1
|
Tang M, Wang X, Gandhi NS, Foley BL, Burrage K, Woods RJ, Gu Y. Effect of hydroxylysine-O-glycosylation on the structure of type I collagen molecule: A computational study. Glycobiology 2020; 30:830-843. [PMID: 32188979 PMCID: PMC7526737 DOI: 10.1093/glycob/cwaa026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/07/2020] [Accepted: 03/16/2020] [Indexed: 12/25/2022] Open
Abstract
Collagen undergoes many types of post-translational modifications (PTMs), including intracellular modifications and extracellular modifications. Among these PTMs, glycosylation of hydroxylysine (Hyl) is the most complicated. Experimental studies demonstrated that this PTM ceases once the collagen triple helix is formed and that Hyl-O-glycosylation modulates collagen fibrillogenesis. However, the underlying atomic-level mechanisms of these phenomena remain unclear. In this study, we first adapted the force field parameters for O-linkages between Hyl and carbohydrates and then investigated the influence of Hyl-O-glycosylation on the structure of type I collagen molecule, by performing comprehensive molecular dynamic simulations in explicit solvent of collagen molecule segment with and without the glycosylation of Hyl. Data analysis demonstrated that (i) collagen triple helices remain in a triple-helical structure upon glycosylation of Hyl; (ii) glycosylation of Hyl modulates the peptide backbone conformation and their solvation environment in the vicinity and (iii) the attached sugars are arranged such that their hydrophilic faces are well exposed to the solvent, while their hydrophobic faces point towards the hydrophobic portions of collagen. The adapted force field parameters for O-linkages between Hyl and carbohydrates will aid future computational studies on proteins with Hyl-O-glycosylation. In addition, this work, for the first time, presents the detailed effect of Hyl-O-glycosylation on the structure of human type I collagen at the atomic level, which may provide insights into the design and manufacture of collagenous biomaterials and the development of biomedical therapies for collagen-related diseases.
Collapse
Affiliation(s)
- Ming Tang
- School of Chemistry Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, 4001 Australia
| | - Xiaocong Wang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Neha S Gandhi
- School of Mathematical Sciences, Queensland University of Technology, Brisbane 4001, Australia
| | | | - Kevin Burrage
- School of Mathematical Sciences, Queensland University of Technology, Brisbane 4001, Australia
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, Queensland University of Technology, Brisbane 4001, Australia
| | - Robert J Woods
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - YuanTong Gu
- School of Chemistry Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, 4001 Australia
| |
Collapse
|
2
|
Yokoi Y, Nishimura SI. Effect of Site-Specific O-Glycosylation on the Structural Behavior of NOTCH1 Receptor Extracellular EGF-like Domains 11 and 10. Chemistry 2020; 26:12363-12372. [PMID: 32632967 DOI: 10.1002/chem.202002652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Indexed: 12/16/2022]
Abstract
Human NOTCH1 receptor contains 36 epidermal growth factor (EGF)-like repeating domains, in which O-glycosylation status of EGF12 domain regulates the interaction with Notch ligands. Our interest is focused on the effect of specific O-glycosylation states on the structural behavior of EGF11 and EGF10, because they appeared to affect molecular mechanism in receptor-ligand interactions by inducing some conformational alterations in these domains and/or the regions connecting two domains. To understand the structural impact of various O-glycosylation patterns on the pivotal EGF-like repeats 10, 11, and 12, we performed chemical synthesis and NMR studies of site-specifically O-glycosylated EGF11 and EGF10. Our strategy enabled us to synthesize four EGF11 and five EGF10 modules. The specific O-glycosylation states affected in vitro folding of EGF10 more than EGF11, while calcium ion had a larger effect on EGF11 folding. Comprehensive NMR studies shed light on the new type "sugar bridges" crosslinking Thr-O-GlcNAc in the consensus sequence C5-X-X-G-X-(T/S)-G-X-X-C6 and an amino acid in the hinge region between the domains, 445Thr-O-GlcNAc-IIe451 in domain 11 and 405Thr-O-GlcNAc-Gln411 in domain 10, respectively.
Collapse
Affiliation(s)
- Yasuhiro Yokoi
- Graduate School of Life Science and Faculty of Advanced Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo, 001-0021, Japan
| | - Shin-Ichiro Nishimura
- Graduate School of Life Science and Faculty of Advanced Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo, 001-0021, Japan
| |
Collapse
|
3
|
Kumar A, Narayanan V, Sekhar A. Characterizing Post-Translational Modifications and Their Effects on Protein Conformation Using NMR Spectroscopy. Biochemistry 2019; 59:57-73. [PMID: 31682116 DOI: 10.1021/acs.biochem.9b00827] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The diversity of the cellular proteome substantially exceeds the number of genes coded by the DNA of an organism because one or more residues in a majority of eukaryotic proteins are post-translationally modified (PTM) by the covalent conjugation of specific chemical groups. We now know that PTMs alter protein conformation and function in ways that are not entirely understood at the molecular level. NMR spectroscopy has been particularly successful as an analytical tool in elucidating the themes underlying the structural role of PTMs. In this Perspective, we focus on the NMR-based characterization of three abundant PTMs: phosphorylation, acetylation, and glycosylation. We detail NMR methods that have found success in detecting these modifications at a site-specific level. We also highlight NMR studies that have mapped the conformational changes ensuing from these PTMs as well as evaluated their relation to function. The NMR toolbox is expanding rapidly with experiments available to probe not only the average structure of biomolecules but also how this structure changes with time on time scales ranging from picoseconds to seconds. The atomic resolution insights into the biomolecular structure, dynamics, and mechanism accessible from NMR spectroscopy ensure that NMR will continue to be at the forefront of research in the structural biology of PTMs.
