1
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
2
|
Ribaudo G, Ongaro A, Oselladore E, Memo M, Gianoncelli A. Combining Electrospray Mass Spectrometry (ESI-MS) and Computational Techniques in the Assessment of G-Quadruplex Ligands: A Hybrid Approach to Optimize Hit Discovery. J Med Chem 2021; 64:13174-13190. [PMID: 34510895 PMCID: PMC8474113 DOI: 10.1021/acs.jmedchem.1c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
![]()
Guanine-rich sequences
forming G-quadruplexes (GQs) are present
in several genomes, ranging from viral to human. Given their peculiar
localization, the induction of GQ formation or GQ stabilization with
small molecules represents a strategy for interfering with crucial
biological functions. Investigating the recognition event at the molecular
level, with the aim of fully understanding the triggered pharmacological
effects, is challenging. Native electrospray ionization mass spectrometry
(ESI-MS) is being optimized to study these noncovalent assemblies.
Quantitative parameters retrieved from ESI-MS studies, such as binding
affinity, the equilibrium binding constant, and sequence selectivity,
will be overviewed. Computational experiments supporting the ESI-MS
investigation and boosting its efficiency in the search for GQ ligands
will also be discussed with practical examples. The combination of
ESI-MS and in silico techniques in a hybrid high-throughput-screening
workflow represents a valuable tool for the medicinal chemist, providing
data on the quantitative and structural aspects of ligand–GQ
interactions.
Collapse
Affiliation(s)
- Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Alberto Ongaro
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Erika Oselladore
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
3
|
Abstract
Mass spectrometry (MS) is an analytical tool complimentary for being sensitive, accurate, and versatile in its application, such as the identification of multistranded nucleic acid assemblies, including G-quadruplex. More specifically, electrospray ionization mass spectrometry (ESI-MS) has been successfully applied to probe various G-quadruplex formations and G-quadruplex-ligand interactions. The benefit of the ESI process is that the noncovalent interactions, which typically stabilize the multistranded motifs of G-quadruplex in solution, are preserved in the gas phase. Here we use ESI-MS to describe the structural characterization of G-quadruplex structures found in three G-rich sequences, as well as the ligand binding. Detailed structural information of G-quadruplexes and their ligand-bound complexes (such as the cation/ligand binding stoichiometry, and the number of strands and G-quartets) can be obtained from a single spectrum using this ESI-MS-based method.
Collapse
Affiliation(s)
- Huihui Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, People's Republic of China.
| |
Collapse
|
4
|
Scalabrin M, Palumbo M, Richter SN. Highly Improved Electrospray Ionization-Mass Spectrometry Detection of G-Quadruplex-Folded Oligonucleotides and Their Complexes with Small Molecules. Anal Chem 2017; 89:8632-8637. [PMID: 28787153 PMCID: PMC5588092 DOI: 10.1021/acs.analchem.7b01282] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
G-quadruplexes
are nucleic acids structures stabilized by physiological
concentration of potassium ions. Because low stability G-quadruplexes
are hardly detectable by mass spectrometry, we optimized solvent conditions:
isopropanol in a triethylamine/hexafluoroisopropanol mixture highly
increased G-quadruplex sensitivity with no modification of the physiological
G-quadruplex conformation. G-quadruplexes/G-quadruplex-ligand complexes
were also correctly detected at concentration as low as 40 nM. Detection
of the physiological conformation of G4s and their complexes opens
up the possibility to perform high-throughput screening of G-quadruplex
ligands for the development of drug molecules effective against critical
human diseases.
Collapse
Affiliation(s)
- Matteo Scalabrin
- Department of Molecular Medicine, University of Padua , via Gabelli 63, 35121 Padua, Italy
| | - Manlio Palumbo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua , via Marzolo 5, 35131 Padua, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua , via Gabelli 63, 35121 Padua, Italy
| |
Collapse
|
5
|
Shen Z, Mulholland KA, Zheng Y, Wu C. Binding of anticancer drug daunomycin to a TGGGGT G-quadruplex DNA probed by all-atom molecular dynamics simulations: additional pure groove binding mode and implications on designing more selective G-quadruplex ligands. J Mol Model 2017; 23:256. [PMID: 28785893 DOI: 10.1007/s00894-017-3417-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022]
Abstract
DNA G-quadruplex structures are emerging cancer-specific targets for chemotherapeutics. Ligands that bind to and stabilize DNA G-quadruplexes have the potential to be anti-cancer drugs. Lack of binding selectivity to DNA G-quadruplex over DNA duplex remains a major challenge when attempting to develop G-quadruplex ligands into successful anti-cancer drugs. Thorough understanding of the binding nature of existing non-selective ligands that bind to both DNA quadruplex and DNA duplex will help to address this challenge. Daunomycin and doxorubicin, two commonly used anticancer drugs, are examples of non-selective DNA ligands. In this study, we extended our early all-atom binding simulation studies between doxorubicin and a DNA duplex (d(CGATCG)2) to probe the binding between daunomycin and a parallel DNA quadruplex (d(TGGGGT)4) and DNA duplex. In addition to the end stacking mode, which mimics the mode in the crystal structure, a pure groove binding mode was observed in our free binding simulations. The dynamic and energetic properties of these two binding modes are thoroughly examined, and a detailed comparison is made between DNA quadruplex binding modes and DNA duplex binding modes. Implications on the design of more selective DNA quadruplex ligands are also discussed. Graphical abstract Top stacking and groov binding modes from the MD simulations.
