1
|
Nemec V, Sušanj R, Baus Topić N, Cinčić D. Competition vs. Cooperativity of I⋅⋅⋅O morpholinyl and I⋅⋅⋅Cl-M Halogen Bonds in Cocrystals of Zinc(II) and Copper(II) Coordination Compounds Carrying Multiple Acceptor Sites. Chem Asian J 2025; 20:e202401916. [PMID: 39888196 DOI: 10.1002/asia.202401916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/01/2025]
Abstract
In order to explore a strategy for synthesizing halogen-bonded metal-organic cocrystals by utilizing metal complexes whose pendant chloride group and the morpholinyl oxygen atom enables halogen bonding, we have synthesized four pentacoordinated Cu(II) and Zn(II) complexes of the MCl2L general formula (L=imines prepared by the condensation reaction of 4-aminoethylmorpholine with 2-pyridinecarboxyaldehide or 2-acetylpyridine). The prepared metal complexes were further cocrystallized with selected iodoperfluorinated benzenes. Out of 20 combinations, 14 experiments yielded crystals suitable for single-crystal X-ray diffraction. Structural analysis revealed that in 7 cocrystals halogen bonds are formed both with morpholinyl oxygen as well as with chloride atoms. In 6 cocrystals only I⋅⋅⋅Cl halogen bonds are present, while only one cocrystal exclusively featured I⋅⋅⋅Omorpholinyl halogen bonds. We observed 5 halogen bonding motifs to the MCl2 moiety, in which each chloride atom can be an acceptor of one halogen bond, two, or none at all. The most common motif in our work (6 cocrystals) is where one chlorine atom is an acceptor of one halogen bond, while the other chlorine atom does not participate in halogen bonding. The crystal packing in the prepared cocrystals is directed by halogen-bonded architectures which are either zero-, one- or two-dimensional.
Collapse
Affiliation(s)
- Vinko Nemec
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Ruđer Sušanj
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Nea Baus Topić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Dominik Cinčić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| |
Collapse
|
2
|
Yan R, Dai Z, Shlian DG, Mitchell TD, Loo A, Mulosmani K, Upmacis RK. Mol-ecular structure of tris-[(6-bromo-pyridin-2-yl)meth-yl]amine. Acta Crystallogr E Crystallogr Commun 2024; 80:1006-1009. [PMID: 39372171 PMCID: PMC11451500 DOI: 10.1107/s2056989024008685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024]
Abstract
Coordination compounds of polydentate nitro-gen ligands with metals are used extensively in research areas such as catalysis, and as models of complex active sites of enzymes in bioinorganic chemistry. Tris(2-pyridyl-meth-yl)amine (TPA) is a tripodal tetra-dentate ligand that is known to form coordination compounds with metals, including copper, iron and zinc. The related compound, tris-[(6-bromo-pyridin-2-yl)meth-yl]amine (TPABr3), C18H15Br3N4, which possesses a bromine atom on the 6-position of each of the three pyridyl moieties, is also known but has not been heavily investigated. The mol-ecular structure of TPABr3 as determined by X-ray diffraction is reported here. The TPABr3 molecule belongs to the triclinic, P space group and displays interesting intermolecular Br⋯Br interactions that provide a stabilizing influence within the molecule.
Collapse
Affiliation(s)
- Ran Yan
- Department of Chemistry Columbia University,New YorkNew York 10027 USA
| | - Zhaohua Dai
- Department of Chemistry & Physical Sciences Pace University, New YorkNew York 10038 USA
| | - Daniel G. Shlian
- Department of Chemistry Columbia University,New YorkNew York 10027 USA
| | - Trinit’y D. Mitchell
- Department of Chemistry & Physical Sciences Pace University, New YorkNew York 10038 USA
| | - Aaron Loo
- Department of Chemistry Columbia University,New YorkNew York 10027 USA
| | - Kaltrina Mulosmani
- Department of Chemistry & Physical Sciences Pace University, New YorkNew York 10038 USA
| | - Rita K. Upmacis
- Department of Chemistry & Physical Sciences Pace University, New YorkNew York 10038 USA
| |
Collapse
|
3
|
Fisher S, Malaspina LA, Gozálvez Martínez C, Prescimone A, Balmohammadi Y, Grabowsky S, Šolomek T. Leveraging Halogen Interactions for a Supramolecular Nanotube. Chemistry 2024; 30:e202400295. [PMID: 38462477 DOI: 10.1002/chem.202400295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
We demonstrate the formation of supramolecular nanotubes from molecular triangles in a single crystal by balancing the hydrogen bonds and halogen interactions between individual macrocycles. Thereby, we template the supramolecular nanotube growth by intermolecular interactions encoded directly in the macrocycles instead of those provided by the crystallization solvent. Ultimately, we show that replacing bromines for iodines in the macrocycle is necessary to achieve this supramolecular organization by enhancing the strength of the halogen interactions and concomitant reduction of the detrimental hydrogen bonds. We investigated the nature and the interplay of the individual intermolecular interactions by analysis of the experimental single crystal data and quantum chemical calculations. This work enriches the available toolbox of supramolecular interactions and will aid and abet the development of rationally-designed materials with a long-range 1D tubular organization.
Collapse
Affiliation(s)
- Sergey Fisher
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, NL-1098, XH Amsterdam, The Netherlands
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Lorraine A Malaspina
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | | | - Alessandro Prescimone
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056, Basel, Switzerland
| | - Yaser Balmohammadi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Simon Grabowsky
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Tomáš Šolomek
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, NL-1098, XH Amsterdam, The Netherlands
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| |
Collapse
|
4
|
Melesi S, Marabotti P, Milani A, Pigulski B, Gulia N, Pińkowski P, Szafert S, Del Zoppo M, Castiglioni C, Casari CS. Impact of Halogen Termination and Chain Length on π-Electron Conjugation and Vibrational Properties of Halogen-Terminated Polyynes. J Phys Chem A 2024; 128:2703-2716. [PMID: 38507898 PMCID: PMC11017249 DOI: 10.1021/acs.jpca.3c07915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/22/2024]
Abstract
We explored the optoelectronic and vibrational properties of a new class of halogen-terminated carbon atomic wires in the form of polyynes using UV-vis, infrared absorption, Raman spectroscopy, X-ray single-crystal diffraction, and DFT calculations. These polyynes terminate on one side with a cyanophenyl group and on the other side, with a halogen atom X (X = Cl, Br, I). We focus on the effect of different halogen terminations and increasing lengths (i.e., 4, 6, and 8 sp-carbon atoms) on the π-electron conjugation and the electronic structure of these systems. The variation in the sp-carbon chain length is more effective in tuning these features than changing the halogen end group, which instead leads to a variety of solid-state architectures. Shifts between the vibrational frequencies of samples in crystalline powders and in solution reflect intermolecular interactions. In particular, the presence of head-to-tail dimers in the crystals is responsible for the modulation of the charge density associated with the π-electron system, and this phenomenon is particularly important when strong I··· N halogen bonds occur.
Collapse
Affiliation(s)
- Simone Melesi
- Department
of Energy, Micro and Nanostructured Materials Laboratory - NanoLab,
Energy, Politecnico di Milano, Via Ponzio 34/3, Milano 20133, Italy
| | - Pietro Marabotti
- Department
of Energy, Micro and Nanostructured Materials Laboratory - NanoLab,
Energy, Politecnico di Milano, Via Ponzio 34/3, Milano 20133, Italy
- Institut
für Physik and IRIS Adlershof, Humboldt
Universität zu Berlin, 12489 Berlin, Germany
| | - Alberto Milani
- Department
of Energy, Micro and Nanostructured Materials Laboratory - NanoLab,
Energy, Politecnico di Milano, Via Ponzio 34/3, Milano 20133, Italy
| | - Bartłomiej Pigulski
- Faculty
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, Wrocław 50-383, Poland
| | - Nurbey Gulia
- Faculty
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, Wrocław 50-383, Poland
| | - Piotr Pińkowski
- Faculty
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, Wrocław 50-383, Poland
| | - Sławomir Szafert
- Faculty
of Chemistry, University of Wrocław, 14 F. Joliot-Curie, Wrocław 50-383, Poland
| | - Mirella Del Zoppo
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Chiara Castiglioni
- Department
of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Carlo S. Casari
- Department
of Energy, Micro and Nanostructured Materials Laboratory - NanoLab,
Energy, Politecnico di Milano, Via Ponzio 34/3, Milano 20133, Italy
| |
Collapse
|
5
|
Meier E, Seichter W, Mazik M. Combination of Hydrogen and Halogen Bonds in the Crystal Structures of 5-Halogeno-1 H-isatin-3-oximes: Involvement of the Oxime Functionality in Halogen Bonding. Molecules 2024; 29:1174. [PMID: 38474688 DOI: 10.3390/molecules29051174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Various functional groups have been considered as acceptors for halogen bonds, but the oxime functionality has received very little attention in this context. In this study, we focus on the analysis of the hydrogen and halogen bond preferences observed in the crystal structures of 5-halogeno-1H-isatin-3-oximes. These molecules can be involved in various non-covalent interactions, and the competition between these interactions has a decisive influence on their self-organization. In particular, we were interested to see whether the crystal structures of 5-halogeno-1H-isatin-3-oximes, especially bromine- and iodine-substituted ones, are characterized by the presence of halogen bonds formed with the oxime functionality. The oxime group proved its ability to compete with the other strong donor and acceptor sites by participating in the formation of cyclic hydrogen-bonded heterosynthons oxime∙∙∙amide and Ooxime∙∙∙Br/I halogen bonds.