Collapse
Affiliation(s)
- Ajith Kumar
- Molecular Biophysics Unit , Indian Institute of Science , Bangalore 560 012 , India
| | - Vaishali Narayanan
- Molecular Biophysics Unit , Indian Institute of Science , Bangalore 560 012 , India
| | - Ashok Sekhar
- Molecular Biophysics Unit , Indian Institute of Science , Bangalore 560 012 , India
| |
Collapse
|
4
|
Bermejo IA, Usabiaga I, Compañón I, Castro-López J, Insausti A, Fernández JA, Avenoza A, Busto JH, Jiménez-Barbero J, Asensio JL, Peregrina JM, Jiménez-Osés G, Hurtado-Guerrero R, Cocinero EJ, Corzana F. Water Sculpts the Distinctive Shapes and Dynamics of the Tumor-Associated Carbohydrate Tn Antigens: Implications for Their Molecular Recognition. J Am Chem Soc 2018; 140:9952-9960. [PMID: 30004703 DOI: 10.1021/jacs.8b04801] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The tumor-associated carbohydrate Tn antigens include two variants, αGalNAc- O-Thr and αGalNAc- O-Ser. In solution, they exhibit dissimilar shapes and dynamics and bind differently to the same protein receptor. Here, we demonstrate experimentally and theoretically that their conformational preferences in the gas phase are highly similar, revealing the essential role of water. We propose that water molecules prompt the rotation around the glycosidic linkage in the threonine derivative, shielding its hydrophobic methyl group and allowing an optimal solvation of the polar region of the antigen. The unusual arrangement of αGalNAc- O-Thr features a water molecule bound into a "pocket" between the sugar and the threonine. This mechanism is supported by trapping, for the first time, such localized water in the crystal structures of an antibody bound to two glycopeptides that comprise fluorinated Tn antigens in their structure. According to several reported X-ray structures, installing oxygenated amino acids in specific regions of the receptor capable of displacing the bridging water molecule to the bulk-solvent may facilitate the molecular recognition of the Tn antigen with threonine. Overall, our data also explain how water fine-tunes the 3D structure features of similar molecules, which in turn are behind their distinct biological activities.
Collapse
Affiliation(s)
- Iris A Bermejo
- Departamento de Química, Centro de Investigación en Síntesis Química , Universidad de La Rioja , 26006 Logroño , Spain
| | - Imanol Usabiaga
- Departamento de Química Física, Facultad de Ciencia y Tecnología , Universidad del País Vasco (UPV-EHU), 48080 Bilbao , Spain
| | - Ismael Compañón
- Departamento de Química, Centro de Investigación en Síntesis Química , Universidad de La Rioja , 26006 Logroño , Spain
| | - Jorge Castro-López
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza , BIFI-IQFR (CSIC), 50018 Zaragoza , Spain
| | - Aran Insausti
- Departamento de Química Física, Facultad de Ciencia y Tecnología , Universidad del País Vasco (UPV-EHU), 48080 Bilbao , Spain.,Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), 48940 Leioa , Spain
| | - José A Fernández
- Departamento de Química Física, Facultad de Ciencia y Tecnología , Universidad del País Vasco (UPV-EHU), 48080 Bilbao , Spain
| | - Alberto Avenoza
- Departamento de Química, Centro de Investigación en Síntesis Química , Universidad de La Rioja , 26006 Logroño , Spain
| | - Jesús H Busto
- Departamento de Química, Centro de Investigación en Síntesis Química , Universidad de La Rioja , 26006 Logroño , Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE , Bizkaia Technology Park, Building 801A , 48170 Derio , Spain.,Ikerbasque , Basque Foundation for Science , Maria Diaz de Haro 13 , 48009 Bilbao , Spain.,Department of Organic Chemistry II, Faculty of Science & Technology , University of the Basque Country , 48940 Leioa , Spain
| | - Juan L Asensio
- Instituto de Química Orgánica General , IQOG-CSIC. 28006 Madrid , Spain
| | - Jesús M Peregrina
- Departamento de Química, Centro de Investigación en Síntesis Química , Universidad de La Rioja , 26006 Logroño , Spain
| | - Gonzalo Jiménez-Osés
- Departamento de Química, Centro de Investigación en Síntesis Química , Universidad de La Rioja , 26006 Logroño , Spain
| | - Ramón Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza , BIFI-IQFR (CSIC), 50018 Zaragoza , Spain.,Fundación ARAID , 50018 Zaragoza , Spain
| | - Emilio J Cocinero
- Departamento de Química Física, Facultad de Ciencia y Tecnología , Universidad del País Vasco (UPV-EHU), 48080 Bilbao , Spain.,Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), 48940 Leioa , Spain
| | - Francisco Corzana
- Departamento de Química, Centro de Investigación en Síntesis Química , Universidad de La Rioja , 26006 Logroño , Spain
| |
Collapse
|
5
|
Sun S, Compañón I, Martínez‐Sáez N, Seixas JD, Boutureira O, Corzana F, Bernardes GJL. Enhanced Permeability and Binding Activity of Isobutylene-Grafted Peptides. Chembiochem 2018; 19:48-52. [PMID: 29105291 PMCID: PMC5813187 DOI: 10.1002/cbic.201700586] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 01/09/2023]
Abstract
We present a new peptide-macrocyclization strategy with an isobutylene graft. The reaction is mild and proceeds rapidly and efficiently both for linear and cyclic peptides. The resulting isobutylene-grafted peptides possess improved passive membrane permeability due to the shielding of the polar backbone of the amides, as demonstrated by NMR spectroscopy and molecular dynamics simulations. The isobutylene-stapled structures are fully stable in human plasma and in the presence of glutathione. This strategy can be applied to bioactive cyclic peptides such as somatostatin. Importantly, we found that structural preorganization forced by the isobutylene graft leads to a significant improvement in binding. The combined advantages of directness, selectivity, and smallness could allow application to peptide macrocyclization based on this attachment of the isobutylene graft.