Collapse
Affiliation(s)
- Zhanhang Shen
- School of Physics, Shandong University, Jinan, 250100, China
| | - Kelly A Mulholland
- College of Science and Mathematics, Rowan University, Glassboro, NJ, 08028, USA
| | - Yujun Zheng
- School of Physics, Shandong University, Jinan, 250100, China.
| | - Chun Wu
- College of Science and Mathematics, Rowan University, Glassboro, NJ, 08028, USA.
| |
Collapse
|
6
|
Doria F, Nadai M, Costa G, Sattin G, Gallati C, Bergamaschi G, Moraca F, Alcaro S, Freccero M, Richter SN. Extended Naphthalene Diimides with Donor/Acceptor Hydrogen-Bonding Properties Targeting G-Quadruplex Nucleic Acids. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600757] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Filippo Doria
- Department of Chemistry; University of Pavia; v.le Taramelli 10 27100 Pavia Italy
| | - Matteo Nadai
- Department of Molecular Medicine; University of Padua; via Gabelli 63 35121 Padua Italy
| | - Giosuè Costa
- Dipartimento di Scienze della Salute Università degli Studi “Magna Graecia” di Catanzaro Campus “Salvatore Venuta”; Viale Europa 88100 Catanzaro Italy
| | - Giovanna Sattin
- Department of Molecular Medicine; University of Padua; via Gabelli 63 35121 Padua Italy
| | - Caroline Gallati
- Department of Chemistry; University of Pavia; v.le Taramelli 10 27100 Pavia Italy
| | - Greta Bergamaschi
- Department of Chemistry; University of Pavia; v.le Taramelli 10 27100 Pavia Italy
| | - Federica Moraca
- Dipartimento di Scienze della Salute Università degli Studi “Magna Graecia” di Catanzaro Campus “Salvatore Venuta”; Viale Europa 88100 Catanzaro Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute Università degli Studi “Magna Graecia” di Catanzaro Campus “Salvatore Venuta”; Viale Europa 88100 Catanzaro Italy
| | - Mauro Freccero
- Department of Chemistry; University of Pavia; v.le Taramelli 10 27100 Pavia Italy
| | - Sara N. Richter
- Department of Molecular Medicine; University of Padua; via Gabelli 63 35121 Padua Italy
| |
Collapse
|
7
|
Lin S, Long H, Zhou J, Yuan G. Study of G-quadruplexes in the STAT3 gene using electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30 Suppl 1:173-178. [PMID: 27539434 DOI: 10.1002/rcm.7640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
RATIONALE As a key signal transducer and transcription activator, STAT3 plays a very important role in many cell processes. We found that there were many G-rich sequences existing in the STAT3 gene including its promoter, intron, exon and 3'-flanking regions. These G-rich tracts can form G-quadruplexes under near physiological conditions. In this research, we systemically studied the G-quadruplexes in the STAT3 gene at a whole gene scale for the first time. METHODS In this research, the formation of G-quadruplexes in the STAT3 gene was probed by electrospray ionization mass spectrometry (ESI-MS) and circular dichroism (CD). Their structures were constructed and refined by a molecular modeling method. We also used ESI-MS to study the recognition of the G-quadruplexes in the promoter of the STAT3 gene by flexible molecules which do not have a planar core like the other common quadruplex ligands. RESULTS The results based on ESI-MS suggested that the G-quadruplexes in the promoter of the STAT3 gene formed and were further recognized by some small molecules. CONCLUSION Our research proved that the G-rich sequences in the STAT3 gene could form G-quadruplexes under near physiological conditions. This provides a promising target to study the regulation of cell signal transduction in vivo and drug design that aims to target STAT3 G-quadruplexes. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sen Lin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Beijing National Day School, Beijing, 100871, China
| | - Haitao Long
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jiang Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Gu Yuan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
8
|
Gao S, Cao Y, Yan Y, Guo X. Sequence Effect on the Topology of 3 + 1 Interlocked Bimolecular DNA G-Quadruplexes. Biochemistry 2016; 55:2694-703. [PMID: 27027538 DOI: 10.1021/acs.biochem.5b01190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Electrospray ionization mass spectrometry (ESI-MS) combined with fluorescence, circular dichroism, UV spectrophotometer, and native polyacrylamide gel electrophoresis techniques are used to study structural features of interlocked dimers formed by DNA sequence 93del (GGGGTGGGAGGAGGGT) and its derivatives. Herein, we demonstrate that the interlocked dimers can be distinguished from stacked dimers formed by sequences T30923 (GGGTGGGTGGGTGGGT) and T30177 (GTGGTGGGTGGGTGGGT). In addition, loop length, the base at 5'-end, and the isolation of T and TT to the first 4G tract do significantly influence the formation and topologies of interlocked dimers. Furthermore, our results suggest that the 4G tract and the 2G tract in various locations in the 93del derivative sequence can form interlocked structure. This work not only provides new insight into the assembly of 3 + 1 interlocked DNA conformations but also demonstrates that ESI-MS combined with other analytical methods is rapid and useful for DNA structural studies.
