1
|
George NS, Singh G, Bahadur R, Kumar P, Ramadass K, Sathish CI, Benzigar M, Sajan D, Aravind A, Vinu A. Recent Advances in Functionalized Biomass-Derived Porous Carbons and their Composites for Hybrid Ion Capacitors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406235. [PMID: 39031008 PMCID: PMC11425278 DOI: 10.1002/advs.202406235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/29/2024] [Indexed: 07/22/2024]
Abstract
Hybrid ion capacitors (HICs) have aroused extreme interest due to their combined characteristics of energy and power densities. The performance of HICs lies hidden in the electrode materials used for the construction of battery and supercapacitor components. The hunt is always on to locate the best material in terms of cost-effectiveness and overall optimized performance characteristics. Functionalized biomass-derived porous carbons (FBPCs) possess exquisite features including easy synthesis, wide availability, high surface area, large pore volume, tunable pore size, surface functional groups, a wide range of morphologies, and high thermal and chemical stability. FBPCs have found immense use as cathode, anode and dual electrode materials for HICs in the recent literature. The current review is designed around two main concepts which include the synthesis and properties of FBPCs followed by their utilization in various types of HICs. Among monovalent HICs, lithium, sodium, and potassium, are given comprehensive attention, whereas zinc is the only multivalent HIC that is focused upon due to corresponding literature availability. Special attention is also provided to the critical factors that govern the performance of HICs. The review concludes by providing feasible directions for future research in various aspects of FBPCs and their utilization in HICs.
Collapse
Affiliation(s)
- Nithya S George
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Centre for Advanced Functional Materials, Department of Physics, Bishop Moore College, Mavelikara, Alappuzha, Kerala, 690110, India
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Rohan Bahadur
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Kavitha Ramadass
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - C I Sathish
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Mercy Benzigar
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Davidson Sajan
- Centre for Advanced Functional Materials, Department of Physics, Bishop Moore College, Mavelikara, Alappuzha, Kerala, 690110, India
| | - Arun Aravind
- Centre for Advanced Functional Materials, Department of Physics, Bishop Moore College, Mavelikara, Alappuzha, Kerala, 690110, India
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
2
|
Zhang KY, Liu HH, Su MY, Yang JL, Wang XT, Huixiang Ang E, Gu ZY, Zheng SH, Heng YL, Liang HJ, Wang Y, Li S, Wu XL. Defect engineering unveiled: Enhancing potassium storage in expanded graphite anode. J Colloid Interface Sci 2024; 664:607-616. [PMID: 38490036 DOI: 10.1016/j.jcis.2024.03.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Expanded graphite (EG) stands out as a promising material for the negative electrode in potassium-ion batteries. However, its full potential is hindered by the limited diffusion pathway and storage sites for potassium ions, restricting the improvement of its electrochemical performance. To overcome this challenge, defect engineering emerges as a highly effective strategy to enhance the adsorption and reaction kinetics of potassium ions on electrode materials. This study delves into the specific effectiveness of defects in facilitating potassium storage, exploring the impact of defect-rich structures on dynamic processes. Employing ball milling, we introduce surface defects in EG, uncovering unique effects on its electrochemical behavior. These defects exhibit a remarkable ability to adsorb a significant quantity of potassium ions, facilitating the subsequent intercalation of potassium ions into the graphite structure. Consequently, this process leads to a higher potassium voltage. Furthermore, the generation of a diluted stage compound is more pronounced under high voltage conditions, promoting the progression of multiple stage reactions. Consequently, the EG sample post-ball milling demonstrates a notable capacity of 286.2 mAh g-1 at a current density of 25 mA g-1, showcasing an outstanding rate capability that surpasses that of pristine EG. This research not only highlights the efficacy of defect engineering in carbon materials but also provides unique insights into the specific manifestations of defects on dynamic processes, contributing to the advancement of potassium-ion battery technology.
Collapse
Affiliation(s)
- Kai-Yang Zhang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, China
| | - Han-Hao Liu
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Meng-Yuan Su
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
| | - Jia-Lin Yang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, China
| | - Xiao-Tong Wang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, China
| | - Edison Huixiang Ang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 637616, Singapore
| | - Zhen-Yi Gu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, China
| | - Shuo-Hang Zheng
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yong-Li Heng
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, China
| | - Hao-Jie Liang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, China
| | - Yinglin Wang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, China
| | - Shuying Li
- Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China.
| | - Xing-Long Wu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin 130024, China.
| |
Collapse
|