Collapse
Affiliation(s)
- Shuang Sun
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Ismael Compañón
- Departamento de QuímicaCentro de Investigación en Síntesis QuímicaUniversidad de La RiojaMadre de Dios, 5326006LogroñoSpain
| | - Nuria Martínez‐Sáez
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - João D. Seixas
- Instituto de Medicina MolecularFaculdade de MedicinaUniversidade de LisboaAvenida Professor Egas Moniz1649-028LisboaPortugal
| | - Omar Boutureira
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Francisco Corzana
- Departamento de QuímicaCentro de Investigación en Síntesis QuímicaUniversidad de La RiojaMadre de Dios, 5326006LogroñoSpain
| | - Gonçalo J. L. Bernardes
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Instituto de Medicina MolecularFaculdade de MedicinaUniversidade de LisboaAvenida Professor Egas Moniz1649-028LisboaPortugal
| |
Collapse
|
6
|
Martínez-Sáez N, Supekar NT, Wolfert MA, Bermejo IA, Hurtado-Guerrero R, Asensio JL, Jiménez-Barbero J, Busto JH, Avenoza A, Boons GJ, Peregrina JM, Corzana F. Mucin architecture behind the immune response: design, evaluation and conformational analysis of an antitumor vaccine derived from an unnatural MUC1 fragment. Chem Sci 2016; 7:2294-2301. [PMID: 29910919 PMCID: PMC5977504 DOI: 10.1039/c5sc04039f] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/06/2015] [Indexed: 02/01/2023] Open
Abstract
A tripartite cancer vaccine candidate, containing a quaternary amino acid (α-methylserine) in the most immunogenic domain of MUC1, has been synthesized and examined for antigenic properties in transgenic mice. The vaccine which is glycosylated with GalNAc at the unnatural amino acid, was capable of eliciting potent antibody responses recognizing both glycosylated and unglycosylated tumour-associated MUC1 peptides and native MUC1 antigen present on cancer cells. The peptide backbone of the novel vaccine presents the bioactive conformation in solution and is more resistant to enzymatic degradation than the natural counter part. In spite of these features, the immune response elicited by the unnatural vaccine was not improved compared to a vaccine candidate containing natural threonine. These observations were rationalized by conformational studies, indicating that the presentation and dynamics of the sugar moiety displayed by the MUC1 derivative play a critical role in immune recognition. It is clear that engineered MUC1-based vaccines bearing unnatural amino acids have to be able to emulate the conformational properties of the glycosidic linkage between the GalNAc and the threonine residues. The results described here will be helpful to the rational design of efficacious cancer vaccines.
Collapse
Affiliation(s)
- Nuria Martínez-Sáez
- Departamento de Química , Universidad de La Rioja , Centro de Investigación en Síntesis Química , Madre de Dios 53 , 26006 Logroño , Spain . ;
| | - Nitin T Supekar
- Complex Carbohydrate Research Center , University of Georgia , 315 Riverbend Road , Athens , Georgia 30602 , USA .
| | - Margreet A Wolfert
- Complex Carbohydrate Research Center , University of Georgia , 315 Riverbend Road , Athens , Georgia 30602 , USA .
| | - Iris A Bermejo
- Departamento de Química , Universidad de La Rioja , Centro de Investigación en Síntesis Química , Madre de Dios 53 , 26006 Logroño , Spain . ;
| | - Ramón Hurtado-Guerrero
- BIFI , University of Zaragoza , BIFI-IQFR (CSIC) Joint Unit , Mariano Esquillor s/n , Campus Rio Ebro , Edificio I+D , Zaragoza , Spain
- Fundación ARAID , 50018 , Zaragoza , Spain
| | - Juan L Asensio
- Instituto de Química Orgánica General , IQOG-CSIC , Juan de la Cierva 3 , 28006 Madrid , Spain
| | - Jesús Jiménez-Barbero
- Structural Biology Unit , CIC bioGUNE , Parque Tecnológico de Bizkaia Building 801A , 48160 Derio , Spain
- IKERBASQUE , Basque Foundation for Science , 48011 Bilbao , Spain
- Department of Chemical and Physical Biology , Centro de Investigaciones Biológicas , CSIC , Ramiro de Maeztu 9 , 28040 Madrid , Spain
| | - Jesús H Busto
- Departamento de Química , Universidad de La Rioja , Centro de Investigación en Síntesis Química , Madre de Dios 53 , 26006 Logroño , Spain . ;
| | - Alberto Avenoza
- Departamento de Química , Universidad de La Rioja , Centro de Investigación en Síntesis Química , Madre de Dios 53 , 26006 Logroño , Spain . ;
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center , University of Georgia , 315 Riverbend Road , Athens , Georgia 30602 , USA .
| | - Jesús M Peregrina
- Departamento de Química , Universidad de La Rioja , Centro de Investigación en Síntesis Química , Madre de Dios 53 , 26006 Logroño , Spain . ;
| | - Francisco Corzana
- Departamento de Química , Universidad de La Rioja , Centro de Investigación en Síntesis Química , Madre de Dios 53 , 26006 Logroño , Spain . ;
| |
Collapse
|
7
|
Mezei PD, Csonka GI. Unified picture for the conformation and stabilization of the O-glycosidic linkage in glycopeptide model structures. Struct Chem 2015. [DOI: 10.1007/s11224-015-0666-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Madariaga D, Martínez-Sáez N, Somovilla VJ, Coelho H, Valero-González J, Castro-López J, Asensio JL, Jiménez-Barbero J, Busto JH, Avenoza A, Marcelo F, Hurtado-Guerrero R, Corzana F, Peregrina JM. Detection of tumor-associated glycopeptides by lectins: the peptide context modulates carbohydrate recognition. ACS Chem Biol 2015; 10:747-56. [PMID: 25457745 DOI: 10.1021/cb500855x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tn antigen (α-O-GalNAc-Ser/Thr) is a convenient cancer biomarker that is recognized by antibodies and lectins. This work yields remarkable results for two plant lectins in terms of epitope recognition and reveals that these receptors show higher affinity for Tn antigen when it is incorporated in the Pro-Asp-Thr-Arg (PDTR) peptide region of mucin MUC1. In contrast, a significant affinity loss is observed when Tn antigen is located in the Ala-His-Gly-Val-Thr-Ser-Ala (AHGVTSA) or Ala-Pro-Gly-Ser-Thr-Ala-Pro (APGSTAP) fragments. Our data indicate that the charged residues, Arg and Asp, present in the PDTR sequence establish noteworthy fundamental interactions with the lectin surface as well as fix the conformation of the peptide backbone, favoring the presentation of the sugar moiety toward the lectin. These results may help to better understand glycopeptide-lectin interactions and may contribute to engineer new binding sites, allowing novel glycosensors for Tn antigen detection to be designed.