Collapse
Affiliation(s)
- Shang Gao
- College of Chemistry, Jilin University , Changchun, China 130012
| | - Yanwei Cao
- College of Chemistry, Jilin University , Changchun, China 130012
| | - Yuting Yan
- College of Chemistry, Jilin University , Changchun, China 130012
| | - Xinhua Guo
- College of Chemistry, Jilin University , Changchun, China 130012
| |
Collapse
|
9
|
Li H, Hai J, Zhou J, Yuan G. Exploration of binding affinity and selectivity of brucine with G-quadruplex in the c-myb proto-oncogene by electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:407-414. [PMID: 26754134 DOI: 10.1002/rcm.7454] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 11/07/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE The c-myb gene is a potential therapeutic target for human tumors and leukemias. Active ingredients from natural products may be used as drugs in chemotherapy for human cancers. Here, electrospray ionization mass spectrometry (ESI-MS) was used to probe the formation and recognition of the G-quadruplex structure from the G-rich sequence that is found in the c-myb gene promoter, 5'-GGGCTGGGCTGGGCGGGG-3'. The aim of our study is to evaluate a potential binder for the c-myb gene from natural products, and thereby to modulate c-myb gene expression. METHODS ESI-MS, as an effective method, was utilized not only to characterize the formation of the G-quadruplex in the c-myb oncogene, but also as a tool to probe the binding characteristics of alkaloid molecules with the target G-quadruplex DNA. RESULTS ESI-MS results with the support of circular dichroism (CD) spectra demonstrated the formation of an intramolecular parallel-stranded G-quadruplex in the c-myb oncogene promoter. A screening of six alkaloid molecules showed that brucine (P1) had a strong binding affinity to the c-myb G-quadruplex DNA. It is notable that P1 can bind selectively to the c-myb G-quadruplex with respect to duplex DNAs, as well as to G-quadruplexes in other types of gene sequences. According to ESI-MS results, in which the stability was tested by capillary heating and collision-induced dissociation, the binding of P1 could thermally stabilize the c-myb G-quadruplex DNA. CONCLUSIONS In this work, brucine (P1), an alkaloid molecule, has been found to bind to the intramolecular parallel G-quadruplex in the c-myb oncogene promoter with high affinity and selectivity, and could thermally stabilize the c-myb G-quadruplex DNA, indicating that the binding of P1 has the potential to modulate c-myb gene expression. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Huihui Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jinhui Hai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jiang Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Gu Yuan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
10
|
Wu T, Zhang C, Wang Z, Ren H, Kang Y, Du Y. Tuning the sensing range of potassium ions by changing the loop size of G-quadruplex sensors. NEW J CHEM 2016. [DOI: 10.1039/c6nj02136k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescence spectroscopy and thermodynamics were combined for the study of the loop size effect of G-quadruplex sensors in the K+ sensing range.
Collapse
Affiliation(s)
- Ting Wu
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Chuanjing Zhang
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Zhenping Wang
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Hongxin Ren
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yan Kang
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yiping Du
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
11
|
Qi Y, Chen H, Tan W, Li Y, Yuan G, Xu M. The genomic sequences near the mir-23b-27b-24-1 cluster form G-quadruplexes and are selectively bound by the natural alkaloid tetrandrine. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:1611-1616. [PMID: 28339154 DOI: 10.1002/rcm.7251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/02/2015] [Accepted: 06/11/2015] [Indexed: 06/06/2023]
Abstract
RATIONALE Although the microRNAs miR-23b, miR-27b and miR-24 are located in the same cluster, their expressions in various pathological states are not always comparable. By searching the genomic sequence around mir23b-27b-24-1 in rat, we identified three potential G-quadruplex sequences (PQS) which can fold into different types of G-quadruplexes, including parallel or antiparallel. Natural alkaloids, tetrandrine (TET), displayed different binding affinity with the three G-quadruplexes which may potentially regulate the expression of mir23b-27b-24-1 cluster members. METHODS Both electrospray ionization mass spectrometry (ESI-MS) and circular dichroism (CD) spectroscopy were utilized to detect the formation of G-quadruplexes. Six small molecules were screened by ESI-MS for their binding affinity with three G-quadruplexes, which were evaluated by their IRa values. RESULTS The results of ESI-MS and CD experiments confirmed the formation of three G-quadruplexes neighboring the mir23b-27b-24-1 cluster; two of them adopted antiparallel G-quadruplexes, another adopted a parallel G-quadruplex. Screening of small molecules by ESI-MS showed tetrandrine had selective binding affinity for the parallel G-quadruplex. G-quadruplex stabilization by tetrandrine was verified by CD variable temperature measurements. CONCLUSIONS The gene of the mir23b-27b-24-1 cluster harbors three G-quadruplexes with typical sequences and structures. Tetrandrine had a selective binding affinity to the parallel G-quadruplex and stabilized it significantly. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yanchao Qi
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Han Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University
| | - Wei Tan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University
| | - Yanyan Li
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Gu Yuan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University
| | - Ming Xu
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| |
Collapse
|
12
|
Biver T. Stabilisation of non-canonical structures of nucleic acids by metal ions and small molecules. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.04.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Wen LN, Xie MX. Evidence of different G-quadruplex DNA binding with biogenic polyamines probed by electrospray ionization-quadrupole time of flight mass spectrometry, circular dichroism and atomic force microscopy. Biochimie 2013; 95:1185-1195. [PMID: 23352964 DOI: 10.1016/j.biochi.2013.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/14/2013] [Indexed: 12/14/2022]
Abstract
The binding properties of five G-quadruplex oligonucleotides (humtel24, k-ras32, c-myc22, c-kit1 and c-kit2) with polyamines have been investigated by electrospray ionization-quadrupole time of flight mass spectrometry, circular dichroism, melting temperature, atomic force microscopy (AFM) and molecular simulation. The MS results demonstrated that the polyamines and G-quadruplex DNA can form complexes with high affinity, and one molecule of G-quadruplex DNA can combine several molecules (1-5) of polyamines. The binding affinities of the polyamines to DNA were in the order of spermine > spermidine > putrescine. After binding with polyamines, the conformations of the G-quadruplex DNA were significantly changed, and spermine can induce the configurations of k-ras32 and c-kit1 to deviate from their G-quadruplex structures at high concentrations. In the presence of K(+), the conformations of G-quadruplex DNA were stabilized, while polyamines can also induced alterations of their configurations. Melting temperature experiments suggested that the Tm of the DNA-polyamine complexes obviously increased both in the absence and presence of K(+). The AFM results indicated that polyamines can induce aggregation of G-quadruplex DNA. Above results illustrated that the polyamines bound with the phosphate backbone and the base-pairs of G-quadruplex structures. Combining with the molecular simulation, the binding mode of the G-quadruplex DNA and polyamines were discussed. The results obtained would be beneficial for understanding the biological and physiological functions of polyamines and provide useful information for development of antitumor drugs.
