1
|
Alonso E, Insausti A, Peña I, Sanz-Novo M, Aguado R, León I, Alonso JL. Revealing the Structure of Sheer N-Acetylglucosamine, an Essential Chemical Scaffold in Glycobiology. J Phys Chem Lett 2024; 15:10314-10320. [PMID: 39373285 PMCID: PMC11492373 DOI: 10.1021/acs.jpclett.4c02128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
We explored the conformational landscape of N-acetyl-α-d-glucosamine (α-GlcNAc), a fundamental chemical scaffold in glycobiology. Solid samples were vaporized by laser ablation, expanded in a supersonic jet, and characterized by broadband chirped pulse Fourier transform microwave spectroscopy. In the isolation conditions of the jet, three different structures of GlcNAc have been discovered. These are conclusively identified by comparing the experimental values of the rotational constants with those predicted by theoretical calculations. The conformational preferences are controlled by intramolecular hydrogen bond networks formed between the polar groups in the acetamido group and the hydroxyl groups and dominated in all cases by a strong OH···O═C interaction. We reported an exception to the gauche effect due to the enhanced stability observed for the Tg+ conformer. All the structures present the same disposition of the acetamido group, which explains the highly selective binding of N-acetylglucosamine with different amino acid residues. Thus, the comprehensive structural data provided here shall help to shed some light on the biological role of this relevant amino sugar.
Collapse
Affiliation(s)
- Elena
R. Alonso
- Grupo
de Espectroscopia Molecular (GEM), Edificio Quifima, Área de
Química-Física, Laboratorios de Espectroscopia
y Bioespectroscopia, Parque Científico UVa, Unidad Asociada
CSIC, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Aran Insausti
- Departamento
de Química Física, Facultad de Ciencia y
Tecnología, Universidad del
País Vasco, Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Isabel Peña
- Departamento
de Química Física y Química
Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Miguel Sanz-Novo
- Grupo
de Espectroscopia Molecular (GEM), Edificio Quifima, Área de
Química-Física, Laboratorios de Espectroscopia
y Bioespectroscopia, Parque Científico UVa, Unidad Asociada
CSIC, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Raúl Aguado
- Grupo
de Espectroscopia Molecular (GEM), Edificio Quifima, Área de
Química-Física, Laboratorios de Espectroscopia
y Bioespectroscopia, Parque Científico UVa, Unidad Asociada
CSIC, Universidad de Valladolid, 47011 Valladolid, Spain
| | - Iker León
- Grupo
de Espectroscopia Molecular (GEM), Edificio Quifima, Área de
Química-Física, Laboratorios de Espectroscopia
y Bioespectroscopia, Parque Científico UVa, Unidad Asociada
CSIC, Universidad de Valladolid, 47011 Valladolid, Spain
| | - José L. Alonso
- Grupo
de Espectroscopia Molecular (GEM), Edificio Quifima, Área de
Química-Física, Laboratorios de Espectroscopia
y Bioespectroscopia, Parque Científico UVa, Unidad Asociada
CSIC, Universidad de Valladolid, 47011 Valladolid, Spain
| |
Collapse
|
2
|
Chen C, Ma B, Wang Y, Cui Q, Yao L, Li Y, Chen B, Feng Y, Tan Z. Structural insight into why S-linked glycosylation cannot adequately mimic the role of natural O-glycosylation. Int J Biol Macromol 2023; 253:126649. [PMID: 37666405 DOI: 10.1016/j.ijbiomac.2023.126649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
There is an increasing interest in using S-glycosylation as a replacement for the more commonly occurring O-glycosylation, aiming to enhance the resistance of glycans against chemical hydrolysis and enzymatic degradation. However, previous studies have demonstrated that these two types of glycosylation exert distinct effects on protein properties and functions. In order to elucidate the structural basis behind the observed differences, we conducted a systematic and comparative analysis of 6 differently glycosylated forms of a model glycoprotein, CBM, using NMR spectroscopy and molecular dynamic simulations. Our findings revealed that the different stabilizing effects of S- and O-glycosylation could be attributed to altered hydrogen-bonding capability between the glycan and the polypeptide chain, and their diverse impacts on binding affinity could be elucidated by examining the interactions and motion dynamics of glycans in substrate-bound states. Overall, this study underscores the pivotal role of the glycosidic linkage in shaping the function of glycosylation and advises caution when switching glycosylation types in protein glycoengineering.