Collapse
Affiliation(s)
- Eric Meier
- Institut Für Organische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Straße 29, 09596 Freiberg, Germany
| | - Wilhelm Seichter
- Institut Für Organische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Straße 29, 09596 Freiberg, Germany
| | - Monika Mazik
- Institut Für Organische Chemie, Technische Universität Bergakademie Freiberg, Leipziger Straße 29, 09596 Freiberg, Germany
| |
Collapse
|
6
|
Ramasami P, Murray JS. Anisotropies in electronic densities and electrostatic potentials of Halonium Ions: focus on Chlorine, Bromine and Iodine. J Mol Model 2024; 30:81. [PMID: 38393388 DOI: 10.1007/s00894-024-05869-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
CONTEXT Why are the halonium cations so effective in forming strongly-bound complexes? We directed our research to address this question and we present electrostatic potential data for the valence-state halogen atoms X and halonium cations X+, where X = Cl, Br, I. The electron densities and electrostatic potentials of the halonium cations show considerably greater anisotropy than do the valence state halogens. The distances from the electrostatic potential surface maxima to the halogen nuclei are about 0.5 Å smaller than the distances from the electrostatic potential surface minima to the nuclei, giving the halonium cations each a more disk-like shape than the corresponding neutral valence state halogens. Their surface electrostatic potentials are totally consistent with the directionalities of halonium cations in complexes and the strengths of their interactions. To add perspective to this brief report, we have included calculations of the isotropic cation K+ and noble gas Kr. METHODS The calculations of the electrostatic potentials of the valence states of the halogen atoms Cl, Br and I and the halonium cations Cl+, Br+ and I+, as well as K+ and Kr, on 0.001 au contours of their electronic densities were carried out with Gaussian O9 and the Wave Function Analysis - Surface Analysis Suite (WFA-SAS) at the M06-2X/6-31 + G(d,p) and M06-2X/3-21G* levels.
Collapse
Affiliation(s)
- Ponnadurai Ramasami
- Computational Chemistry Group, Department of Chemistry, Faculty of Science, University of Mauritius, Réduit, 80837, Mauritius
- Centre of Natural Product Research, Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - Jane S Murray
- Department of Chemistry, University of New Orleans, New Orleans, LA, 70148, USA.
| |
Collapse
|
7
|
Singh H, Khatoon N, Bhardwaj SK, Kampani P, Nayak TK, Haridas V. Bispidine as a Versatile Scaffold: From Topological Hosts to Transmembrane Transporters. Chembiochem 2023; 24:e202300502. [PMID: 37708237 DOI: 10.1002/cbic.202300502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/24/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
The development of designer topological structures is a synthetically challenging endeavor. We present herein bispidine as a platform for the design of molecules with various topologies and functions. The bispidine-based acyclic molecule, which shows intriguing S-shape topology, is discussed. Single-crystal X-ray diffraction studies revealed that this molecule exists in the solid state as two conformational enantiomers. In addition, bispidine-based designer macrocycles were synthesized and investigated for ionophoric properties. Patch clamp experiments revealed that these macrocycles transport both anions and cations non-specifically with at least tenfold higher chloride conductance over the cations under the given experimental conditions. Ultramicroscopy and single-crystal X-ray crystallographic studies indicated that the self-assembling macrocycle forms a tubular assembly. Our design highlights the use of unconventional dihydrogen interactions in nanotube fabrication.
Collapse
Affiliation(s)
- Hanuman Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Nadira Khatoon
- Kusuma School of Biological Science, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Surya Kant Bhardwaj
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Pradeepti Kampani
- Kusuma School of Biological Science, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Tapan K Nayak
- Kusuma School of Biological Science, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - V Haridas
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
8
|
Ni HF, Ye LK, Zhuge PC, Hu BL, Lou JR, Su CY, Zhang ZX, Xie LY, Fu DW, Zhang Y. A nickel(ii)-based one-dimensional organic-inorganic halide perovskite ferroelectric with the highest Curie temperature. Chem Sci 2023; 14:1781-1786. [PMID: 36819861 PMCID: PMC9930933 DOI: 10.1039/d2sc05857j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Organic-inorganic halide perovskites (OIHPs) are very eye-catching due to their chemical tunability and rich physical properties such as ferroelectricity, magnetism, photovoltaic properties and photoluminescence. However, no nickel-based OIHP ferroelectrics have been reported so far. Here, we designed an ABX3 OIHP ferroelectric (3-pyrrolinium)NiCl3, where the 3-pyrrolinium cations are located on the voids surrounded by one-dimensional chains composed of NiCl6-face-sharing octahedra via hydrogen bonding interactions. Such a unique structure enables the (3-pyrrolinium)NiCl3 with a high spontaneous polarization (P s) of 5.8 μC cm-2 and a high Curie temperature (T c) of 428 K, realizing dramatic enhancement of 112 and 52 K compared to its isostructural (3-pyrrolinium)MCl3 (M = Cd, Mn). To our knowledge, remarkably, (3-pyrrolinium)NiCl3 should be the first case of nickel(ii)-based OIHP ferroelectric to date, and its T c of 428 K (35 K above that of BaTiO3) is the highest among all reported one-dimensional OIHP ferroelectrics. This work offers a new structural building block for enriching the family of OIHP structures and will inspire the further exploration of new nickel(ii)-based OIHP ferroelectrics.
Collapse
Affiliation(s)
- Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
| | - Lou-Kai Ye
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
| | - Peng-Cheng Zhuge
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
| | - Bo-Lan Hu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
| | - Jia-Rui Lou
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
| | - Chang-Yuan Su
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University Nanjing 211189 China
| | - Zhi-Xu Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University Nanjing 211189 China
| | - Li-Yan Xie
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
| | - Da-Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University Nanjing 211189 China
| | - Yi Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University Jinhua 321004 China
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University Nanjing 211189 China
| |
Collapse
|
9
|
Awwadi FF, Alwahsh MI, Turnbull MM, Landee CP. Halogen bond and polymorphism in trans-bis(2-iodo-5-halopyridine)dihalocopper( ii) complexes: crystallographic, theoretical and magnetic studies. CrystEngComm 2023. [DOI: 10.1039/d2ce01711c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
As the halogen atom on position 5 of the 2I5YP ligand gets heavier the probability of crystallizing the syn-conformer increases; 2I5Cl-Cl crystallizes as the anti-conformer whereas 2I5Br-Cl crystallizes as syn- and anti-conformers.