Collapse
Affiliation(s)
- Li-Na Wen
- Analytical & Testing Center of Beijing Normal University, Xinjiekouwaidajie No. 19, Beijing 100875, People's Republic of China
| | | |
Collapse
|
14
|
Li H, Bu X, Lu J, Xu C, Wang X, Yang X. Interaction study of ciprofloxacin with human telomeric DNA by spectroscopy and molecular docking. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 107:227-234. [PMID: 23434548 DOI: 10.1016/j.saa.2013.01.069] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/23/2013] [Accepted: 01/24/2013] [Indexed: 06/01/2023]
Abstract
The interaction of ciprofloxacin (CIP) with human telomeric DNA was studied in vitro using multi-spectroscopy and molecular modeling methods. The hypochromic effect with a red shift in ultraviolet (UV) absorption indicated the occurrence of the interaction between CIP and DNA. The fluorescence quenching of CIP was observed with the addition of DNA and was proved to be the static quenching. The binding constant was found to be 9.62×10(4) L mol(-1). Electrospray ionization mass spectrometry (ESI-MS) result further confirmed the formation of 1:1 non-covalent complex between DNA and CIP. Combined with the UV melting results, circular dichroism (CD) results confirmed the existence of groove binding mode, as well as conformational changes of DNA. Molecular docking studies illustrated the visual display of the CIP binding to the GC region in the minor groove of DNA. Specific hydrogen bonds and van der Waals forces were demonstrated as main acting forces between CIP and guanine bases of DNA.
Collapse
Affiliation(s)
- Huihui Li
- Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, China.
| | | | | | | | | | | |
Collapse
|
15
|
Tan W, Yuan G. Electrospray ionization mass spectrometric exploration of the high-affinity binding of three natural alkaloids with the mRNA G-quadruplex in the BCL2 5'-untranslated region. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:560-564. [PMID: 23322663 DOI: 10.1002/rcm.6484] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 11/27/2012] [Accepted: 12/03/2012] [Indexed: 06/01/2023]
Abstract
RATIONALE The BCL2 gene encodes an integral outer mitochondrial membrane protein (25 kDa) which regulates the apoptotic death of cells. There is a 25-nucleotide G-rich sequence in the 5'-untranslated region (5'-UTR) of the BCL2 mRNA, which can adopt a G-quadruplex structure. Small molecules which could tightly bind to this structure have a potential function in the regulation of the expression of the BCL2 mRNA. METHODS The 25-mer oligonucleotide (5'-G(5)CCGUG(4)UG(3)AGCUG(4)-3') was synthesized by TaKaRa Biotechnology Co., Ltd. (TaKaRa, Dalian) with high-performance liquid chromatography (HPLC) purification. Electrospray ionization (ESI) mass spectrometry (MS) was used to probe the binding properties of natural small molecules (P) with the mRNA G-quadruplex in the BCL2 5'-UTR (BCL2Q). Collision-induced dissociation (CID) mass spectrometry and circular dichroism (CD) spectroscopy were performed to evaluate the stabilization of the mRNA G-quadruplex and its complexes. RESULTS The results from ESI mass spectra showed that three natural alkaloids (nitidine, palmatine, and jatrorrizine) have high binding affinities to the mRNA G-quadruplex with the binding stoichiometry ranging from 1:1 to 3:1. CID mass spectrometry results revealed that the G-quadruplex-ligand complex lost bases first rather than losing the binding molecules. Increases in the T(m) values of the complexes of the G-quadruplex with the natural alkaloids in the CD melting experiments demonstrated that the three small molecules can stabilize the G-quadruplex structure. CONCLUSIONS Three natural small molecules were found to have very high binding affinities to the mRNA G-quadruplex and stabilize this structure. The properties of these alkaloids revealed promising potentials to regulate the expression of the BCL2 protein from the posttranscriptional pathway.
Collapse
Affiliation(s)
- Wei Tan
- Beijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | | |
Collapse
|
16
|
Zhang Q, Cui X, Lin S, Zhou J, Yuan G. Convenient Method for the Synthesis of a Flexible Cyclic Polyamide for Selective Targeting of c-myb G-quadruplex DNA. Org Lett 2012; 14:6126-9. [DOI: 10.1021/ol302918f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Qiang Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaojie Cui
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Sen Lin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiang Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Gu Yuan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
17
|
Zheng B, Liu Y, Yuan G. Polyamide recognition-mass spectrometry for distinguishing hairpin DNA from coil DNA. J Mol Recognit 2012; 24:1018-24. [PMID: 22038808 DOI: 10.1002/jmr.1149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The discrimination between hairpin DNA and coil DNA has been well achieved through polyamides as probes by electrospray ionization (ESI) mass spectrometry. ESI mass spectra showed that polyamides bind to hairpin DNA with high selectivity, and almost no binding with coil DNA. In addition, the noncovalent interaction between polyamides and hairpin DNA was also studied; the results show that hairpin DNA with longer stem and polyamides with more heterocycles have higher binding affinity and stability in gas phase.