Collapse
Affiliation(s)
- David Madariaga
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Nuria Martínez-Sáez
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Víctor J. Somovilla
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Helena Coelho
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Jessika Valero-González
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Jorge Castro-López
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Juan L. Asensio
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Jesús Jiménez-Barbero
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Jesús H. Busto
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Alberto Avenoza
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Filipa Marcelo
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Ramón Hurtado-Guerrero
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Francisco Corzana
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Jesús M. Peregrina
- Centro de Investigación
en Síntesis Química, Departamento de Química, Universidad de La Rioja, E-26006 Logroño, Spain
| |
Collapse
|
9
|
Madariaga D, Martínez-Sáez N, Somovilla VJ, García-García L, Berbis MÁ, Valero-Gónzalez J, Martín-Santamaría S, Hurtado-Guerrero R, Asensio JL, Jiménez-Barbero J, Avenoza A, Busto JH, Corzana F, Peregrina JM. Serine versus Threonine Glycosylation with α-O-GalNAc: Unexpected Selectivity in Their Molecular Recognition with Lectins. Chemistry 2014; 20:12616-27. [DOI: 10.1002/chem.201403700] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 12/17/2022]
|
10
|
Theillet FX, Binolfi A, Frembgen-Kesner T, Hingorani K, Sarkar M, Kyne C, Li C, Crowley PB, Gierasch L, Pielak GJ, Elcock AH, Gershenson A, Selenko P. Physicochemical properties of cells and their effects on intrinsically disordered proteins (IDPs). Chem Rev 2014; 114:6661-714. [PMID: 24901537 PMCID: PMC4095937 DOI: 10.1021/cr400695p] [Citation(s) in RCA: 363] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Francois-Xavier Theillet
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Andres Binolfi
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| | - Tamara Frembgen-Kesner
- Department
of Biochemistry, University of Iowa, Bowen Science Building, 51 Newton
Road, Iowa City, Iowa 52242, United States
| | - Karan Hingorani
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Mohona Sarkar
- Department
of Chemistry, Department of Biochemistry and Biophysics and Lineberger
Comprehensive Cancer Center, University
of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Ciara Kyne
- School
of Chemistry, National University of Ireland,
Galway, University Road, Galway, Ireland
| | - Conggang Li
- Key Laboratory
of Magnetic Resonance in Biological Systems, State Key Laboratory
of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center
for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, P.R. China
| | - Peter B. Crowley
- School
of Chemistry, National University of Ireland,
Galway, University Road, Galway, Ireland
| | - Lila Gierasch
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Gary J. Pielak
- Department
of Chemistry, Department of Biochemistry and Biophysics and Lineberger
Comprehensive Cancer Center, University
of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Adrian H. Elcock
- Department
of Biochemistry, University of Iowa, Bowen Science Building, 51 Newton
Road, Iowa City, Iowa 52242, United States
| | - Anne Gershenson
- Departments
of Biochemistry & Molecular Biology and Chemistry, Program in
Molecular & Cellular Biology, University
of Massachusetts, Amherst, 240 Thatcher Way, Amherst, Massachusetts 01003, United States
| | - Philipp Selenko
- Department
of NMR-supported Structural Biology, In-cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Roessle Strasse 10, 13125 Berlin, Germany
| |
Collapse
|
11
|
Aydillo C, Navo CD, Busto JH, Corzana F, Zurbano MM, Avenoza A, Peregrina JM. A Double Diastereoselective Michael-Type Addition as an Entry to Conformationally Restricted Tn Antigen Mimics. J Org Chem 2013; 78:10968-77. [DOI: 10.1021/jo4019396] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Carlos Aydillo
- Departamento de Química
and Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Claudio D. Navo
- Departamento de Química
and Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Jesús H. Busto
- Departamento de Química
and Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Francisco Corzana
- Departamento de Química
and Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - María M. Zurbano
- Departamento de Química
and Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Alberto Avenoza
- Departamento de Química
and Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - Jesús M. Peregrina
- Departamento de Química
and Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, Spain
| |
Collapse
|
12
|
Rojas V, Carreras J, Corzana F, Avenoza A, Busto JH, Peregrina JM. Synthesis and conformational analysis of neoglycoconjugates derived from O- and S-glucose. Carbohydr Res 2013; 373:1-8. [PMID: 23545325 DOI: 10.1016/j.carres.2013.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 10/27/2022]
Abstract
Using olefin metathesis as a key step, four neoglycoconjugates incorporating α-O-glucose, α-S-glucose or β-S-glucose as a carbohydrate unit and L-serine or L-cysteine as an amino acid moiety have been synthesized. The four-atom carbon spacer allows the carbohydrate to explore a wide-ranging conformational space, which may have important implications for the molecular recognition of these molecules.
Collapse
Affiliation(s)
- Víctor Rojas
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, Logroño, La Rioja, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Mallajosyula SS, Adams KM, Barchi JJ, MacKerell AD. Conformational determinants of the activity of antiproliferative factor glycopeptide. J Chem Inf Model 2013; 53:1127-37. [PMID: 23627670 DOI: 10.1021/ci400147s] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The antiproliferative factor (APF) involved in interstitial cystitis is a glycosylated nonapeptide (TVPAAVVVA) containing a sialylated core 1 α-O-disaccharide linked to the N-terminal threonine. The chemical structure of APF was deduced using spectroscopic techniques and confirmed using total synthesis. The synthetic APF provided a platform to study amino acid modifications and their effect on APF activity, based on which a structure-activity relationship (SAR) for APF activity was previously proposed. However, this SAR model could not explain the change in activity associated with minor alterations in the peptide sequence. Presented is computational analysis of 14 APF derivatives to identify structural trends from which a more detailed SAR is obtained. The APF activity is found to be dictated by the close interplay between carbohydrate-peptide and peptide-peptide interactions. The former involves hydrogen bond and hydrophobic interactions, and the latter is dominated by hydrophobic interactions. The highly flexible hydrophobic peptide adopts collapsed conformations separated by low energy barriers. APF activity correlates with hydrophobic clustering associated with amino acids 4A, 6V, and 8V. Peptide conformations are highly sensitive to single point mutations, which explain the experimental trends. The presented SAR will act as a guide for lead optimization of more potent APF analogues of potential therapeutic utility.
