Doped AgCu:Cationomer Hybrid Electrocatalyst. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312778. [PMID: 38421936 DOI: 10.1002/adma.202312778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Hydrogenation of biomass-derived chemicals is of interest for the production of biofuels and valorized chemicals. Thermochemical processes for biomass reduction typically employ hydrogen as the reductant at elevated temperatures and pressures. Here, the authors investigate the direct electrified reduction of 5-hydroxymethylfurfural (HMF) to a precursor to bio-polymers, 2,5-bis(hydroxymethyl)furan (BHMF). Noting a limited current density in prior reports of this transformation, a hybrid catalyst consisting of ternary metal nanodendrites mixed with a cationic ionomer, the latter purposed to increase local pH and facilitate surface proton diffusion, is investigated. This approach, when implemented using Ga-doped Ag-Cu electrocatalysts designed for p-d orbital hybridization, steered selectivity to BHMF, achieving a faradaic efficiency (FE) of 58% at 100 mA cm-2 and a production rate of 1 mmol cm-2 h-1, the latter a doubling in rate compared to the best prior reports.
Collapse
Affiliation(s)
- Cong Tian
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Jiaqi Yu
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Daojin Zhou
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Huajie Ze
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Hengzhou Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Yuanjun Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Rong Xia
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Pengfei Ou
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Weiyan Ni
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Ke Xie
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Edward H Sargent
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| |
Collapse
|
4
|
Kleinhaus JT, Wolf J, Pellumbi K, Wickert L, Viswanathan SC, Junge Puring K, Siegmund D, Apfel UP. Developing electrochemical hydrogenation towards industrial application. Chem Soc Rev 2023; 52:7305-7332. [PMID: 37814786 DOI: 10.1039/d3cs00419h] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Electrochemical hydrogenation reactions gained significant attention as a sustainable and efficient alternative to conventional thermocatalytic hydrogenations. This tutorial review provides a comprehensive overview of the basic principles, the practical application, and recent advances of electrochemical hydrogenation reactions, with a particular emphasis on the translation of these reactions from lab-scale to industrial applications. Giving an overview on the vast amount of conceivable organic substrates and tested catalysts, we highlight the challenges associated with upscaling electrochemical hydrogenations, such as mass transfer limitations and reactor design. Strategies and techniques for addressing these challenges are discussed, including the development of novel catalysts and the implementation of scalable and innovative cell concepts. We furthermore present an outlook on current challenges, future prospects, and research directions for achieving widespread industrial implementation of electrochemical hydrogenation reactions. This work aims to provide beginners as well as experienced electrochemists with a starting point into the potential future transformation of electrochemical hydrogenations from a laboratory curiosity to a viable technology for sustainable chemical synthesis on an industrial scale.
Collapse
Affiliation(s)
- Julian T Kleinhaus
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
| | - Jonas Wolf
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Kevinjeorjios Pellumbi
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Leon Wickert
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Sangita C Viswanathan
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Kai Junge Puring
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Daniel Siegmund
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Ulf-Peter Apfel
- Inorganic Chemistry I, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany.
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| |
Collapse
|
5
|
Zhang W, Qi Y, Zhao Y, Ge W, Dong L, Shen J, Jiang H, Li C. Rh-dispersed Cu nanowire catalyst for boosting electrocatalytic hydrogenation of 5-hydroxymethylfurfural. Sci Bull (Beijing) 2023; 68:2190-2199. [PMID: 37580202 DOI: 10.1016/j.scib.2023.07.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 08/16/2023]
Abstract
Electrocatalytic conversion of biomass-derived 5-hydroxymethylfurfural (HMF) to 2,5-bis(hydroxymethyl)furan (BHMF) presents a compelling strategy for the production of premium chemicals via the utilization of renewable energy sources. Exploring efficient catalytic systems to obtain highly selective BHMF has remained a giant challenge. A design strategy is proposed here to regulate active hydrogen (Hads) production in rhodium (Rh) nanoparticles grown on Cu nanowires (RhCu NWs) catalyst, which achieves a faradaic efficiency (FE) of 92.6% in the electrocatalytic reduction of HMF to BHMF at -20 mA cm-2 with no degradation in performance after 8 cycles. Kinetic investigations and electron spin resonance (ESR) spectroscopy reveal that the incorporation of Rh accelerates the water dissociation and facilitates the generation of Hads. In situ attenuated total reflection surface enhanced infrared absorption spectroscopy (ATR-SEIRAS) further demonstrates that the Rh component boosts the proportion of ordered weakly hydrogen-bonded water molecules on the catalyst surface, which is much easier to dissociate. The construction of an interfacial Hads-rich environment promotes the HMF intermediates binding with Hads to BMHF, thereby suppressing the formation of undesired dimers. This work demonstrates the promise of altering the interfacial water environment as a strategy to boost the electrosynthetic properties of biomass-derived products toward value-added outcomes.