Collapse
Affiliation(s)
- Bo Zheng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | | | | |
Collapse
|
18
|
Lin S, Gu H, Xu M, Cui X, Zhang Y, Gao W, Yuan G. The formation and stabilization of a novel G-quadruplex in the 5'-flanking region of the relaxin gene. PLoS One 2012; 7:e31201. [PMID: 22363579 PMCID: PMC3283602 DOI: 10.1371/journal.pone.0031201] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 01/04/2012] [Indexed: 01/02/2023] Open
Abstract
It has been reported that binding of STAT3 protein to the 5'-flanking region of the relaxin gene may result in downregulation of the relaxin expression. There is a Guanine(G)-rich segment located in about 3.8 Kb upstream of the relaxin gene and very close to the STAT3's binding site. In our study, NMR spectroscopy revealed the formation of G-quadruplex by this G-rich strand, and the result was confirmed by ESI mass spectrometry and CD spectroscopy. The theoretical structure of RLX G-quadruplex was constructed and refined by molecular modeling. When this relaxin G-quadruplex was stabilized by berberine(ΔTm = 10°C), a natural alkaloid from a Chinese herb, the gene expression could be up-regulated in a dose-dependent manner which was proved by luciferase assay. This result is different from the general G-quadruplex function that inhibiting the telomere replication or down-regulating many oncogenes expression. Therefore, our study reported a novel G-quadruplex in the relaxin gene and complemented the regulation mechanism about gene expression by G-quadruplexes.
Collapse
Affiliation(s)
- Sen Lin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Huiping Gu
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Institute of Vascular Medicine, Third Hospital, Peking University, Beijing, China
| | - Ming Xu
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Institute of Vascular Medicine, Third Hospital, Peking University, Beijing, China
- * E-mail: (MX); (GY)
| | - Xiaojie Cui
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Youyi Zhang
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Institute of Vascular Medicine, Third Hospital, Peking University, Beijing, China
| | - Wei Gao
- Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Institute of Vascular Medicine, Third Hospital, Peking University, Beijing, China
| | - Gu Yuan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- * E-mail: (MX); (GY)
| |
Collapse
|
19
|
Zhang Z, He X, Yuan G. Formation and recognition of G-quadruplex relevant for pilin antigenic variation in Neisseria gonorrhoeae. CAN J CHEM 2012. [DOI: 10.1139/v11-092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this research, NMR, ESI-MS, and circular dichroism (CD) spectroscopies were used to investigate the formation and recognition of G-quadruplex by a G-rich sequence that has been demonstrated to be relevant for pilin variation in Neisseria gonorrhoeae . The NMR spectra provided strong evidence that the G-quadruplex structure was formed from this G-rich sequence, and this result was confirmed by CD spectroscopy. In addition, two small-molecule natural products (jatrorrhizine hydrochloride (J) and dehydrocorydaline (D)) were found to bind to this G-quadruplex over the corresponding duplex DNA with high selectivity by ESI-MS.
Collapse
Affiliation(s)
- Zhenjiang Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Xiangwei He
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| | - Gu Yuan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China
| |
Collapse
|
20
|
Jain AK, Bhattacharya S. Interaction of G-Quadruplexes with Nonintercalating Duplex-DNA Minor Groove Binding Ligands. Bioconjug Chem 2011; 22:2355-68. [DOI: 10.1021/bc200268a] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Akash K. Jain
- Department
of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Santanu Bhattacharya
- Department
of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India
- Chemical Biology Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 012, India
| |
Collapse
|
21
|
Yuan G, Zhang Q, Zhou J, Li H. Mass spectrometry of G-quadruplex DNA: formation, recognition, property, conversion, and conformation. MASS SPECTROMETRY REVIEWS 2011; 30:1121-1142. [PMID: 21520218 DOI: 10.1002/mas.20315] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 06/09/2010] [Accepted: 06/09/2010] [Indexed: 05/30/2023]
Abstract
G-quadruplexes are special secondary structures formed from G-rich sequences of DNA, and have proven to play important roles in a number of biological systems, including the regulation of gene transcription and translation. The highly distinctive nature of G-quadruplex structures and their functions suggest that G-quadruplexes can act as novel targets for drug development. As a highly sensitive analytical tool, mass spectrometry has been widely used for the analysis of G-quadruplex structures. Electrospray-ionization mass spectrometry, in particular, has found captivating applications to probe interactions between small molecules and G-quadruplex DNA. In this review, we will discuss: (1) mass spectrometry probing of the formation, binding affinity, and stoichiometry between G-quadruplexes and small molecules; (2) stabilization and collision-dissociation behavior of G-quadruplex DNA; (3) the exploration of the equilibrium transfer between a G-quadruplex and duplex DNA; and (4) the ESI-MS analysis of the conversion of intramolecular and intermolecular G-quadruplexes. Finally, we will also introduce the application of new techniques in the analysis of G-quadruplex conformation, such as ion-mobility and infrared multiphoton-dissociation mass spectrometry. We believe that, with the new technical developments, mass spectrometry will play an unparalleled role in the analysis of the G-quadruplex structures.