Collapse
Affiliation(s)
- Sairam S Mallajosyula
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | | | | | | |
Collapse
|
14
|
Matsushita T, Ohyabu N, Fujitani N, Naruchi K, Shimizu H, Hinou H, Nishimura SI. Site-specific conformational alteration induced by sialylation of MUC1 tandem repeating glycopeptides at an epitope region for the anti-KL-6 monoclonal antibody. Biochemistry 2013; 52:402-14. [PMID: 23259747 DOI: 10.1021/bi3013142] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein O-glycosylation is an essential step for controlling structure and biological functions of glycoproteins involving differentiation, cell adhesion, immune response, inflammation, and tumorigenesis and metastasis. This study provides evidence of site-specific structural alteration induced during multiple sialylation at Ser/Thr residues of the tandem repeats in human MUC1 glycoprotein. Systematic nuclear magnetic resonance (NMR) study revealed that sialylation of the MUC1 tandem repeating glycopeptide, Pro-Pro-Ala-His-Gly-Val-Thr-Ser-Ala-Pro-Asp-Thr-Arg-Pro-Ala-Pro-Gly-Ser-Thr-Ala with core 2-type O-glycans at five potential glycosylation sites, afforded a specific conformational change at one of the most important cancer-relevant epitopes (Pro-Asp-Thr-Arg). This result indicates that disease-relevant epitope structures of human epithelial cell surface mucins can be altered both by the introduction of an inner GalNAc residue and by the distal sialylation in a peptide sequence-dependent manner. These data demonstrate the feasibility of NMR-based structural characterization of glycopeptides synthesized in a chemical and enzymatic manner in examining the conformational impact of the distal glycosylation at multiple O-glycosylation sites of mucin-like domains.
Collapse
Affiliation(s)
- Takahiko Matsushita
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Theillet FX, Smet-Nocca C, Liokatis S, Thongwichian R, Kosten J, Yoon MK, Kriwacki RW, Landrieu I, Lippens G, Selenko P. Cell signaling, post-translational protein modifications and NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2012; 54:217-36. [PMID: 23011410 PMCID: PMC4939263 DOI: 10.1007/s10858-012-9674-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 09/07/2012] [Indexed: 05/13/2023]
Abstract
Post-translationally modified proteins make up the majority of the proteome and establish, to a large part, the impressive level of functional diversity in higher, multi-cellular organisms. Most eukaryotic post-translational protein modifications (PTMs) denote reversible, covalent additions of small chemical entities such as phosphate-, acyl-, alkyl- and glycosyl-groups onto selected subsets of modifiable amino acids. In turn, these modifications induce highly specific changes in the chemical environments of individual protein residues, which are readily detected by high-resolution NMR spectroscopy. In the following, we provide a concise compendium of NMR characteristics of the main types of eukaryotic PTMs: serine, threonine, tyrosine and histidine phosphorylation, lysine acetylation, lysine and arginine methylation, and serine, threonine O-glycosylation. We further delineate the previously uncharacterized NMR properties of lysine propionylation, butyrylation, succinylation, malonylation and crotonylation, which, altogether, define an initial reference frame for comprehensive PTM studies by high-resolution NMR spectroscopy.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Department of NMR-Supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), In-cell NMR Group, Robert-Roessle Strasse 10, 13125 Berlin, German
| | - Caroline Smet-Nocca
- CNRS UMR 8576, Universite Lille Nord de France, 59655 Villeneuve d’Ascq, France
| | - Stamatios Liokatis
- Department of NMR-Supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), In-cell NMR Group, Robert-Roessle Strasse 10, 13125 Berlin, German
| | - Rossukon Thongwichian
- Department of NMR-Supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), In-cell NMR Group, Robert-Roessle Strasse 10, 13125 Berlin, German
| | - Jonas Kosten
- Department of NMR-Supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), In-cell NMR Group, Robert-Roessle Strasse 10, 13125 Berlin, German
| | - Mi-Kyung Yoon
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Richard W. Kriwacki
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Isabelle Landrieu
- CNRS UMR 8576, Universite Lille Nord de France, 59655 Villeneuve d’Ascq, France
| | - Guy Lippens
- CNRS UMR 8576, Universite Lille Nord de France, 59655 Villeneuve d’Ascq, France
| | - Philipp Selenko
- Department of NMR-Supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), In-cell NMR Group, Robert-Roessle Strasse 10, 13125 Berlin, German
| |
Collapse
|
16
|
Rodríguez F, Somovilla VJ, Corzana F, Busto JH, Avenoza A, Peregrina PJM. Cyclohexane Ring as a Tool to Select the Presentation of the Carbohydrate Moiety in Glycosyl Amino Acids. Chemistry 2012; 18:5096-104. [DOI: 10.1002/chem.201103089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 01/19/2012] [Indexed: 11/12/2022]
Affiliation(s)
- Fernando Rodríguez
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, UA‐CSI, Madre de Dios, 51, 26006 Logroño (Spain), Fax: (+34) 941‐299‐621
| | - Víctor J. Somovilla
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, UA‐CSI, Madre de Dios, 51, 26006 Logroño (Spain), Fax: (+34) 941‐299‐621
| | - Francisco Corzana
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, UA‐CSI, Madre de Dios, 51, 26006 Logroño (Spain), Fax: (+34) 941‐299‐621
| | - Jesús H. Busto
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, UA‐CSI, Madre de Dios, 51, 26006 Logroño (Spain), Fax: (+34) 941‐299‐621