Collapse
|
10
|
Loseva OV, Lutsenko IA, Rodina TA, Nelyubina YV, Gerasimenko AV, Bekker OB, Ivanov AV, Eremenko IL. An ionic gold(III)–zinc(II) pseudo-polymeric compound of [H3O][Au{S2CN(CH2)5}2]3[ZnCl4]2: Synthesis, supramolecular architecture and anti-tuberculosis activity. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Siddiqui R, Sharma N, Chakraborty A, Shivam K, Patra S, Rani J, Mukherjee M, Titi HM, Patra R, Dhamija S. Electrochemical, Photophysical, Morphological and DFT Study of Polymorphic Sn(IV)-Porphyrins Containing Fluorinated Axial Ligand. Chem Asian J 2022; 17:e202200515. [PMID: 35833469 DOI: 10.1002/asia.202200515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/08/2022] [Indexed: 11/11/2022]
Abstract
In this study, we report the polymorphism of six coordinated Sn(IV)- tetrabromophenyl porphyrins axially armed with fluorine-substituted phenolate ligands (structural formula [Sn(TBrPP)2+(A-)2], where A is the axial ligand = 3,5-difluoro phenol, compound 1). One form stabilizes in triclinic system (namely, 1α), and the other stabilizes in monoclinic system (namely, 1β). The two 1α and 1β polymorphs display distinct photophysical and morphological properties in the solid state. X-ray diffraction study reveals that these polymorphs 1α and 1β significantly differ in their supramolecular architecture, different axial phenolate conformations, and noncovalent interactions, which are responsible for their distinct solid-state properties. The crystal packing of these polymorphs dominates by intermolecular C-H···F, C-H···π and C-Br···F interhalogen interactions. Furthermore, the solid-state emission spectra of 1α showed red-shifted emission bands with respect to 1β, in addition the redox behavior of 1α is slightly different in comparison to 1β. Complementary theoretical studies with Hirshfeld surface analysis show the definite role of Br···F interhalogen interactions in the overall stability. Mapping the electrostatic potential isosurfaces with the aid of density functional theory in compound 1 clearly shows the presence of σ-hole, a requisite feature to show halogen interactions in the crystalline state. In addition, lattice energy and single point energy calculation shows that 1α was found to be energetically more favorable and thermodynamically more stable compare to 1β.
Collapse
Affiliation(s)
- Rafia Siddiqui
- Amity University, Amity Institute of Click Chemistry Research and Studies, INDIA
| | - Niharika Sharma
- Amity University, Amity Institute of Click Chemistry Research and Studies, INDIA
| | - Arnab Chakraborty
- Amity University, Amity Institute of Click Chemistry Research and Studies, INDIA
| | - Kumar Shivam
- Amity University, Amity Institute of Click Chemistry Research and Studies, INDIA
| | - Sayan Patra
- Amity University, Amity Institute of Click Chemistry Research and Studies, INDIA
| | - Jyoti Rani
- Amity University, Amity Institute of Click Chemistry Research and Studies, INDIA
| | - Monalisa Mukherjee
- Amity University, Amity Institute of Click Chemistry Research and Studies, INDIA
| | | | - Ranjan Patra
- Amity University - Noida Campus, AICCRS, AICCRS, India, 201313, Noida, INDIA
| | - Swati Dhamija
- Amity University, Amity Institute of Click Chemistry Research and Studies, 201303, Noida, INDIA
| |
Collapse
|
12
|
Sushila, Siddiqui R, Patra S, Shivam K, Sil A, Guchhait B, Tian H, Kataria R, Goswami S, Venugopalan P, Patra R. Halogen Bond Mediated Self-Assembly of Mononuclear Lanthanide Complexes: Perception of Supramolecular Interactions, Slow Magnetic Relaxation, and Photoluminescence Properties. Inorg Chem 2022; 61:11484-11496. [PMID: 35801575 DOI: 10.1021/acs.inorgchem.2c02004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Five new mononuclear lanthanide complexes, [LnL2][Et3NH]·THF/H2O (Ln = Nd, Tb, Dy) (H2LCl = 2-bis(2-hydroxy-3,5-dichloro benzyl)aminomethyl]pyridine), Ln = Nd (1), Tb (2), and Dy (3), and (H2LBr = 2-bis(2-hydroxy-3,5-dibromo benzyl)aminomethyl]pyridine), Ln = Nd (4, H2O) and Tb (5), were synthesized and structurally characterized by single-crystal X-ray diffraction analyses. Being isostructural in all the five cases, the metal center is octa-coordinated with a triangular dodecahedron (D2d symmetry) geometry, and it is independent of the halogen substitution (Cl/Br). This close similarity is due to the composite interplay of hydrogen/halogen bond interactions that control the overall crystal packing, yet notable differences in association patterns among the individual ones arise from the subtle stereo-electronic requirement of individual molecules in the three-dimensional (3D) architecture. Hirshfeld surface and density functional theory (DFT) calculations clearly vouch for the importance of the hydrogen bond and halogen bond interactions observed in the structure. Detailed magnetic measurements using direct-current and alternating-current susceptibility measurements show slow magnetic relaxation in 3, a characteristic feature of the single-molecule magnets (SMMs), which is not shown by 1 and 2. Steady-state and time-resolved photoluminescence of Tb(III) complexes shows a strong ligand-to-metal energy transfer that can be modulated by changing the substitution on phenolic ligands. The results from these analyses indicate that it may be advantageous to consider the subtle role of hydrogen bond (HB)/halogen bond (XB) intermolecular interactions judiciously for the design of SMMs and luminescent materials based on halogen-substituted ligands.
Collapse
Affiliation(s)
- Sushila
- Department of Chemistry and Centre for Advance Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Rafia Siddiqui
- Amity Institute of Click Chemistry Research & Studies (AICCRS), Amity University, Noida 201303, India
| | - Sayan Patra
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Kolkata 700135, India
| | - Kumar Shivam
- Amity Institute of Click Chemistry Research & Studies (AICCRS), Amity University, Noida 201303, India
| | - Arnab Sil
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Dadri 201314, Uttar Pradesh, India
| | - Biswajit Guchhait
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Dadri 201314, Uttar Pradesh, India
| | - Haiquan Tian
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Ramesh Kataria
- Department of Chemistry and Centre for Advance Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Soumyabrata Goswami
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Kolkata 700135, India
| | - Paloth Venugopalan
- Department of Chemistry and Centre for Advance Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Ranjan Patra
- Department of Chemistry and Centre for Advance Studies in Chemistry, Panjab University, Chandigarh 160014, India.,Amity Institute of Click Chemistry Research & Studies (AICCRS), Amity University, Noida 201303, India
| |
Collapse
|
13
|
Supramolecular Self-Assembly Built by Hydrogen, Stacking and Br···Br Interactions in 4-((4-Bromobenzyl)Selanyl)Aniline: Structure, Hirshfeld Surface Analysis, 3D Energy Framework Approach and Global Reactivity Descriptors. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02284-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
Ibrahim MAA, Saeed RRA, Shehata MNI, Ahmed MN, Shawky AM, Khowdiary MM, Elkaeed EB, Soliman MES, Moussa NAM. Type I-IV Halogen⋯Halogen Interactions: A Comparative Theoretical Study in Halobenzene⋯Halobenzene Homodimers. Int J Mol Sci 2022; 23:3114. [PMID: 35328534 PMCID: PMC8953242 DOI: 10.3390/ijms23063114] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 01/25/2023] Open
Abstract
In the current study, unexplored type IV halogen⋯halogen interaction was thoroughly elucidated, for the first time, and compared to the well-established types I−III interactions by means of the second-order Møller−Plesset (MP2) method. For this aim, the halobenzene⋯halobenzene homodimers (where halogen = Cl, Br, and I) were designed into four different types, parodying the considered interactions. From the energetic perspective, the preference of scouted homodimers was ascribed to type II interactions (i.e., highest binding energy), whereas the lowest binding energies were discerned in type III interactions. Generally, binding energies of the studied interactions were observed to decline with the decrease in the σ-hole size in the order, C6H5I⋯IC6H5 > C6H5Br⋯BrC6H5 > C6H5Cl⋯ClC6H5 homodimers and the reverse was noticed in the case of type IV interactions. Such peculiar observations were relevant to the ample contributions of negative-belt⋯negative-belt interactions within the C6H5Cl⋯ClC6H5 homodimer. Further, type IV torsional trans → cis interconversion of C6H5X⋯XC6H5 homodimers was investigated to quantify the π⋯π contributions into the total binding energies. Evidently, the energetic features illustrated the amelioration of the considered homodimers (i.e., more negative binding energy) along the prolonged scope of torsional trans → cis interconversion. In turn, these findings outlined the efficiency of the cis configuration over the trans analog. Generally, symmetry-adapted perturbation theory-based energy decomposition analysis (SAPT-EDA) demonstrated the predominance of all the scouted homodimers by the dispersion forces. The obtained results would be beneficial for the omnipresent studies relevant to the applications of halogen bonds in the fields of materials science and crystal engineering.