Collapse
Affiliation(s)
- Gu Yuan
- Beijing National Laboratory for Molecular Sciences, Key Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | | | | | | |
Collapse
|
22
|
Lin S, Li S, Chen Z, He X, Zhang Y, Xu X, Xu M, Yuan G. Formation, recognition and bioactivities of a novel G-quadruplex in the STAT3 gene. Bioorg Med Chem Lett 2011; 21:5987-91. [DOI: 10.1016/j.bmcl.2011.07.121] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 06/14/2011] [Accepted: 07/14/2011] [Indexed: 01/04/2023]
|
23
|
Prakash A, Kieken F, Marky LA, Borgstahl GEO. Stabilization of a G-Quadruplex from Unfolding by Replication Protein A Using Potassium and the Porphyrin TMPyP4. J Nucleic Acids 2011; 2011:529828. [PMID: 21772995 PMCID: PMC3136172 DOI: 10.4061/2011/529828] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 03/17/2011] [Accepted: 04/01/2011] [Indexed: 11/20/2022] Open
Abstract
Replication protein A (RPA) plays an essential role in DNA replication by binding and unfolding non-canonical single-stranded DNA (ssDNA) structures. Of the six RPA ssDNA binding domains (labeled A-F), RPA-CDE selectively binds a G-quadruplex forming sequence (5′-TAGGGGAAGGGTTGGAGTGGGTT-3′ called Gq23). In K+, Gq23 forms a mixed parallel/antiparallel conformation, and in Na+ Gq23 has a less stable (TM lowered by ∼20°C), antiparallel conformation. Gq23 is intramolecular and 1D NMR confirms a stable G-quadruplex structure in K+. Full-length RPA and RPA-CDE-core can bind and unfold the Na+ form of Gq23 very efficiently, but complete unfolding is not observed with the K+ form. Studies with G-quadruplex ligands, indicate that TMPyP4 has a thermal stabilization effect on Gq23 in K+, and inhibits complete unfolding by RPA and RPA-CDE-core. Overall these data indicate that G-quadruplexes present a unique problem for RPA to unfold and ligands, such as TMPyP4, could possibly hinder DNA replication by blocking unfolding by RPA.
Collapse
Affiliation(s)
- Aishwarya Prakash
- The Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 987696 Nebraska Medical Center, Omaha, NE 68198-7696, USA
| | | | | | | |
Collapse
|
24
|
Nadai M, Doria F, Di Antonio M, Sattin G, Germani L, Percivalle C, Palumbo M, Richter SN, Freccero M. Naphthalene diimide scaffolds with dual reversible and covalent interaction properties towards G-quadruplex. Biochimie 2011; 93:1328-40. [PMID: 21699955 DOI: 10.1016/j.biochi.2011.06.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 06/14/2011] [Indexed: 11/26/2022]
Abstract
Selective recognition and alkylation of G-quadruplex oligonucleotides has been achieved by substituted naphathalene diimides (NDIs) conjugated to engineered phenol moieties by alkyl-amido spacers with tunable length and conformational mobility. FRET-melting assays, circular dichroism titrations and gel electrophoresis analysis have been carried out to evaluate both reversible stabilization and alkylation of the G-quadruplex. The NDIs conjugated to a quinone methide precursor (NDI-QMP) and a phenol moiety by the shortest alkyl-amido spacer exhibited a planar and fairly rigid geometry (modelled by DFT computation). They were the best irreversible and reversible G-quadruplex binders, respectively. The above NDI-QMP was able to alkylate the telomeric G-quadruplex DNA in the nanomolar range and resulted 100-1000 times more selective on G-quadruplex versus single- and double-stranded oligonucleotides. This compound was also the most cytotoxic against a lung carcinoma cell line.
Collapse
Affiliation(s)
- Matteo Nadai
- Dipartimento di Istologia, Microbiologia e Biotecnologie Mediche, via Gabelli 63, Padua, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Luo Q, Wu D, Liu S, Tang D, Huang Y, Liu X, Wang F, Wang R, Wu G. The formation of thymidine-based T-tetramers with remarkable structural and metal ion size effects. Org Biomol Chem 2010; 9:1030-3. [PMID: 21165518 DOI: 10.1039/c0ob00520g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present direct ESI Q-TOF MS and X-ray evidence for remarkable structural and metal ion size effects on the formation of thymidine-based T-tetramers. The conventional H-bond acceptors on the ribose and deoxyribose may disfavor the formation of T-tetramers, and in the series of alkali metal ions, lithium did not induce T-tetramer due to its small ion size. Sodium, potassium, rubidium and caesium could produce thymidine-based T-tetramers. Furthermore, rubidium and caesium could induce T-pentamers and dimeric T-pentamers probably due to their larger ion sizes.
Collapse
Affiliation(s)
- Qun Luo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Li H, Yuan G. Electrospray ionization mass spectrometry probing of formation and recognition of the G-quadruplex in the proximal promoter of the human vascular endothelial growth factor gene. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:2030-2034. [PMID: 20552697 DOI: 10.1002/rcm.4613] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The formation of the G-quadruplex of the vascular endothelial growth factor (VEGF) gene was probed by electrospray ionization mass spectrometry (ESI-MS). It found that cations (K(+) and NH(4)(+)), CH(3)OH and pH influence significantly the formation of the G-quadruplex structure. Additionally, a perylene derivative (P3) and polydatin (P4) have shown to be potential G-quadruplex binding agents with structurally specific recognition.