| | - Alberto Avenoza
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, UA‐CSI, Madre de Dios, 51, 26006 Logroño (Spain), Fax: (+34) 941‐299‐621
| | - Prof Jesús M. Peregrina
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, UA‐CSI, Madre de Dios, 51, 26006 Logroño (Spain), Fax: (+34) 941‐299‐621
| |
Collapse
|
17
|
Naziga EB, Schweizer F, Wetmore SD. Conformational Study of the Hydroxyproline–O–Glycosidic Linkage: Sugar–Peptide Orientation and Prolyl Amide Isomerization in (α/β)–Galactosylated 4(R/S)–Hydroxyproline. J Phys Chem B 2012; 116:860-71. [DOI: 10.1021/jp207479q] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emmanuel B. Naziga
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada T1K 3M4
| | - Frank Schweizer
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
18
|
Guvench O, Mallajosyula SS, Raman EP, Hatcher E, Vanommeslaeghe K, Foster TJ, Jamison FW, MacKerell AD. CHARMM additive all-atom force field for carbohydrate derivatives and its utility in polysaccharide and carbohydrate-protein modeling. J Chem Theory Comput 2011; 7:3162-3180. [PMID: 22125473 PMCID: PMC3224046 DOI: 10.1021/ct200328p] [Citation(s) in RCA: 483] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Monosaccharide derivatives such as xylose, fucose, N-acetylglucosamine (GlcNAc), N-acetylgalactosamine (GlaNAc), glucuronic acid, iduronic acid, and N-acetylneuraminic acid (Neu5Ac) are important components of eukaryotic glycans. The present work details development of force-field parameters for these monosaccharides and their covalent connections to proteins via O-linkages to serine or threonine sidechains and via N-linkages to asparagine sidechains. The force field development protocol was designed to explicitly yield parameters that are compatible with the existing CHARMM additive force field for proteins, nucleic acids, lipids, carbohydrates, and small molecules. Therefore, when combined with previously developed parameters for pyranose and furanose monosaccharides, for glycosidic linkages between monosaccharides, and for proteins, the present set of parameters enables the molecular simulation of a wide variety of biologically-important molecules such as complex carbohydrates and glycoproteins. Parametrization included fitting to quantum mechanical (QM) geometries and conformational energies of model compounds, as well as to QM pair interaction energies and distances of model compounds with water. Parameters were validated in the context of crystals of relevant monosaccharides, as well NMR and/or x-ray crystallographic data on larger systems including oligomeric hyaluronan, sialyl Lewis X, O- and N-linked glycopeptides, and a lectin:sucrose complex. As the validated parameters are an extension of the CHARMM all-atom additive biomolecular force field, they further broaden the types of heterogeneous systems accessible with a consistently-developed force-field model.
Collapse
Affiliation(s)
- Olgun Guvench
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy, Portland, Maine 04103
| | - Sairam S. Mallajosyula
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn St., HSF II-629, Baltimore, MD 21201
| | - E. Prabhu Raman
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn St., HSF II-629, Baltimore, MD 21201
| | - Elizabeth Hatcher
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn St., HSF II-629, Baltimore, MD 21201
| | - Kenno Vanommeslaeghe
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn St., HSF II-629, Baltimore, MD 21201
| | - Theresa J. Foster
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy, Portland, Maine 04103
| | - Francis W. Jamison
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy, Portland, Maine 04103
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn St., HSF II-629, Baltimore, MD 21201
| |
Collapse
|
19
|
Mallajosyula SS, MacKerell AD. Influence of solvent and intramolecular hydrogen bonding on the conformational properties of o-linked glycopeptides. J Phys Chem B 2011; 115:11215-29. [PMID: 21823626 PMCID: PMC3179525 DOI: 10.1021/jp203695t] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A detailed investigation of the conformational properties of all the biologically relevant O-glycosidic linkages using the Hamiltonian replica exchange (HREX) simulation methodology and the recently developed CHARMM carbohydrate force field parameters is presented. Fourteen biologically relevant O-linkages between the five sugars N-acetylgalactosamine (GalNAc), N-acetylglucosamine (GlcNAc), D-glucose (Glc), D-mannose (Man), and L-fucose (Fuc) and the amino acids serine and threonine were studied. The force field was tested by comparing the simulation results of the model glycopeptides to various NMR (3)J coupling constants, NOE distances, and data from molecular dynamics with time-averaged restraints (tar-MD). The results show the force field to be in overall agreement with experimental and previous tar-MD simulations, although some small limitations are identified. An in-depth hydrogen bond and bridging water analysis revealed an interplay of hydrogen bonding and bridge water interactions influencing the geometry of the underlying peptide backbone, with the O-linkages favoring extended β-sheet and polyproline type II (PPII) conformations over the compact α(R)-helical conformation. The newly developed parameters were also able to identify hydrogen bonding and water mediated interactions between O-linked sugars and proteins. These results indicate that the newly developed parameters in tandem with HREX conformational sampling provide the means to study glycoproteins in the absence of targeted NMR restraint data.