Collapse
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt; (R.R.A.S.); (M.N.I.S.); (N.A.M.M.)
| | - Rehab R. A. Saeed
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt; (R.R.A.S.); (M.N.I.S.); (N.A.M.M.)
| | - Mohammed N. I. Shehata
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt; (R.R.A.S.); (M.N.I.S.); (N.A.M.M.)
| | - Muhammad Naeem Ahmed
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan;
| | - Ahmed M. Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Manal M. Khowdiary
- Chemistry Department, Faculty of Applied Science, Umm Al-Qura University, Al-Lith Branch, Makkah 24211, Saudi Arabia;
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia;
| | - Mahmoud E. S. Soliman
- Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
| | - Nayra A. M. Moussa
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia 61519, Egypt; (R.R.A.S.); (M.N.I.S.); (N.A.M.M.)
| |
Collapse
|
15
|
Spodium bonds and metal–halogen···halogen–metal interactions in propagation of monomeric units to dimeric or polymeric architectures. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Coordination compound containing σ-hole interactions: Synthesis and crystal structure of NH4[Cr(CO(NH2)2)6][Hg(SCN)4]2·2H2O. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Al-Noaimi M, Awwadi FF, Mansi IA, Sawwan M, Abu-Irmaileh B, Dege N. Polymorphism, spectroscopic, DFT and anticancer activity of a palladium(II) complex with a thiophenyl azoimine-quinoline SNN’N” ligand. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Topaloğlu Aksoy B, Dedeoglu B, Zorlu Y, Ayhan MM, Çoşut B. Exploring halogen⋯halogen interactions in supramolecular self-assemblies of BODIPY networks. CrystEngComm 2022. [DOI: 10.1039/d2ce00776b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, the efficiency of halogen⋯halogen interactions to control supramolecular assemblies of boron dipyrromethene (BODIPY) (B1–B5) derivatives was explored.
Collapse
Affiliation(s)
| | - Burcu Dedeoglu
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, 41400, Türkiye
| | - Yunus Zorlu
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, 41400, Türkiye
| | - Mehmet Menaf Ayhan
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, 41400, Türkiye
| | - Bünyemin Çoşut
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, 41400, Türkiye
| |
Collapse
|
19
|
Korneeva EV, Novikova EV, Loseva OV, Smolentsev AI, Ivanov AV. Binding of Gold(III) from Solutions by the [Ag6{S2CN(CH2)6}6] Cluster: Synthesis, Thermal Behavior, and Self-Organization of the Supramolecular Structure of the Double Complex [Au{S2CN(CH2)6}2]2[AgCl2]Cl·2CHCl3 (Role of Secondary Au⋅⋅⋅Cl, Ag⋅⋅⋅S, and Cl⋅⋅⋅Cl Interactions). RUSS J COORD CHEM+ 2021. [DOI: 10.1134/s1070328421090050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
The capability of silver(I) cyclo-hexamethylenedithiocarbamate to concentrate gold(III) from solutions characterized by a high level of salinity (5.15 M NaCl) into the solid phase has been established. The double chloroform-solvated Au(III)–Ag(I) complex [Au{S2CN(CH2)6}2]2[AgCl2]Cl·2CHCl3 (I) was preparatively isolated as an individual form of binding of [AuCl4]– anions. The composition of the ionic structural units of compound I indicates that gold(III) binding from a solution to the solid phase is accompanied by the complete redistribution of the HmDtc ligands between the coordination spheres of Ag(I) and Au(III). Complex I characterized by IR spectroscopy, simultaneous thermal analysis, and X-ray structure analysis (CIF file CCDC no. 2051654) exhibits the supramolecular structure containing two oppositely charged pseudo-polymeric subsystems. Complex cations [Au{S2CN(CH2)6}2]+ and anions [AgCl2]– (in a ratio of 2 : 1) form a complicatedly organized cation-anionic pseudo-polymeric ribbon ({[Au(HmDtc)2]⋅⋅⋅[AgCl2]⋅⋅⋅[Au(HmDtc)2]}+)n due to secondary interactions Ag⋅⋅⋅S (3.2613 Å) and Au⋅⋅⋅Cl (3.2765 Å). The pseudo-polymeric ribbon consists of two rows of cations and a row of anions. The outer-sphere chloride ions combine the solvate chloroform molecules by two equivalent hydrogen bonds Cl⋅⋅⋅H–C yielding anion-molecular triads [Cl3CH⋅⋅⋅Cl⋅⋅⋅HCCl3]–, which are involved in the formation of the supramolecular ribbon due to the secondary Cl⋅⋅⋅Cl interactions (3.4058 Å) between the nonequivalent chlorine atoms of the nearest solvate molecules. The study of the thermal behavior of complex I makes it possible to determine the character of thermolysis and conditions for the quantitative regeneration of bound gold.
Collapse
|
20
|
Bauer JO, Koschabek S, Falk A. Interplay of Hydrogen and Halogen Bonding in the Crystal Structures of 2,6‐Dihalogenated Phenols. ChemistrySelect 2021. [DOI: 10.1002/slct.202101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jonathan O. Bauer
- Institut für Anorganische Chemie, Fakultät für Chemie und Pharmazie Universität Regensburg Universitätsstraße 31 D-93053 Regensburg Germany
| | - Sarah Koschabek
- Institut für Anorganische Chemie, Fakultät für Chemie und Pharmazie Universität Regensburg Universitätsstraße 31 D-93053 Regensburg Germany
| | - Alexander Falk
- Institut für Anorganische Chemie, Fakultät für Chemie und Pharmazie Universität Regensburg Universitätsstraße 31 D-93053 Regensburg Germany
| |
Collapse
|
21
|
Wiberg KB. Halogen-Halogen Nonbonded Interactions. ACS OMEGA 2021; 6:15199-15204. [PMID: 34151099 PMCID: PMC8210438 DOI: 10.1021/acsomega.1c01356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
Halogen-halogen nonbonded interactions were studied for methyl halides and phenyl halides using both B3LYP and MP2 along with 6-311+G* and aug-cc-pVTZ. With the methyl halides, the linear approach was found to lead to little stabilization, whereas the "90°" approach gave 1-2 kcal/mol. This modest stabilization was due to long-range electron correlation effects. The lowest-energy arrangement had the molecules side-by-side, with the major stabilization being derived from halogen-hydrogen interactions. The results for methyl bromide were quite similar. Chlorobenzene dimer with the 90° orientation gave a small stabilization energy, but the best arrangement had the two benzene rings oriented over each other. The meta orientation of the chlorines had a lower energy than ortho or para. The dimerization energy was larger than that for two benzene rings sitting directly above each other, suggesting that whereas Cl···Cl interaction is not very important, the effect of the halogen on the electron distribution does have an effect. This suggests that much of the crystallographic results for these compounds may not be due to halogen-halogen interactions but rather the interaction between the substituted benzene rings along with crystal forces.
Collapse
|
22
|
Wang R, Lu Y, Xu Z, Liu H. Triangular Interchalcogen Interactions: A Joint Crystallographic Data Analysis and Theoretical Study. J Phys Chem A 2021; 125:4173-4183. [PMID: 33957751 DOI: 10.1021/acs.jpca.1c03244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Noncovalent chalcogen-chalcogen interactions are being actively investigated from both crystallographic and theoretical viewpoints in recent years. According to our search of the Cambridge Structural Database (CSD), a huge number of crystal structures containing triangular Ch3 synthons were extracted. On the basis of the results of the CSD survey, a series of trimeric complexes of organic divalent chalcogen molecules were selected to model such interaction motifs. Similar to that in conventional chalcogen bonds, triangular interchalcogen interactions become gradually stronger along the sequence of Ch = S, Se, Te. Particularly, hydrogen bonds between the chalcogen centers and the H atoms in the substituents occur, which play a significant role in stabilizing the Ch3 motifs in the trimers. Through multibody energy calculations, the complexes under study exhibit no or only weak cooperativity. Finally, the differences between the Ch3 interaction motifs and the well-studied windmill X3 bonding (X means halogen and this is halogen bond) patterns were elucidated.
Collapse
Affiliation(s)
- Ranran Wang
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yunxiang Lu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhijian Xu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Honglai Liu
- Key Laboratory for Advanced Materials, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
23
|
Nemec V, Lisac K, Bedeković N, Fotović L, Stilinović V, Cinčić D. Crystal engineering strategies towards halogen-bonded metal–organic multi-component solids: salts, cocrystals and salt cocrystals. CrystEngComm 2021. [DOI: 10.1039/d1ce00158b] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This highlight presents an overview of the current advances in the preparation of halogen bonded metal–organic multi-component solids, including salts and cocrystals comprising neutral and ionic constituents.