Collapse
Affiliation(s)
- Huihui Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | |
Collapse
|
27
|
Wang XD, Ou TM, Lu YJ, Li Z, Xu Z, Xi C, Tan JH, Huang SL, An LK, Li D, Gu LQ, Huang ZS. Turning off transcription of the bcl-2 gene by stabilizing the bcl-2 promoter quadruplex with quindoline derivatives. J Med Chem 2010; 53:4390-8. [PMID: 20481493 DOI: 10.1021/jm100445e] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human bcl-2 gene is an apoptosis-related oncogene containing a GC-rich sequence which is located upstream from P1 promoter and has the potential to form G-quadruplex structures. However, the regulatory role of the quadruplex and the effect of its ligands on bcl-2 have not been clarified. Here, we demonstrated that the G-quadruplex structure was disrupted when partial mutation of G --> A was made, resulting in a 2-fold increase in basal transcriptional activity of bcl-2 promoter. Quindoline derivatives, the highly active G-quadruplex ligands developed by our group, could significantly suppress bcl-2 transcriptional activation but had less effect on mutated bcl-2 transcription. These results provided direct evidence that G-quadruplex structure formed in bcl-2 promoter region could function as a transcriptional repressor element, and G-quadruplex specific ligands could regulate the transcription of bcl-2 through stabilization of quadruplex structure. The results further indicated that quindoline derivatives could induce apoptosis of HL-60 tumor cells.
Collapse
Affiliation(s)
- Xiao-Dong Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kendrick S, Hurley LH. The role of G-quadruplex/i-motif secondary structures as cis-acting regulatory elements. ACTA ACUST UNITED AC 2010; 82:1609-1621. [PMID: 21796223 DOI: 10.1351/pac-con-09-09-29] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The nature of DNA has captivated scientists for more than fifty years. The discovery of the double-helix model of DNA by Watson and Crick in 1953 not only established the primary structure of DNA, but also provided the mechanism behind DNA function. Since then, researchers have continued to further the understanding of DNA structure and its pivotal role in transcription. The demonstration of DNA secondary structure formation has allowed for the proposal that the dynamics of DNA itself can function to modulate transcription. This review presents evidence that DNA can exist in a dynamic equilibrium between duplex and secondary conformations. In addition, data demonstrating that intracellular proteins as well as small molecules can shift this equilibrium in either direction to alter gene transcription will be discussed, with a focus on the modulation of proto-oncogene expression.
Collapse
|
29
|
Iida K, Tera M, Hirokawa T, Shin-Ya K, Nagasawa K. Synthesis of Macrocyclic Hexaoxazole (6OTD) Dimers, Containing Guanidine and Amine Functionalized Side Chains, and an Evaluation of Their Telomeric G4 Stabilizing Properties. J Nucleic Acids 2010; 2010. [PMID: 20700415 PMCID: PMC2911606 DOI: 10.4061/2010/217627] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 03/01/2010] [Indexed: 12/03/2022] Open
Abstract
Structure-activity relationship studies were carried out on macrocyclic hexaoxazole (6OTD) dimers, whose core structure stabilizes telomeric G-quadruplexes (G4). Two new 6OTD dimers having side chain amine and guanidine functional groups were synthesized and evaluated for their stabilizing ability against a telomeric G4 DNA sequence. The results show that the 6OTD dimers interact with the DNA to form 1:1 complexes and stabilize the antiparallel G4 structure of DNA in the presence of potassium cation. The guanidine functionalized dimer displays a potent stabilizing ability of the G4 structure, as determined by using a FRET melting assay (ΔTm = 14°C).
Collapse
Affiliation(s)
- Keisuke Iida
- Department of Biotechnology and Life Science Faculty of Technology, Tokyo University of Agriculture and Technology (TUAT), Koganei, Tokyo 184-8588, Japan
| | | | | | | | | |
Collapse
|
30
|
Monchaud D, Granzhan A, Saettel N, Guédin A, Mergny JL, Teulade-Fichou MP. "One ring to bind them all"-part I: the efficiency of the macrocyclic scaffold for g-quadruplex DNA recognition. J Nucleic Acids 2010; 2010. [PMID: 20725629 PMCID: PMC2915875 DOI: 10.4061/2010/525862] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 02/18/2010] [Indexed: 01/01/2023] Open
Abstract
Macrocyclic scaffolds are particularly attractive for designing selective G-quadruplex ligands essentially because, on one hand, they show a poor affinity for the “standard” B-DNA conformation and, on the other hand, they fit nicely with the external G-quartets of quadruplexes. Stimulated by the pioneering studies on the cationic porphyrin TMPyP4 and the natural product telomestatin, follow-up studies have developed, rapidly leading to a large diversity of macrocyclic structures with remarkable-quadruplex binding properties and biological activities. In this review we summarize the current state of the art in detailing the three main categories of quadruplex-binding macrocycles described so far (telomestatin-like polyheteroarenes, porphyrins and derivatives, polyammonium cyclophanes), and in addressing both synthetic issues and biological aspects.