Collapse
Affiliation(s)
- Wenfei Zhang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanbin Qi
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuan Zhao
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wangxin Ge
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Dong
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianhua Shen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Hongliang Jiang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Chunzhong Li
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
6
|
Lee TH, Forrester M, Wang TP, Shen L, Liu H, Dileep D, Kuehl B, Li W, Kraus G, Cochran E. Dihydroxyterephthalate-A Trojan Horse PET Counit for Facile Chemical Recycling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210154. [PMID: 36857624 DOI: 10.1002/adma.202210154] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/04/2023] [Indexed: 05/26/2023]
Abstract
Here, low-energy poly(ethylene terephthalate) (PET) chemical recycling in water: PET copolymers with diethyl 2,5-dihydroxyterephthalate (DHTE) undergo selective hydrolysis at DHTE sites, autocatalyzed by neighboring group participation, is demonstrated. Liberated oligomeric subchains further hydrolyze until only small molecules remain. Poly(ethylene terephthalate-stat-2,5-dihydroxyterephthalate) copolymers were synthesized via melt polycondensation and then hydrolyzed in 150-200 °C water with 0-1 wt% ZnCl2 , or alternatively in simulated sea water. Degradation progress follows pseudo-first order kinetics. With increasing DHTE loading, the rate constant increases monotonically while the thermal activation barrier decreases. The depolymerization products are ethylene glycol, terephthalic acid, 2,5-dihydroxyterephthalic acid, and bis(2-hydroxyethyl) terephthalate dimer, which could be used to regenerate virgin polymer. Composition-optimized copolymers show a decrease of nearly 50% in the Arrhenius activation energy, suggesting a 6-order reduction in depolymerization time under ambient conditions compared to that of PET homopolymer. This study provides new insight to the design of polymers for end-of-life while maintaining key properties like service temperature and mechanical properties. Moreover, this chemical recycling procedure is more environmentally friendly compared to traditional approaches since water is the only needed material, which is green, sustainable, and cheap.
Collapse
Affiliation(s)
- Ting-Han Lee
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Michael Forrester
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Tung-Ping Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Liyang Shen
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Hengzhou Liu
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Dhananjay Dileep
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Baker Kuehl
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Wenzhen Li
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - George Kraus
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Eric Cochran
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
7
|
Zhao L, Du S, Gong R, Jia W, Chen Z, Ren Z. CoO–Co Heterojunction Covered with Carbon Enables Highly Efficient Integration of Hydrogen Evolution and 5-Hydroxymethylfurfural Oxidation. Molecules 2023; 28:molecules28073040. [PMID: 37049803 PMCID: PMC10096219 DOI: 10.3390/molecules28073040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
The renewable-energy-driven integration of hydrogen production and biomass conversion into value-added products is desirable for the current global energy transition, but still a challenge. Herein, carbon-coated CoO–Co heterojunction arrays were built on copper foam (CoO–Co@C/CF) by the carbothermal reduction to catalyze the hydrogen evolution reaction (HER) coupled with a 5-hydroxymethylfurfural electrooxidation reaction (HMFEOR). The electronic modulation induced by the CoO–Co heterojunction endows CoO–Co@C/CF with a powerful catalytic ability. CoO–Co@C/CF is energetic for HER, yielding an overpotential of 69 mV at 10 mA·cm−1 and Tafel slope of 58 mV·dec−1. Meanwhile, CoO–Co@C/CF delivers an excellent electrochemical activity for the selective conversion from HMF into 2,5-furandicarboxylic acid (FDCA), achieving a conversion of 100%, FDCA yield of 99.4% and faradaic efficiency of 99.4% at the lower oxidation potential, along with an excellent cycling stability. The integrated CoO–Co@C/CF||CoO–Co@C/CF configuration actualizes the H2O–HMF-coupled electrolysis at a satisfactory cell voltage of 1.448 V at 10 mA·cm−2. This work highlights the feasibility of engineering double active sites for the coupled electrolytic system.
