Wang H, Chen X, Sun T, Li Y, Lv X, Li Y, Wang H. Cobalt nanoparticles embedded into nitrogen-doped graphene with abundant macropores as a bifunctional electrocatalyst for rechargeable zinc-air batteries.
Chem Asian J 2022;
17:e202200390. [PMID:
35582772 DOI:
10.1002/asia.202200390]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/12/2022] [Indexed: 11/11/2022]
Abstract
Nitrogen doped carbon materials containing transition metal nanoparticles have attracted much attention as bifunctional oxygen electrocatalysts. In this paper, the template etching method is used to obtain the nitrogen-doped graphene with abundant macropores embedded with cobalt nanoparticles (Co@N-C). The prepared Co@NC-800 catalyst has a half-wave potential (E 1/2= 0.835V) close to Pt/C and good stability in excess of Pt/C for oxygen reduction reaction (ORR). At the same time, the catalyst has good oxygen evolution reaction (OER) performance. In addition, zinc-air batteries (ZABs) based on the Co@NC-800 catalyst show good cycle stability of up to 200000 s and high power density of 73.5 mW cm -2 . The synergistic effect of the integrated component between nitrogen-doped graphene and cobalt nanoparticles as well as the macroporous structure endow Co@NC-800 with abundant exposed active sites and mass/electron transfer capacity, thus leading to the high electrocatalytic activity. This work shows potential for practical applications in electrochemistry.
Collapse