Collapse
Affiliation(s)
- Vinko Nemec
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Katarina Lisac
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Nikola Bedeković
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Luka Fotović
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Vladimir Stilinović
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Dominik Cinčić
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| |
Collapse
|
24
|
Ibrahim MAA, Moussa NAM. Unconventional Type III Halogen···Halogen Interactions: A Quantum Mechanical Elucidation of σ-Hole···σ-Hole and Di-σ-Hole Interactions. ACS OMEGA 2020; 5:21824-21835. [PMID: 32905309 PMCID: PMC7469378 DOI: 10.1021/acsomega.0c02887] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/04/2020] [Indexed: 05/08/2023]
Abstract
Herein, two unconventional type III halogen···halogen interactions, namely, σ-hole···σ-hole and di-σ-hole interactions, were reported in a series of halogenated complexes. In type III, the A-halogen···halogen angles are typically equal to 180°, and the occurrence of σ-hole on halogen atoms is mandatory. Using diverse quantum mechanical calculations, it was demonstrated that the occurrence of such interactions with binding energies varied from -0.35 to -1.30 kcal/mol. Symmetry-adapted perturbation theory-based energy decomposition analysis (SAPT-EDA) revealed that type III interactions are dominated by dispersion forces, while electrostatic forces are unfavorable. Cambridge Structure Database (CSD) survey unveiled the experimental evidence for the manifestation of σ-hole···σ-hole interactions in crystal structures. This work might be deemed as a foundation for a vast number of forthcoming crystal engineering and materials science studies.
Collapse
Affiliation(s)
- Mahmoud A. A. Ibrahim
- Computational Chemistry Laboratory, Chemistry
Department, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Nayra A. M. Moussa
- Computational Chemistry Laboratory, Chemistry
Department, Faculty of Science, Minia University, Minia 61519, Egypt
| |
Collapse
|
25
|
Hydrogen and Halogen Bond Mediated Coordination Polymers of Chloro-Substituted Pyrazin-2-Amine Copper(I) Bromide Complexes. CHEMISTRY 2020. [DOI: 10.3390/chemistry2030045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A new class of six mono- (1; 3-Cl-, 2; 5-Cl-, 3; 6-Cl-) and di-(4; 3,6-Cl, 5; 5,6-Cl-, 6; 3,5-Cl-) chloro-substituted pyrazin-2-amine ligands (1–6) form complexes with copper (I) bromide, to give 1D and 2D coordination polymers through a combination of halogen and hydrogen bonding that were characterized by X-ray diffraction analysis. These Cu(I) complexes were prepared indirectly from the ligands and CuBr2 via an in situ redox process in moderate to high yields. Four of the pyrazine ligands, 1, 4–6 were found to favor a monodentate mode of coordination to one CuI ion. The absence of a C6-chloro substituent in ligands 1, 2 and 6 supported N1–Cu coordination over the alternative N4–Cu coordination mode evidenced for ligands 4 and 5. These monodentate systems afforded predominantly hydrogen bond (HB) networks containing a catenated (μ3-bromo)-CuI ‘staircase’ motif, with a network of ‘cooperative’ halogen bonds (XB), leading to infinite polymeric structures. Alternatively, ligands 2 and 3 preferred a μ2-N,N’ bridging mode leading to three different polymeric structures. These adopt the (μ3-bromo)-CuI ‘staircase’ motif observed in the monodentate ligands, a unique single (μ2-bromo)-CuI chain, or a discrete Cu2Br2 rhomboid (μ2-bromo)-CuI dimer. Two main HB patterns afforded by self-complimentary dimerization of the amino pyrazines described by the graph set notation R22(8) and non-cyclic intermolecular N–H∙∙∙N’ or N–H∙∙∙Br–Cu leading to infinite polymeric structures are discussed. The cooperative halogen bonding between C–Cl∙∙∙Cl–C and the C–Cl∙∙∙Br–Cu XB contacts are less than the sum of the van der Waals radii of participating atoms, with the latter ranging from 3.4178(14) to 3.582(15) Å. In all cases, the mode of coordination and pyrazine ring substituents affect the pattern of HBs and XBs in these supramolecular structures.
Collapse
|
26
|
Rani J, Grover V, Dhamija S, Titi HM, Patra R. Computational insight into the halogen bonded self-assembly of hexa-coordinated metalloporphyrins. Phys Chem Chem Phys 2020; 22:11558-11566. [PMID: 32395736 DOI: 10.1039/d0cp00351d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We demonstrate herein a computational study probing the influence of metalloporphyrins on intermolecular halogen bonding (XB) during supramolecular self-assembly. The results demonstrate that porphyrin aromatic rings can activate or deactivate halogen bonding interactions, especially those on axial ligands, and further influence the preference type of halogen···halogen bonding during the supramolecular self-assembly. Calculations show that the halogen atom present at the equatorial position has a higher sigma hole potential (VS,max) than that at the axial position. The computational analysis and our observations from the X-ray structure analysis are in good agreement. From structural analysis it is clear that equatorial halogen atoms prefer to participate in Type-II XB interactions whereas the axial halogen atoms either participate in Type-I XB interaction or reluctant to participate in XB interactions due to the decrease of their sigma hole potential. Thus, we demonstrate, herein, for the first time a computational study probing the direct influence of the porphyrin's ring current on the sigma hole potential (VS,max) of the halogen atoms and subsequently the effects of the supramolecular self-assembly.
Collapse
Affiliation(s)
- Jyoti Rani
- Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh, India
| | | | | | | | | |
Collapse
|
27
|
Suzuki R, Uziie Y, Fujiwara W, Katagiri H, Murase T. Columnar Stacking of Partially Fluorinated [4]Helicenes: C-H⋅⋅⋅F Interactions Change the Stacking Orientation. Chem Asian J 2020; 15:1330-1338. [PMID: 32083804 DOI: 10.1002/asia.202000037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/21/2020] [Indexed: 01/28/2023]
Abstract
The partial fluorination of polycyclic aromatic hydrocarbons often produces a layered crystal packing, where fluorinated aromatic surfaces are stacked over nonfluorinated aromatic surfaces. Herein, we report the synthesis and crystal packing of partially fluorinated [4]helicenes with steric congestion resulting from H and F atoms in the fjord region. F6 -[4]Helicene forms head-to-tail columnar stacks consisting of an alternate arrangement of perfluorinated and nonfluorinated naphthalene moieties. With decreasing fluorine content, aromatic stacking switched from arene-fluoroarene (ArH -ArF ) hetero-stacking to ArH -ArH /ArF -ArF homo-stacking with the help of intermolecular C-H⋅⋅⋅F contacts in the fjord region. As a result, head-to-head columnar stacks appear. Therefore, the conventional ArH -ArF stacking motif is not always applicable to Fn -[4]helicenes with twisted π-surfaces.
Collapse
Affiliation(s)
- Risa Suzuki
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata, 990-8560, Japan
| | - Yuto Uziie
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata, 990-8560, Japan
| | - Wataru Fujiwara
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Hiroshi Katagiri
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Takashi Murase
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata, 990-8560, Japan
| |
Collapse
|
28
|
Chen L, Liao WQ, Ai Y, Li J, Deng S, Hou Y, Tang YY. Precise Molecular Design Toward Organic–Inorganic Zinc Chloride ABX3 Ferroelectrics. J Am Chem Soc 2020; 142:6236-6243. [DOI: 10.1021/jacs.0c00315] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lizhuang Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People’s Republic of China
| | - Wei-Qiang Liao
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Yong Ai
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People’s Republic of China
| | - Junyi Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People’s Republic of China
| | - Siyu Deng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People’s Republic of China
| | - Yunlong Hou
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People’s Republic of China
| | - Yuan-Yuan Tang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, People’s Republic of China
| |
Collapse
|
29
|
Rossi E, De Santis M, Sorbelli D, Storchi L, Belpassi L, Belanzoni P. Spin-orbit coupling is the key to unraveling intriguing features of the halogen bond involving astatine. Phys Chem Chem Phys 2020; 22:1897-1910. [PMID: 31912075 DOI: 10.1039/c9cp06293a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The effect of spin-orbit coupling (SOC) on the halogen bond involving astatine has been investigated using state-of-the-art two- and four-component relativistic calculations. Adducts between Cl-X (X = Cl, Br, I and At) and ammonia have been selected to establish a trend on going down the periodic table. The SOC influence has been explored not only on the geometric and energetic features that can be used to characterize the halogen bond strength but also on the three main contributions to it that are the charge transfer, the "σ-hole" (i.e. the localized region with a net positive electrostatic potential at the halogen site) and the "polar flattening" (which is related to the effective shape of the halogen site). A surprisingly large increase of the Cl-At dipole moment, due to the inclusion of SOC, has been worked out using four-component CCSD(T) reference calculations, indicating that this bond is significantly more ionic than one may predict. Due to the SOC effect, which induces a peculiar charge accumulation on the At side in the Cl-At dimer, a weakening of the astatine-mediated halogen bond occurs arising from the (i) reduced amount of charge transfer, (ii) decrease of the polar flattening and (iii) lowering of the short-range Coulomb potential. The analysis of the electronic structure of the Cl-At moiety allows for a rationalization of the SOC effects on all the considered features of the halogen bond, including an unprecedented unsymmetrical charge back-donation from Cl-At to ammonia.