Collapse
Affiliation(s)
- Sairam S. Mallajosyula
- Department of Pharmaceutical Sciences, 20 Penn Street HSF II, University of Maryland, Baltimore, Maryland 21201
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, 20 Penn Street HSF II, University of Maryland, Baltimore, Maryland 21201
| |
Collapse
|
20
|
Corzana F, Busto JH, Marcelo F, García de Luis M, Asensio JL, Martín‐Santamaría S, Jiménez‐Barbero J, Avenoza A, Peregrina JM. Engineering
O
‐Glycosylation Points in Non‐extended Peptides: Implications for the Molecular Recognition of Short Tumor‐Associated Glycopeptides. Chemistry 2011; 17:3105-10. [DOI: 10.1002/chem.201003124] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Indexed: 12/15/2022]
Affiliation(s)
- Francisco Corzana
- Departmento de Química, Universidad de La Rioja, Madre de Dios, 51, 26006 Logroño (Spain), Fax: (+34) 941‐299‐621
| | - Jesús H. Busto
- Departmento de Química, Universidad de La Rioja, Madre de Dios, 51, 26006 Logroño (Spain), Fax: (+34) 941‐299‐621
| | - Filipa Marcelo
- Centro de Investigaciones Biológicas (CSIC), Madrid (Spain)
| | - Marisa García de Luis
- Departmento de Química, Universidad de La Rioja, Madre de Dios, 51, 26006 Logroño (Spain), Fax: (+34) 941‐299‐621
| | | | | | | | - Alberto Avenoza
- Departmento de Química, Universidad de La Rioja, Madre de Dios, 51, 26006 Logroño (Spain), Fax: (+34) 941‐299‐621
| | - Jesús M. Peregrina
- Departmento de Química, Universidad de La Rioja, Madre de Dios, 51, 26006 Logroño (Spain), Fax: (+34) 941‐299‐621
| |
Collapse
|
21
|
Hashimoto R, Fujitani N, Takegawa Y, Kurogochi M, Matsushita T, Naruchi K, Ohyabu N, Hinou H, Gao XD, Manri N, Satake H, Kaneko A, Sakamoto T, Nishimura SI. An Efficient Approach for the Characterization of Mucin-Type Glycopeptides: The Effect of O-Glycosylation on the Conformation of Synthetic Mucin Peptides. Chemistry 2011; 17:2393-404. [DOI: 10.1002/chem.201002754] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Indexed: 01/19/2023]
|
22
|
Corzana F, Fernández-Tejada A, Busto JH, Joshi G, Davis AP, Jiménez-Barbero J, Avenoza A, Peregrina JM. Molecular Recognition of β-O-GlcNAc Glycopeptides by a Lectin-Like Receptor: Binding Modulation by the Underlying Ser or Thr Amino Acids. Chembiochem 2010; 12:110-7. [DOI: 10.1002/cbic.201000526] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Vacas T, Corzana F, Jiménez-Osés G, González C, Gómez AM, Bastida A, Revuelta J, Asensio JL. Role of Aromatic Rings in the Molecular Recognition of Aminoglycoside Antibiotics: Implications for Drug Design. J Am Chem Soc 2010; 132:12074-90. [DOI: 10.1021/ja1046439] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tatiana Vacas
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain, Departamento de Química, Universidad de La Rioja, UA-CSIC, Logroño, Spain, Departamento de Química Orgánica y Química Física. Universidad de Zaragoza-CSIC, Zaragoza, Spain, and Instituto de Química Física Rocasolano (CSIC), Madrid, Spain
| | - Francisco Corzana
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain, Departamento de Química, Universidad de La Rioja, UA-CSIC, Logroño, Spain, Departamento de Química Orgánica y Química Física. Universidad de Zaragoza-CSIC, Zaragoza, Spain, and Instituto de Química Física Rocasolano (CSIC), Madrid, Spain
| | - Gonzalo Jiménez-Osés
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain, Departamento de Química, Universidad de La Rioja, UA-CSIC, Logroño, Spain, Departamento de Química Orgánica y Química Física. Universidad de Zaragoza-CSIC, Zaragoza, Spain, and Instituto de Química Física Rocasolano (CSIC), Madrid, Spain
| | - Carlos González
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain, Departamento de Química, Universidad de La Rioja, UA-CSIC, Logroño, Spain, Departamento de Química Orgánica y Química Física. Universidad de Zaragoza-CSIC, Zaragoza, Spain, and Instituto de Química Física Rocasolano (CSIC), Madrid, Spain
| | - Ana M. Gómez
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain, Departamento de Química, Universidad de La Rioja, UA-CSIC, Logroño, Spain, Departamento de Química Orgánica y Química Física. Universidad de Zaragoza-CSIC, Zaragoza, Spain, and Instituto de Química Física Rocasolano (CSIC), Madrid, Spain
| | - Agatha Bastida
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain, Departamento de Química, Universidad de La Rioja, UA-CSIC, Logroño, Spain, Departamento de Química Orgánica y Química Física. Universidad de Zaragoza-CSIC, Zaragoza, Spain, and Instituto de Química Física Rocasolano (CSIC), Madrid, Spain
| | - Julia Revuelta
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain, Departamento de Química, Universidad de La Rioja, UA-CSIC, Logroño, Spain, Departamento de Química Orgánica y Química Física. Universidad de Zaragoza-CSIC, Zaragoza, Spain, and Instituto de Química Física Rocasolano (CSIC), Madrid, Spain
| | - Juan Luis Asensio
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain, Departamento de Química, Universidad de La Rioja, UA-CSIC, Logroño, Spain, Departamento de Química Orgánica y Química Física. Universidad de Zaragoza-CSIC, Zaragoza, Spain, and Instituto de Química Física Rocasolano (CSIC), Madrid, Spain
| |
Collapse
|
24
|
Fernández-Tejada A, Corzana F, Busto JH, Avenoza A, Peregrina JM. Conformational effects of the non-natural alpha-methylserine on small peptides and glycopeptides. J Org Chem 2010; 74:9305-13. [PMID: 19924838 DOI: 10.1021/jo901988w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis and the conformational analysis in aqueous solution of a peptide and a glycopeptide containing the sequence threonine-alanine-alanine (Thr-Ala-Ala) are reported. Furthermore, the threonine residue has been replaced by the quaternary amino acid alpha-methylserine (MeSer) and their corresponding non-natural peptide and glycopeptide are also studied. The conformational analysis in aqueous solution combines NOEs and coupling constants data with Molecular Dynamics (MD) simulations with time-averaged restraints. The study reveals that the beta-O-glycosylation produces a remarkable and completely different effect on the backbone of the peptide derived from Thr and MeSer. In the former, the beta-O-glycosylation is responsible for the experimentally observed shift from extended conformations (peptide) to folded ones (glycopeptide). In contrast, the beta-O-glycosylation of the MeSer-containing peptide, which clearly shows two main conformations in aqueous solution [extended ones (70%) and beta-turn (30%)], causes a high degree of flexibility for the backbone.
Collapse
Affiliation(s)
- Alberto Fernández-Tejada
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Sintesis Química, Grupo de Sintesis Química de La Rioja, UA-CSIC, 26006 Logroño, Spain
| | | | | | | | | |
Collapse
|
25
|
Kövér KE, Szilágyi L, Batta G, Uhrín D, Jiménez-Barbero J. Biomolecular Recognition by Oligosaccharides and Glycopeptides: The NMR Point of View. COMPREHENSIVE NATURAL PRODUCTS II 2010:197-246. [DOI: 10.1016/b978-008045382-8.00193-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
|
26
|
Barb AW, Borgert AJ, Liu M, Barany G, Live D. Intramolecular glycan-protein interactions in glycoproteins. Methods Enzymol 2010; 478:365-88. [PMID: 20816490 DOI: 10.1016/s0076-6879(10)78018-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glycoproteins are a major class of glycoconjugates displaying a variety of mutual interactions between glycan and protein moieties that ultimately affect molecular organization. Modulation of the pendant glycan structures is important in tuning the functions of glycoproteins. Here we discuss structural aspects and some of the challenges to studying intramolecular interactions between carbohydrate and protein elements in several forms of O-linked as well as N-linked glycoproteins. These illustrate the importance of the relationship of context to function in protein glycosylation.