Collapse
|
8
|
Centi G, Perathoner S, Genovese C, Arrigo R. Advanced (photo)electrocatalytic approaches to substitute the use of fossil fuels in chemical production. Chem Commun (Camb) 2023; 59:3005-3023. [PMID: 36794323 PMCID: PMC9997108 DOI: 10.1039/d2cc05132j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023]
Abstract
Electrification of the chemical industry for carbon-neutral production requires innovative (photo)electrocatalysis. This study highlights the contribution and discusses recent research projects in this area, which are relevant case examples to explore new directions but characterised by a little background research effort. It is organised into two main sections, where selected examples of innovative directions for electrocatalysis and photoelectrocatalysis are presented. The areas discussed include (i) new approaches to green energy or H2 vectors, (ii) the production of fertilisers directly from the air, (iii) the decoupling of the anodic and cathodic reactions in electrocatalytic or photoelectrocatalytic devices, (iv) the possibilities given by tandem/paired reactions in electrocatalytic devices, including the possibility to form the same product on both cathodic and anodic sides to "double" the efficiency, and (v) exploiting electrocatalytic cells to produce green H2 from biomass. The examples offer hits to expand current areas in electrocatalysis to accelerate the transformation to fossil-free chemical production.
Collapse
Affiliation(s)
- Gabriele Centi
- University of Messina, Dept ChiBioFarAm, V.le F. Stagno D'Alcontres 32, 98166 Messina, Italy.
| | - Siglinda Perathoner
- University of Messina, Dept ChiBioFarAm, V.le F. Stagno D'Alcontres 32, 98166 Messina, Italy.
| | - Chiara Genovese
- University of Messina, Dept ChiBioFarAm, V.le F. Stagno D'Alcontres 32, 98166 Messina, Italy.
| | - Rosa Arrigo
- University of Salford, 336 Peel building, M5 4WT Manchester, UK
| |
Collapse
|
9
|
Guo L, Zhang X, Gan L, Pan L, Shi C, Huang Z, Zhang X, Zou J. Advances in Selective Electrochemical Oxidation of 5-Hydroxymethylfurfural to Produce High-Value Chemicals. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205540. [PMID: 36480314 PMCID: PMC9896064 DOI: 10.1002/advs.202205540] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/02/2022] [Indexed: 06/17/2023]
Abstract
The conversion of biomass is a favorable alternative to the fossil energy route to solve the energy crisis and environmental pollution. As one of the most versatile platform compounds, 5-hydroxymethylfural (HMF) can be transformed to various value-added chemicals via electrolysis combining with renewable energy. Here, the recent advances in electrochemical oxidation of HMF, from reaction mechanism to reactor design are reviewed. First, the reaction mechanism and pathway are summarized systematically. Second, the parameters easy to be ignored are emphasized and discussed. Then, the electrocatalysts are reviewed comprehensively for different products and the reactors are introduced. Finally, future efforts on exploring reaction mechanism, electrocatalysts, and reactor are prospected. This review provides a deeper understanding of mechanism for electrochemical oxidation of HMF, the design of electrocatalyst and reactor, which is expected to promote the economical and efficient electrochemical conversion of biomass for industrial applications.
Collapse
Affiliation(s)
- Lei Guo
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Xiaoxue Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Li Gan
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Chengxiang Shi
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Zhen‐Feng Huang
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| | - Ji‐Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
- Haihe Laboratory of Sustainable Chemical TransformationsTianjin300192China
| |
Collapse
|
10
|
Pellumbi K, Wickert L, Kleinhaus JT, Wolf J, Leonard A, Tetzlaff D, Goy R, Medlock JA, Junge Puring K, Cao R, Siegmund D, Apfel UP. Opening the pathway towards a scalable electrochemical semi-hydrogenation of alkynols via earth-abundant metal chalcogenides. Chem Sci 2022; 13:12461-12468. [PMID: 36382291 PMCID: PMC9629083 DOI: 10.1039/d2sc04647d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/06/2022] [Indexed: 09/16/2023] Open
Abstract
Electrosynthetic methods are crucial for a future sustainable transformation of the chemical industry. Being an integral part of many synthetic pathways, the electrification of hydrogenation reactions gained increasing interest in recent years. However, for the large-scale industrial application of electrochemical hydrogenations, low-resistance zero-gap electrolysers operating at high current densities and high substrate concentrations, ideally applying noble-metal-free catalyst systems, are required. Because of their conductivity, stability, and stoichiometric flexibility, transition metal sulfides of the pentlandite group have been thoroughly investigated as promising electrocatalysts for electrochemical applications but were not investigated for electrochemical hydrogenations of organic materials. An initial screening of a series of first row transition metal pentlandites revealed promising activity for the electrochemical hydrogenation of alkynols in water. The most active catalyst within the series was then incorporated into a zero-gap electrolyser enabling the hydrogenation of alkynols at current densities of up to 240 mA cm-2, Faraday efficiencies of up to 75%, and an alkene selectivity of up to 90%. In this scalable setup we demonstrate high stability of catalyst and electrode for at least 100 h. Altogether, we illustrate the successful integration of a sustainable catalyst into a scalable zero-gap electrolyser establishing electrosynthetic methods in an application-oriented manner.