Collapse
Affiliation(s)
- Elisa Rossi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy.
| | - Matteo De Santis
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy.
| | - Diego Sorbelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy.
| | - Loriano Storchi
- CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC), via Elce di Sotto 8, 06123 Perugia, Italy. and Dipartimento di Farmacia, Università G. D'Annunzio, via dei Vestini 31, 66100 Chieti, Italy
| | - Leonardo Belpassi
- CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC), via Elce di Sotto 8, 06123 Perugia, Italy. and Consortium for Computational Molecular and Materials Sciences (CMS)2, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Paola Belanzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy. and CNR Institute of Chemical Science and Technologies "Giulio Natta" (CNR-SCITEC), via Elce di Sotto 8, 06123 Perugia, Italy. and Consortium for Computational Molecular and Materials Sciences (CMS)2, via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
30
|
Theoretical Description of R-X⋯NH 3 Halogen Bond Complexes: Effect of the R Group on the Complex Stability and Sigma-Hole Electron Depletion. Molecules 2020; 25:molecules25030530. [PMID: 31991810 PMCID: PMC7037998 DOI: 10.3390/molecules25030530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 11/16/2022] Open
Abstract
In the present work, a number of R–X⋯NH3 (X = Cl, Br, and I) halogen bonded systems were theoretical studied by means of DFT calculations performed at the ωB97XD/6-31+G(d,p) level of theory in order to get insights on the effect of the electron-donating or electron-withdrawing character of the different R substituent groups (R = halogen, methyl, partially fluorinated methyl, perfluoro-methyl, ethyl, vinyl, and acetyl) on the stability of the halogen bond. The results indicate that the relative stability of the halogen bond follows the Cl < Br < I trend considering the same R substituent whereas the more electron-withdrawing character of the R substituent the more stable the halogen bond. Refinement of the latter results, performed at the MP2/6-31+G(d,p) level showed that the DFT and the MP2 binding energies correlate remarkably well, suggesting that the Grimme’s type dispersion-corrected functional produces reasonable structural and energetic features of halogen bond systems. DFT results were also observed to agree with more refined calculations performed at the CCSD(T) level. In a further stage, a more thorough analysis of the R–Br⋯NH3 complexes was performed by means of a novel electron localization/delocalization tool, defined in terms of an Information Theory, IT, based quantity obtained from the conditional pair density. For the latter, our in-house developed C++/CUDA program, called KLD (acronym of Kullback–Leibler divergence), was employed. KLD results mapped onto the one-electron density plotted at a 0.04 a.u. isovalue, showed that (i) as expected, the localized electron depletion of the Br sigma-hole is largely affected by the electron-withdrawing character of the R substituent group and (ii) the R–X bond is significantly polarized due to the presence of the NH3 molecule in the complexes. The afore-mentioned constitutes a clear indication of the dominant character of electrostatics on the stabilization of halogen bonds in agreement with a number of studies reported in the main literature. Finally, the cooperative effects on the [Br—CN]n system (n = 1–8) was evaluated at the MP2/6-31+G(d,p) level, where it was observed that an increase of about ~14.2% on the complex stability is obtained when going from n = 2 to n = 8. The latter results were corroborated by the analysis of the changes on the Fermi-hole localization pattern on the halogen bond zones, which suggests an also important contribution of the electron correlation in the stabilization of these systems.
Collapse
|
31
|
Rani J, Ashim, Ahamed JI, Adhikari D, Natarajan P, Venugopalan P, Patra R. Nature of fluorine interactions in ‘wheel and axle’ topology based hexa-coordinated Sn( iv)-porphyrins: an experimental and theoretical analysis. CrystEngComm 2020. [DOI: 10.1039/d0ce00333f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The experimental and theoretical investigations on Sn(iv)-tetrapyridylporphyrins demonstrate that ‘Gulliver effect’ has to be taken into consideration in explaining the genesis of F-based intermolecular interactions.
Collapse
Affiliation(s)
- Jyoti Rani
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh-160014
- India
| | - Ashim
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh-160014
- India
| | - J. Irshad Ahamed
- Amity Institute of Click Chemistry Research and Studies
- Amity University
- Noida
- India
| | - Debashis Adhikari
- Department of Chemical Sciences
- Indian Institute of Science Education and Research (IISER) Mohali
- S. A. S. Nagar
- India
| | - Palani Natarajan
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh-160014
- India
| | - Paloth Venugopalan
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh-160014
- India
| | - Ranjan Patra
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh-160014
- India
- Amity Institute of Click Chemistry Research and Studies
| |
Collapse
|
32
|
Zhang Z, Suzuki M, Yang Y, Yoshikawa I, Yin Q, Houjou H. Seed-triggered solid-to-solid transformation between color polymorphs: striking differences between quasi-isomorphous crystals of dichloro-substituted salicylideneaniline regioisomers. CrystEngComm 2020. [DOI: 10.1039/d0ce00679c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The title compound exhibited two color polymorphs, of which the yellow form transformed to the orange form during heating, and this peculiar phase transition behavior was explained in relation to the pseudo-symmetry of its molecular structure.
Collapse
Affiliation(s)
- Zaixiang Zhang
- School of Chemical Engineering and Technology
- State Key Laboratory of Chemical Engineering
- Tianjin University
- Tianjin 300072
- People's Republic of China
| | - Masahiro Suzuki
- Institute of industrial Science
- The University of Tokyo
- Tokyo 153-8505
- Japan
| | - Yu Yang
- Institute of industrial Science
- The University of Tokyo
- Tokyo 153-8505
- Japan
| | - Isao Yoshikawa
- Institute of industrial Science
- The University of Tokyo
- Tokyo 153-8505
- Japan
| | - Qiuxiang Yin
- School of Chemical Engineering and Technology
- State Key Laboratory of Chemical Engineering
- Tianjin University
- Tianjin 300072
- People's Republic of China
| | - Hirohiko Houjou
- Institute of industrial Science
- The University of Tokyo
- Tokyo 153-8505
- Japan
| |
Collapse
|
33
|
Negrier P, Ben Hassine B, Barrio M, Romanini M, Mondieig D, Tamarit JL. Polymorphism of 1,3-X-adamantanes (X = Br, OH, CH 3) and the crystal plastic phase formation ability. CrystEngComm 2020. [DOI: 10.1039/c9ce01910c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The polymorphism of 1,3-dimethyladamantane (13DMA), 1,3-adamantanediol (13DOHA) and 1,3-dibromoadamantane (13DBrA) has been studied by X-ray powder diffraction, density measurements and differential scanning calorimetry at normal and high-pressure.