Collapse
Affiliation(s)
- Adam W Barb
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | | | | | | |
Collapse
|
27
|
Fernández-Tejada A, Corzana F, Busto JH, Jiménez-Osés G, Jiménez-Barbero J, Avenoza A, Peregrina JM. Insights into the geometrical features underlying beta-O-GlcNAc glycosylation: water pockets drastically modulate the interactions between the carbohydrate and the peptide backbone. Chemistry 2009; 15:7297-301. [PMID: 19544521 DOI: 10.1002/chem.200901204] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alberto Fernández-Tejada
- Departamento de Química, Universidad de La Rioja, UA-CSIC. Madre de Dios 51, 26006 Logroño, La Rioja, Spain
| | | | | | | | | | | | | |
Collapse
|
28
|
Corzana F, Busto J, García de Luis M, Jiménez-Barbero J, Avenoza A, Peregrina J. The Nature and Sequence of the Amino Acid Aglycone Strongly Modulates the Conformation and Dynamics Effects of Tn Antigen's Clusters. Chemistry 2009; 15:3863-74. [DOI: 10.1002/chem.200801777] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Fernández-Tejada A, Corzana F, Busto JH, Avenoza A, Peregrina JM. Stabilizing unusual conformations in small peptides and glucopeptides using a hydroxylated cyclobutane amino acid. Org Biomol Chem 2009; 7:2885-93. [DOI: 10.1039/b907091p] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Aydillo C, Avenoza A, Busto JH, Jiménez-Osés G, Peregrina JM, Zurbano MM. α-Alkylation versus retro-O-Michael/γ-alkylation of bicyclic N,O-acetals: an entry to α-methylthreonine. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.tetasy.2008.11.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Fernández-Tejada A, Corzana F, Busto JH, Jiménez-Osés G, Peregrina JM, Avenoza A. Non-natural amino acids as modulating agents of the conformational space of model glycopeptides. Chemistry 2008; 14:7042-58. [PMID: 18604849 DOI: 10.1002/chem.200800460] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The synthesis and conformational analysis in aqueous solution of different alpha-methyl-alpha-amino acid diamides, derived from serine, threonine, beta-hydroxycyclobutane-alpha-amino acids, and their corresponding model beta-O-glucopeptides, are reported. The study reveals that the presence of an alpha-methyl group forces the model peptides to adopt helix-like conformations. These folded conformations are especially significant for cyclobutane derivatives. Interestingly, this feature was also observed in the corresponding model glucopeptides, thus indicating that the alpha-methyl group and not the beta-O-glucosylation process largely determines the conformational preference of the backbone in these structures. On the other hand, atypical conformations of the glycosidic linkage were experimentally determined. Therefore, when a methyl group was located at the Cbeta atom with an R configuration, the glycosidic linkage was rather rigid. Nevertheless, when the S configuration was displayed, a significant degree of flexibility was observed for the glycosidic linkage, thus showing both alternate and eclipsed conformations of the psi(s) dihedral angle. In addition, some derivatives exhibited an unusual value for the phi(s) angle, which was far from a value of -60 degrees expected for a conventional beta-O-glycosidic linkage. In this sense, the different conformations exhibited by these molecules could be a useful tool in obtaining systems with conformational preferences "à la carte".
Collapse
|
32
|
Corzana F, Busto JH, Jiménez-Osés G, Asensio JL, Jiménez-Barbero J, Peregrina JM, Avenoza A. New insights into alpha-GalNAc-Ser motif: influence of hydrogen bonding versus solvent interactions on the preferred conformation. J Am Chem Soc 2007; 128:14640-8. [PMID: 17090050 DOI: 10.1021/ja064539u] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structural features of the mucin-type simplest model, namely, the glycopeptide alpha-O-GalNAc-l-Ser diamide, have been investigated by combining NMR spectroscopy, molecular dynamics simulations, and DFT calculations. In contrast to previous reports, the study reveals that intramolecular hydrogen bonds between sugar and peptide residues are very weak and, as a consequence, not strong enough to maintain the well-defined conformation of this type of molecule. In fact, the observed conformation of this model glycopeptide can be satisfactorily explained by the presence of water pockets/bridges between the sugar and the peptide moieties. Additionally, DFT calculations reveal that not only the bridging water molecules but also the surrounding water molecules in the first hydration shell are essential to keep the existing conformation.
Collapse
Affiliation(s)
- Francisco Corzana
- Departamento de Química, Universidad de La Rioja, UA-CSIC, Madre de Dios 51, E-26006 Logroño, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Corzana F, Busto JH, Jiménez-Osés G, García de Luis M, Asensio JL, Jiménez-Barbero J, Peregrina JM, Avenoza A. Serine versus Threonine Glycosylation: The Methyl Group Causes a Drastic Alteration on the Carbohydrate Orientation and on the Surrounding Water Shell. J Am Chem Soc 2007; 129:9458-67. [PMID: 17616194 DOI: 10.1021/ja072181b] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Different behavior has been observed for the psi torsion angle of the glycosidic linkages of D-GalNAc-Ser and D-GalNAc-Thr motifs, allowing the carbohydrate moiety to adopt a completely different orientation. In addition, the fact that the water pockets found in alpha-D-GalNAc-Thr differ from those obtained for its serine analogue could be related to the different capability that the two model glycopeptides have to structure the surrounding water. This fact could have important biological inferences (i.e., antifreeze activity).
Collapse
Affiliation(s)
- Francisco Corzana
- Departamento de Química, Universidad de La Rioja, UA-CSIC, Madre de Dios 51, Logroño, Spain
| | | | | | | | | | | | | | | |
Collapse
|