Collapse
Affiliation(s)
- Kevinjeorjios Pellumbi
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT Osterfelder Straße 3 D-46047 Oberhausen Germany
- Inorganic Chemistry I, Ruhr University Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Leon Wickert
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT Osterfelder Straße 3 D-46047 Oberhausen Germany
- Inorganic Chemistry I, Ruhr University Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Julian T Kleinhaus
- Inorganic Chemistry I, Ruhr University Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Jonas Wolf
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT Osterfelder Straße 3 D-46047 Oberhausen Germany
- Inorganic Chemistry I, Ruhr University Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Allison Leonard
- Inorganic Chemistry I, Ruhr University Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - David Tetzlaff
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT Osterfelder Straße 3 D-46047 Oberhausen Germany
- Inorganic Chemistry I, Ruhr University Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Roman Goy
- DSM Nutritional Products AG Wurmisweg 576 CH-4303 Kaiseraugst Switzerland
| | - Jonathan A Medlock
- DSM Nutritional Products AG Wurmisweg 576 CH-4303 Kaiseraugst Switzerland
| | - Kai Junge Puring
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT Osterfelder Straße 3 D-46047 Oberhausen Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 China
| | - Daniel Siegmund
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT Osterfelder Straße 3 D-46047 Oberhausen Germany
- Inorganic Chemistry I, Ruhr University Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Ulf-Peter Apfel
- Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT Osterfelder Straße 3 D-46047 Oberhausen Germany
- Inorganic Chemistry I, Ruhr University Bochum Universitätsstraße 150 D-44780 Bochum Germany
| |
Collapse
|
11
|
Lee TH, Liu H, Forrester MJ, Shen L, Wang TP, Yu H, He JH, Li W, Kraus GA, Cochran EW. Next-Generation High-Performance Biobased Naphthalate-Modified PET for Sustainable Food Packaging Applications. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ting-Han Lee
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Hengzhou Liu
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Michael J. Forrester
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Liyang Shen
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Tung-ping Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Huangchao Yu
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Jia-Hao He
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Wenzhen Li
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - George A. Kraus
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Eric W. Cochran
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
12
|
de Luna GS, Sacco A, Hernandez S, Ospitali F, Albonetti S, Fornasari G, Benito P. Insights into the Electrochemical Reduction of 5-Hydroxymethylfurfural at High Current Densities. CHEMSUSCHEM 2022; 15:e202102504. [PMID: 35129857 PMCID: PMC9400883 DOI: 10.1002/cssc.202102504] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The electrocatalytic reduction of 5-hydroxymethylfurfural (HMF) is highly selective to 2,5-bishydroxymethylfuran (BHMF) at pH=9.2, diluted HMF solutions, and low current densities. In this work, the electrochemical reduction of 0.05 m HMF solutions was investigated in the 5-50 mA cm-2 current density range over an AgCu foam electrocatalyst. The selectivity towards the formation of BHMF or the dimerization depended on the current density, likely due to differences in the electrode potential, and on the reaction time. Operating at current densities of 40-50 mA cm-2 allowed to find a trade-off between HMF and H2 O activation, achieving 85 % BHMF selectivity and fostering the productivity (0.567 mmol cm-2 h-1 ), though co-producing H2 . The electrochemical characterization by Tafel slopes and electrochemical impedance spectroscopy indicated that the HMF reduction was kinetically favored in comparison to the hydrogen evolution reaction and that the process was limited by charge transfer.
Collapse
Affiliation(s)
- Giancosimo Sanghez de Luna
- Dip. di Chimica Industriale “Toso Montanari”University of BolognaViale Risorgimento 440136Bologna (BO)Italy
| | - Adriano Sacco
- Center for Sustainable Future Technologies @POLITOIstituto Italiano di TecnologiaVia Livorno 6010144TurinItaly
| | - Simelys Hernandez
- Center for Sustainable Future Technologies @POLITOIstituto Italiano di TecnologiaVia Livorno 6010144TurinItaly
- Department of Applied Science and Technology (DISAT)Politecnico di TorinoC.so Duca degli Abruzzi 2410129TurinItaly
| | - Francesca Ospitali
- Dip. di Chimica Industriale “Toso Montanari”University of BolognaViale Risorgimento 440136Bologna (BO)Italy
| | - Stefania Albonetti
- Dip. di Chimica Industriale “Toso Montanari”University of BolognaViale Risorgimento 440136Bologna (BO)Italy
| | - Giuseppe Fornasari
- Dip. di Chimica Industriale “Toso Montanari”University of BolognaViale Risorgimento 440136Bologna (BO)Italy
| | - Patricia Benito
- Dip. di Chimica Industriale “Toso Montanari”University of BolognaViale Risorgimento 440136Bologna (BO)Italy
| |
Collapse
|