Collapse
Affiliation(s)
- David Monchaud
- Section Recherche, Institut Curie, CNRS UMR176, Centre Universitaire Paris XI, Batiment 110, 91405 Orsay, France
| | | | | | | | | | | |
Collapse
|
31
|
Kendrick S, Akiyama Y, Hecht SM, Hurley LH. The i-motif in the bcl-2 P1 promoter forms an unexpectedly stable structure with a unique 8:5:7 loop folding pattern. J Am Chem Soc 2010; 131:17667-76. [PMID: 19908860 DOI: 10.1021/ja9076292] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transcriptional regulation of the bcl-2 proto-oncogene is highly complex, with the majority of transcription driven by the P1 promoter site and the interaction of multiple regulatory proteins. A guanine- and cytosine-rich (GC-rich) region directly upstream of the P1 site has been shown to be integral to bcl-2 promoter activity, as deletion or mutation of this region significantly increases transcription. This GC-rich element consists of six contiguous runs of guanines and cytosines that have the potential to adopt DNA secondary structures, the G-quadruplex and i-motif, respectively. Our laboratory has previously demonstrated that the polypurine-rich strand of the bcl-2 promoter can form a mixture of three different G-quadruplex structures. In this current study, we demonstrate that the complementary polypyrimidine-rich strand is capable of forming one major intramolecular i-motif DNA secondary structure with a transition pH of 6.6. Characterization of the i-motif folding pattern using mutational studies coupled with circular dichroic spectra and thermal stability analyses revealed an 8:5:7 loop conformation as the predominant structure at pH 6.1. The folding pattern was further supported by chemical footprinting with bromine. In addition, a novel assay involving the sequential incorporation of a fluorescent thymine analog at each thymine position provided evidence of a capping structure within the top loop region of the i-motif. The potential of the GC-rich element within the bcl-2 promoter region to form DNA secondary structures suggests that the transition from the B-DNA to non-B-DNA conformation may play an important role in bcl-2 transcriptional regulation. Furthermore, the two adjacent large lateral loops in the i-motif structure provide an unexpected opportunity for protein and small molecule recognition.
Collapse
Affiliation(s)
- Samantha Kendrick
- Arizona Cancer Center, 1515 North Campbell Avenue, Tucson, Arizona 85724, USA
| | | | | | | |
Collapse
|
32
|
Li H, Zhang Q, Yuan G. Investigation of the formation and recognition of a dimeric G-quadruplex in the promoter of Bcl-2 proto-oncogene by electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2010; 24:393-395. [PMID: 20049879 DOI: 10.1002/rcm.4397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
33
|
Quinone methides tethered to naphthalene diimides as selective G-quadruplex alkylating agents. J Am Chem Soc 2010; 131:13132-41. [PMID: 19694465 DOI: 10.1021/ja904876q] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have developed novel G-quadruplex (G-4) ligand/alkylating hybrid structures, tethering the naphthalene diimide moiety to quaternary ammonium salts of Mannich bases, as quinone-methide precursors, activatable by mild thermal digestion (40 degrees C). The bis-substituted naphthalene diimides were efficiently synthesized, and their reactivity as activatable bis-alkylating agents was investigated in the presence of thiols and amines in aqueous buffered solutions. The electrophilic intermediate, quinone-methide, involved in the alkylation process was trapped, in the presence of ethyl vinyl ether, in a hetero Diels-Alder [4 + 2] cycloaddition reaction, yielding a substituted 2-ethoxychroman. The DNA recognition and alkylation properties of these new derivatives were investigated by gel electrophoresis, circular dichroism, and enzymatic assays. The alkylation process occurred preferentially on the G-4 structure in comparison to other DNA conformations. By dissecting reversible recognition and alkylation events, we found that the reversible process is a prerequisite to DNA alkylation, which in turn reinforces the G-quadruplex structural rearrangement.
Collapse
|
34
|
Iida K, Tera M, Hirokawa T, Shin-ya K, Nagasawa K. G-quadruplex recognition by macrocyclic hexaoxazole (6OTD) dimer: greater selectivity than monomer. Chem Commun (Camb) 2009:6481-3. [PMID: 19841816 DOI: 10.1039/b910242f] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Macrocyclic hexaoxazole (6OTD) dimers were designed as candidates for potent G-quadruplex binders and synthesized.
Collapse
Affiliation(s)
- Keisuke Iida
- Department of Biotechnology and Life Science Faculty of Technology, Tokyo University of Agriculture and Technology (TUAT), Koganei, Tokyo 184-8588, Japan
| | | | | | | | | |
Collapse
|
35
|
Del Toro M, Bucek P, Aviñó A, Jaumot J, González C, Eritja R, Gargallo R. Targeting the G-quadruplex-forming region near the P1 promoter in the human BCL-2 gene with the cationic porphyrin TMPyP4 and with the complementary C-rich strand. Biochimie 2009; 91:894-902. [PMID: 19401211 DOI: 10.1016/j.biochi.2009.04.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Accepted: 04/15/2009] [Indexed: 02/05/2023]
Abstract
The B-cell lymphoma-2 (bcl-2) gene contains a region that has been implicated in the regulation of bcl-2 gene expression. This region can form G-quadruplex structures in solution [J.X. Dai, T.S. Dexheimer, D. Chen, M. Carver, A. Ambrus, R.A. Jones, D.Z. Yang, An intramolecular G-quadruplex structure with mixed parallel/antiparallel G-strands formed in the human BCL-2 promoter region in solution, J. Am. Chem. Soc. 128 (2006) 1096-1098.]. Here, we examined the acid-base and conformational equilibria of this G-quadruplex-forming region (BCL2G), as well as its interaction with both the porphyrin TMPyP4 and with the complementary C-rich strand. We used molecular absorption and circular dichroism techniques, in tandem with multivariate analysis tools. The results revealed the formation of an interaction complex BCL2G:TMPyP4 with a stoichiometry of 1:2 and an equilibrium constant equal to 5.0 (+/-2.3) x 10(13) M(-2). Addition of the complementary C-rich strand to BCL2G induces the predominant formation of the Watson-Crick double-helix with an equilibrium constant equal to 10(7.7) M(-1) (at pH 7.1). Finally, the pH-induced formation of quadruplex structures from the Watson-Crick double-helix is characterized.
Collapse
Affiliation(s)
- Miquel Del Toro
- Department of Analytical Chemistry, University of Barcelona, Marti i Franques 1-11, E-08028 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|