1
|
Pupel K, Jędrzejewski K, Zoladek S, Palys M, Palys B. The Graphene Oxide/Gold Nanoparticles Hybrid Layers for Hydrogen Peroxide Sensing-Effect of the Nanoparticles Shape and Importance of the Graphene Oxide Defects for the Sensitivity. Molecules 2025; 30:533. [PMID: 39942637 PMCID: PMC11820113 DOI: 10.3390/molecules30030533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Graphene oxide (GO) and reduced graphene oxides (RGOs) show intrinsic electrocatalytic activity towards the electrocatalytic reduction of H2O2. Combining these materials with gold nanoparticles results in highly sensitive electrodes, with sensitivity in the nanomolar range because the electrocatalytic properties of GO and nanoparticles are synergistically enhanced. Understanding the factors influencing such synergy is crucial to designing novel catalytically active materials. In this contribution, we study gold nanostructures having shapes of nanospheres (AuNSs), nanourchins (AuNUs), and nanobowls (AuNBs) combined with GO or electrochemically reduced graphene oxide (ERGO). We investigate the amperometric responses of the hybrid layers to H2O2. The AuNUs show the highest sensitivity compared to AuNBs and AuNSs. All materials are characterized by electron microscopy and Raman spectroscopy. Raman spectra are deconvoluted by fitting them with five components in the 1000-1800 cm-1 range (D*, D, D", G, and D'). The interaction between nanoparticles and GO is visualized by the relative intensities of Raman bands (ID/IG) and other parameters in the Raman spectra, like various D", D* band positions and intensities. The ID/IG parameter is linearly correlated with the sensitivity (R2 = 0.97), suggesting that defects in the graphene structure are significant factors influencing the electrocatalytic H2O2 reduction.
Collapse
Affiliation(s)
| | | | | | | | - Barbara Palys
- Faculty of Chemistry, University of Warsaw, Pasteur Str. 1, 02-093 Warsaw, Poland; (K.P.); (K.J.); (S.Z.); (M.P.)
| |
Collapse
|
2
|
Patella B, Vincenzo SD, Zanca C, Bollaci L, Ferraro M, Giuffrè MR, Cipollina C, Bruno MG, Aiello G, Russo M, Inguanta R, Pace E. Electrochemical Quantification of H 2O 2 Released by Airway Cells Growing in Different Culture Media. MICROMACHINES 2022; 13:1762. [PMID: 36296115 PMCID: PMC9611932 DOI: 10.3390/mi13101762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 05/30/2023]
Abstract
Quantification of oxidative stress is a challenging task that can help in monitoring chronic inflammatory respiratory airway diseases. Different studies can be found in the literature regarding the development of electrochemical sensors for H2O2 in cell culture medium to quantify oxidative stress. However, there are very limited data regarding the impact of the cell culture medium on the electrochemical quantification of H2O2. In this work, we studied the effect of different media (RPMI, MEM, DMEM, Ham's F12 and BEGM/DMEM) on the electrochemical quantification of H2O2. The used electrode is based on reduced graphene oxide (rGO) and gold nanoparticles (AuNPs) and was obtained by co-electrodeposition. To reduce the electrode fouling by the medium, the effect of dilution was investigated using diluted (50% v/v in PBS) and undiluted media. With the same aim, two electrochemical techniques were employed, chronoamperometry (CH) and linear scan voltammetry (LSV). The influence of different interfering species and the effect of the operating temperature of 37 °C were also studied in order to simulate the operation of the sensor in the culture plate. The LSV technique made the sensor adaptable to undiluted media because the test time is short, compared with the CH technique, reducing the electrode fouling. The long-term stability of the sensors was also evaluated by testing different storage conditions. By storing the electrode at 4 °C, the sensor performance was not reduced for up to 21 days. The sensors were validated measuring H2O2 released by two different human bronchial epithelial cell lines (A549, 16HBE) and human primary bronchial epithelial cells (PBEC) grown in RPMI, MEM and BEGM/DMEM media. To confirm the results obtained with the sensor, the release of reactive oxygen species was also evaluated with a standard flow cytometry technique. The results obtained with the two techniques were very similar. Thus, the LSV technique permits using the proposed sensor for an effective oxidative stress quantification in different culture media and without dilution.
Collapse
Affiliation(s)
- Bernardo Patella
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Serena Di Vincenzo
- Institute of Traslational Pharmacology (IFT), National Research Council of Italy (CNR), 90146 Palermo, Italy
| | - Claudio Zanca
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Luciano Bollaci
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | - Maria Ferraro
- Institute of Traslational Pharmacology (IFT), National Research Council of Italy (CNR), 90146 Palermo, Italy
| | | | - Chiara Cipollina
- Institute of Traslational Pharmacology (IFT), National Research Council of Italy (CNR), 90146 Palermo, Italy
- Ri.MED Foundation, 90146 Palermo, Italy
| | | | - Giuseppe Aiello
- Department of Engineering, University of Palermo, 90128 Palermo, Italy
| | | | | | - Elisabetta Pace
- Institute of Traslational Pharmacology (IFT), National Research Council of Italy (CNR), 90146 Palermo, Italy
| |
Collapse
|
3
|
Huang ZJ, Lu XL, Chi HZ, Zhang W, Xiong Q, Qin H. Tuning the Surface Chemical State of Graphene Oxide Sheets for the Self‐Assembly of Graphene Hydrogel for Capacitive Energy Storage. ChemElectroChem 2021. [DOI: 10.1002/celc.202101133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhao Jie Huang
- College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou 310018 P.R. China
| | - Xin liang Lu
- College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou 310018 P.R. China
| | - Hong Zhong Chi
- College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou 310018 P.R. China
| | - Wen Zhang
- College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou 310018 P.R. China
| | - Qinqin Xiong
- College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou 310018 P.R. China
| | - Haiying Qin
- College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou 310018 P.R. China
| |
Collapse
|