Collapse
Affiliation(s)
| | | | - Maria Barrio
- Grup de Caracteritzacio de Materials
- Departament de Fisica and Barcelona Research Center in Multiscale Science and Engineering
- Universitat Politecnica de Catalunya
- EEBE
- Campus Diagonal-Besos
| | - Michela Romanini
- Grup de Caracteritzacio de Materials
- Departament de Fisica and Barcelona Research Center in Multiscale Science and Engineering
- Universitat Politecnica de Catalunya
- EEBE
- Campus Diagonal-Besos
| | | | - Josep-Lluis Tamarit
- Grup de Caracteritzacio de Materials
- Departament de Fisica and Barcelona Research Center in Multiscale Science and Engineering
- Universitat Politecnica de Catalunya
- EEBE
- Campus Diagonal-Besos
| |
Collapse
|
34
|
Mac Cormack AS, Busch VM, Japas ML, Giovanetti L, Di Salvo F, Di Chenna PH. The effect of vicinal di-halo substituents on the organogelling properties of aromatic supramolecular gelators and their application as soft templates. NEW J CHEM 2020. [DOI: 10.1039/d0nj01440k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vicinal di-halo substituents have a determinant effect on the supramolecular self-assembly and properties of aromatic physical gelators with application as soft templates.
Collapse
Affiliation(s)
- Andrea S. Mac Cormack
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas
- Unidad de Microanálisis y Métodos Físicos Aplicados a la Química Orgánica (UMYMFOR)
- Departamento de Química Orgánica
- Facultad de Ciencias Exactas y Naturales
- Pabellón 2
| | - Verónica M. Busch
- Universidad de Buenos Aires
- Consejo Nacional de Investigaciones Científicas y Técnicas
- Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ) Departamento de Química Orgánica y Departamento de Industrias
- Facultad de Ciencias Exactas y Naturales
- Ciudad Universitaria
| | - M. Laura Japas
- Comisión Nacional de Energía Atómica (CNEA)
- Gerencia Química
- Centro Atómico Constituyentes
- Av. Gral. Paz 1499, San Martín
- B1650KNA Buenos Aires
| | - Lisandro Giovanetti
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)
- Facultad de Ciencias Exactas
- Universidad Nacional de la Plata
- CONICET
- La Plata
| | - Florencia Di Salvo
- Universidad de Buenos Aires
- Facultad de Ciencias Exactas y Naturales
- Departamento de Química Inorgánica
- Analítica y Química Física and CONICET
- Instituto de Química Física de los Materiales
| | - Pablo H. Di Chenna
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas
- Unidad de Microanálisis y Métodos Físicos Aplicados a la Química Orgánica (UMYMFOR)
- Departamento de Química Orgánica
- Facultad de Ciencias Exactas y Naturales
- Pabellón 2
| |
Collapse
|
35
|
Smith JA, Singh-Wilmot MA, Carter KP, Cahill CL, Ridenour JA. Supramolecular assembly of lanthanide-2,3,5,6-tetrafluoroterephthalic acid coordination polymers via fluorine⋯fluorine interactions: a platform for luminescent detection of Fe3+ and nitroaromatic compounds. NEW J CHEM 2020. [DOI: 10.1039/d0nj02604b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
F⋯F interactions stabilize {[Ln(TFTA)1.5(H2O)2]·H2O}n 2D coordination polymers which selectively detect Fe3+ and p-nitrophenols.
Collapse
Affiliation(s)
- Jermaine A. Smith
- Department of Chemistry
- Faculty of Science and Technology
- The University of the West Indies
- Mona
- Jamaica
| | - Marvadeen A. Singh-Wilmot
- Department of Chemistry
- Faculty of Science and Technology
- The University of the West Indies
- Mona
- Jamaica
| | - Korey P. Carter
- Department of Chemistry
- The George Washington University
- Washington
- USA
| | | | | |
Collapse
|
36
|
Halogen Bonds in 2,5-Dihalopyridine-Copper(I) Halide Coordination Polymers. MATERIALS 2019; 12:ma12203305. [PMID: 31614477 PMCID: PMC6829255 DOI: 10.3390/ma12203305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/29/2019] [Accepted: 10/03/2019] [Indexed: 01/07/2023]
Abstract
Two series of 2,5-dihalopyridine-Cu(I)A (A = I, Br) complexes based on 2-X-5-iodopyridine and 2-X-5-bromopyridine (X = F, Cl, Br and I) are characterized by using single-crystal X-ray diffraction analysis to examine the nature of C2-X2···A-Cu and C5-X5···A-Cu halogen bonds. The reaction of the 2,5-dihalopyridines and Cu(I) salts allows the synthesis of eight 1-D coordination polymers and a discrete structure. The resulting Cu(I)-complexes are linked by C-X···A-Cu halogen bonds forming 3-D supramolecular networks. The C-X···A-Cu halogen bonds formed between halopyridine ligands and copper(I)-bound halide ions are stronger than C-X···X'-C interactions between two 2,5-dihalopyridine ligands. The C5-I5···I-Cu and C5-Br5···Br-Cu halogens bonds are shorter for C2-fluorine than C2-chlorine due to the greater electron-withdrawing power of fluorine. In 2,5-diiodopyridine-Cu(I)Br complex, the shorter C2-I2···Br-Cu [3.473(5) Å] distances are due to the combined polarization of C2-iodine by C2-I2···Cu interactions and para-electronic effects offered by the C5-iodine, whilst the long halogen bond contacts for C5-I5···Br-Cu [3.537(5) Å] are indicative that C2-iodine has a less para-electronic influence on the C5-iodine. In 2-fluoro-5-X-pyridine-Cu(I) complexes, the C2-fluorine is halogen bond passive, while the other C2-halogens in 2,5-dihalopyridine-Cu(I), including C2-chlorine, participate in halogen bonding interactions.
Collapse
|
37
|
Shephard JJ, Evans JSO, Salzmann CG. Local structure and orientational ordering in liquid bromoform. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1648897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Lin J, Chen Y, Zhao D, Lu X, Lin Y. Versatile supramolecular binding modes of 1,4-diiodotetrafluorobenzene for molecular cocrystal engineering. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.03.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Scrutinizing the two new o-hydroxy Schiff bases from the point of tautomeric behavior and non-covalent interactions (H-bond, Br⋯Br, π⋯π and C H⋯π) in their supramolecular architectures. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.02.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Taher D, Awwadi FF, Al-Noaimi M, Khader LK, Juwhari HK, Amarne H, Kailani MH, Ibdah A. Bis(N,N′-substituted oxamate) Zincate(II) complexes: Synthesis, spectroscopy, solid state structure and DFT calculations. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
[2.2.2.2](2,7)‐1‐Bromonaphthalenophane from a Desymmetrized Building Block Bearing Electrophilic and Masked Nucleophilic Functionalities. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201800242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Seidel P, Schwarzer A, Mazik M. Fluorene Derivatives Bearing Halogenomethyl Groups: Synthesis, Molecular Structures, and Halogen/Hydrogen Bonding Patterns in the Crystalline State. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Pierre Seidel
- Institut für Organische Chemie; Technische Universität Bergakademie Freiberg; Leipziger Strasse 29 09599 Freiberg Germany
| | - Anke Schwarzer
- Institut für Organische Chemie; Technische Universität Bergakademie Freiberg; Leipziger Strasse 29 09599 Freiberg Germany
| | - Monika Mazik
- Institut für Organische Chemie; Technische Universität Bergakademie Freiberg; Leipziger Strasse 29 09599 Freiberg Germany
| |
Collapse
|
43
|
Niyas MA, Ramakrishnan R, Vijay V, Sebastian E, Hariharan M. Anomalous Halogen–Halogen Interaction Assists Radial Chromophoric Assembly. J Am Chem Soc 2019; 141:4536-4540. [DOI: 10.1021/jacs.8b13754] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- M. A. Niyas
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Remya Ramakrishnan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Vishnu Vijay
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Ebin Sebastian
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala, India 695551
| |
Collapse
|
44
|
Murray JS, Resnati G, Politzer P. Close contacts and noncovalent interactions in crystals. Faraday Discuss 2019; 203:113-130. [PMID: 28731117 DOI: 10.1039/c7fd00062f] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Close contacts, defined as interatomic separations less than the sum of the respective van der Waals radii, are commonly invoked to identify attractive nonbonded interactions in crystal lattices. While this is often effective, it can also be misleading because (a) there are significant uncertainties associated with van der Waals radii, and (b) it may not be valid to attribute the interactions solely to specific pairs of atoms. The interactions within crystal lattices are Coulombic, and the strongest positive and/or negative regions do not always correspond to the positions of atoms; they are sometimes located between atoms. Examples of both types are given and discussed, focusing in particular upon σ-hole interactions.
Collapse
Affiliation(s)
- Jane S Murray
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA.
| | | | | |
Collapse
|
45
|
Cooperative Effects in Weak Interactions: Enhancement of Tetrel Bonds by Intramolecular Hydrogen Bonds. Molecules 2019; 24:molecules24020308. [PMID: 30654469 PMCID: PMC6359400 DOI: 10.3390/molecules24020308] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/02/2022] Open
Abstract
A series of silyl and germanium complexes containing halogen atoms (fluorine and chlorine atoms) and exhibiting tetrel bonds with Lewis bases were analyzed by means of Møller-Plesset computational theory. Binding energies of germanium derivatives were more negative than silicon ones. Amongst the different Lewis bases utilized, ammonia produced the strongest tetrel bonded complexes in both Ge and Si cases, and substitution of the F atom by Cl led to stronger complexes with an ethylene backbone. However, with phenyl backbones, the fluorosilyl complexes were shown to be less stable than the chlorosilyl ones, but the opposite occurred for halogermanium complexes. In all the cases studied, the presence of a hydroxyl group enhanced the tetrel bond. That effect becomes more remarkable when an intramolecular hydrogen bond between the halogen and the hydrogen atom of the hydroxyl group takes places.
Collapse
|
46
|
Levina EO, Chernyshov IY, Voronin AP, Alekseiko LN, Stash AI, Vener MV. Solving the enigma of weak fluorine contacts in the solid state: a periodic DFT study of fluorinated organic crystals. RSC Adv 2019; 9:12520-12537. [PMID: 35515880 PMCID: PMC9063672 DOI: 10.1039/c9ra02116g] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/15/2019] [Indexed: 01/22/2023] Open
Abstract
The nature and strength of weak interactions with organic fluorine in the solid state are revealed by periodic density functional theory (periodic DFT) calculations coupled with experimental data on the structure and sublimation thermodynamics of crystalline organofluorine compounds. To minimize other intermolecular interactions, several sets of crystals of perfluorinated and partially fluorinated organic molecules are considered. This allows us to establish the theoretical levels providing an adequate description of the metric and electron-density parameters of the C–F⋯F–C interactions and the sublimation enthalpy of crystalline perfluorinated compounds. A detailed comparison of the C–F⋯F–C and C–H⋯F–C interactions is performed using the relaxed molecular geometry in the studied crystals. The change in the crystalline packing of aromatic compounds during their partial fluorination points to the structure-directing role of C–H⋯F–C interactions due to the dominant electrostatic contribution to these contacts. C–H⋯F–C and C–H⋯O interactions are found to be identical in nature and comparable in energy. The factors that determine the contribution of these interactions to the crystal packing are revealed. The reliability of the results is confirmed by considering the superposition of the electrostatic potential and electron density gradient fields in the area of the investigated intermolecular interactions. The nature and strength of weak C–H⋯F–C and C–F⋯F–C interactions and their role in organofluorine molecular crystals were studied using periodic DFT coupled with CSD data mining and experimental sublimation enthalpies.![]()
Collapse
Affiliation(s)
- Elena O. Levina
- Moscow Institute of Physics and Technology
- Russia
- Research Centre of Biotechnology
- Russian Academy of Sciences
- Moscow
| | | | | | | | | | | |
Collapse
|
47
|
Ahmed F, Ghosh SR, Halder S, Guin S, Alam SM, Ray PP, Jana AD, Mir MH. Metal–ligand ring aromaticity in a 2D coordination polymer used as a photosensitive electronic device. NEW J CHEM 2019. [DOI: 10.1039/c8nj05526b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
14-Membered metal–ligand ring present in a photosensitive 2D coordination polymer, [Zn2(fum)2(4-phpy)4(H2O)2] (H2fum = fumaric acid and 4-phpy = 4-phenyl pyridine) shows aromatic character as evident by the nucleus-independent chemical shifts (NICS) calculation.
Collapse
Affiliation(s)
- Faruk Ahmed
- Department of Chemistry, Aliah University
- Kolkata 700 156
- India
| | - Sourav Ranjan Ghosh
- Department of Physics, Behala College
- Kolkata
- India
- Department of Physics, Heritage Institute of Technology
- Kolkata 700 107
| | - Soumi Halder
- Department of Physics, Jadavpur University
- Kolkata 700 032
- India
| | - Surajit Guin
- Department of Physics, Behala College
- Kolkata
- India
| | | | | | | | | |
Collapse
|
48
|
Rani J, Kaur G, Sushila S, Diksha D, Yadav R, Kataria R, Venugopalan P, Natarajan P, Chaudhary A, Patra R. Wheel-and-axle topology-driven halogen bonds: formation of ladder, 1D and 2D networks in hexa-coordinated Sn(iv) porphyrins. CrystEngComm 2019. [DOI: 10.1039/c8ce01877d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Wheel-and-axle topology-driven halogen bonded supramolecular networks in six-coordinated Sn(iv)-porphyrins.
Collapse
Affiliation(s)
- Jyoti Rani
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh-160014
- India
| | - Gurkiran Kaur
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh-160014
- India
| | - Sushila Sushila
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh-160014
- India
| | - Diksha Diksha
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh-160014
- India
| | - Rashmi Yadav
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh-160014
- India
| | - Ramesh Kataria
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh-160014
- India
| | - Paloth Venugopalan
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh-160014
- India
| | - Palani Natarajan
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh-160014
- India
| | | | - Ranjan Patra
- Department of Chemistry and Centre for Advanced Studies in Chemistry
- Panjab University
- Chandigarh-160014
- India
| |
Collapse
|
49
|
Bujak M, Stammler HG, Blomeyer S, Mitzel NW. The nature of interactions of benzene with CF3I and CF3CH2I. Chem Commun (Camb) 2019; 55:175-178. [DOI: 10.1039/c8cc08980a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Weak though structure determining interactions exist between benzene and F3CI or F3CCH2I; their natures are quite different and lead to different types of networks.
Collapse
Affiliation(s)
- Maciej Bujak
- Faculty of Chemistry
- University of Opole
- 45-052 Opole
- Poland
- Lehrstuhl für Anorganische Chemie und Strukturchemie and Centrum für Molekulare Materialien CM2
| | - Hans-Georg Stammler
- Lehrstuhl für Anorganische Chemie und Strukturchemie and Centrum für Molekulare Materialien CM2
- Fakultät für Chemie
- Universität Bielefeld
- Lehrstuhl für Anorganische Chemie und Strukturchemie
- Fakultät für Chemie
| | - Sebastian Blomeyer
- Lehrstuhl für Anorganische Chemie und Strukturchemie and Centrum für Molekulare Materialien CM2
- Fakultät für Chemie
- Universität Bielefeld
- Lehrstuhl für Anorganische Chemie und Strukturchemie
- Fakultät für Chemie
| | - Norbert W. Mitzel
- Lehrstuhl für Anorganische Chemie und Strukturchemie and Centrum für Molekulare Materialien CM2
- Fakultät für Chemie
- Universität Bielefeld
- Lehrstuhl für Anorganische Chemie und Strukturchemie
- Fakultät für Chemie
| |
Collapse
|
50
|
Mohammad HH, El-Abadelah MM, Sabri SS, Awwadi FF, Voelter W. Bis-heterocycles. Part I: tetrahydro-5,5′- bi(1,2,4-triazin-6-ones). ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2018. [DOI: 10.1515/znb-2018-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Selected sets of tetrahydro-5,5′-bi(1,2,4-triazines) (1–3) appended with acetyl, benzoyl, and ester moieties at C-3 position and N-1 (p-substituted)phenyl ring have been prepared and characterized by spectral (IR, NMR, MS) data and X-ray diffraction for compound 3a. Their synthesis was achieved in high yield via the reaction of diethyl aminomalonate with various N-(aryl)hydrazonoyl chlorides in the presence of triethylamine.
Collapse
Affiliation(s)
- Hanan H. Mohammad
- Chemistry Department, Faculty of Science , The University of Jordan , Amman 11942 , Jordan
| | - Mustafa M. El-Abadelah
- Chemistry Department, Faculty of Science , The University of Jordan , Amman 11942 , Jordan
| | - Salim S. Sabri
- Chemistry Department, Faculty of Science , The University of Jordan , Amman 11942 , Jordan
| | - Firas F. Awwadi
- Chemistry Department, Faculty of Science , The University of Jordan , Amman 11942 , Jordan
| | - Wolfgang Voelter
- Interfakultäres Institut für Biochemie, Universität Tübingen , Hoppe-Seyler Straße 4 , 72076 Tübingen , Germany
| |
Collapse
|