Collapse
Affiliation(s)
- Chao Chen
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao, Shandong 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yefei Wang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao, Shandong 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao, Shandong 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lishan Yao
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao, Shandong 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaohao Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Baoquan Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao, Shandong 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhongping Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
3
|
Rani L, Mallajosyula SS. Site-Specific Stabilization and Destabilization of α Helical Peptides upon Phosphorylation and O-GlcNAcylation. J Phys Chem B 2021; 125:13444-13459. [PMID: 34870441 DOI: 10.1021/acs.jpcb.1c09419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Helices (α-helix) are the most common type of secondary structure motif present in proteins. In this study, we have investigated the structural influence of phosphorylation and O-GlcNAcylation, common intracellular post-translational modifications (PTMs), on the α-helical conformation. The simulation studies were performed on the Baldwin model α-helical peptide sequence (Ac-AKAAAAKAAAAKAA-NH2). The Baldwin sequences were chosen due to the availability of site-specific experimental post-translational data for cross-validation with the simulations. The influence of PTMs was examined across the span of the α-helix, namely, at the N-terminus, position 10 (interior region), and the C-terminus for both serine and threonine residues placed at these positions. Molecular dynamics (MD) simulations revealed that phosphorylation and O-GlcNAcylation at the N-terminus lead to the stabilization of the helical conformation. PTMs in the interior or the C-terminus were found to disrupt helicity, with the disruption being more pronounced for PTMs in the interior region, in accordance with experimental studies. It was found that phosphorylation-derived destabilization was mainly due to the formation of an intraresidue HN-PO32- electrostatic interaction and interactions between the phosphate group and the side chain of adjacent lysine residues (NH3···PO32-). Hydrophobic and steric clashes were the main causes of destabilization in the case of O-GlcNAcylation. The structural disruptions were found to be more pronounced for PTM at the threonine site when compared to the serine site. The salt-bridge-dependent stability of the α-helix was found to be highly position specific, an i → i + 4 interaction stabilizing the helix, with other placements leading to the destabilization of the helix.
Collapse
Affiliation(s)
- Lata Rani
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| | - Sairam S Mallajosyula
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
4
|
Saha A, Bello D, Fernández-Tejada A. Advances in chemical probing of protein O-GlcNAc glycosylation: structural role and molecular mechanisms. Chem Soc Rev 2021; 50:10451-10485. [PMID: 34338261 PMCID: PMC8451060 DOI: 10.1039/d0cs01275k] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Indexed: 12/11/2022]
Abstract
The addition of O-linked-β-D-N-acetylglucosamine (O-GlcNAc) onto serine and threonine residues of nuclear and cytoplasmic proteins is an abundant, unique post-translational modification governing important biological processes. O-GlcNAc dysregulation underlies several metabolic disorders leading to human diseases, including cancer, neurodegeneration and diabetes. This review provides an extensive summary of the recent progress in probing O-GlcNAcylation using mainly chemical methods, with a special focus on discussing mechanistic insights and the structural role of O-GlcNAc at the molecular level. We highlight key aspects of the O-GlcNAc enzymes, including development of OGT and OGA small-molecule inhibitors, and describe a variety of chemoenzymatic and chemical biology approaches for the study of O-GlcNAcylation. Special emphasis is placed on the power of chemistry in the form of synthetic glycopeptide and glycoprotein tools for investigating the site-specific functional consequences of the modification. Finally, we discuss in detail the conformational effects of O-GlcNAc glycosylation on protein structure and stability, relevant O-GlcNAc-mediated protein interactions and its molecular recognition features by biological receptors. Future research in this field will provide novel, more effective chemical strategies and probes for the molecular interrogation of O-GlcNAcylation, elucidating new mechanisms and functional roles of O-GlcNAc with potential therapeutic applications in human health.
Collapse
Affiliation(s)
- Abhijit Saha
- Chemical Immunology Lab, Centre for Cooperative Research in Biosciences, CIC-bioGUNE, Basque Research and Technology Alliance (BRTA), Derio 48160, Biscay, Spain.
| | - Davide Bello
- Chemical Immunology Lab, Centre for Cooperative Research in Biosciences, CIC-bioGUNE, Basque Research and Technology Alliance (BRTA), Derio 48160, Biscay, Spain.
| | - Alberto Fernández-Tejada
- Chemical Immunology Lab, Centre for Cooperative Research in Biosciences, CIC-bioGUNE, Basque Research and Technology Alliance (BRTA), Derio 48160, Biscay, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
5
|
Yokoi Y, Nishimura SI. Effect of Site-Specific O-Glycosylation on the Structural Behavior of NOTCH1 Receptor Extracellular EGF-like Domains 11 and 10. Chemistry 2020; 26:12363-12372. [PMID: 32632967 DOI: 10.1002/chem.202002652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Indexed: 12/16/2022]
Abstract
Human NOTCH1 receptor contains 36 epidermal growth factor (EGF)-like repeating domains, in which O-glycosylation status of EGF12 domain regulates the interaction with Notch ligands. Our interest is focused on the effect of specific O-glycosylation states on the structural behavior of EGF11 and EGF10, because they appeared to affect molecular mechanism in receptor-ligand interactions by inducing some conformational alterations in these domains and/or the regions connecting two domains. To understand the structural impact of various O-glycosylation patterns on the pivotal EGF-like repeats 10, 11, and 12, we performed chemical synthesis and NMR studies of site-specifically O-glycosylated EGF11 and EGF10. Our strategy enabled us to synthesize four EGF11 and five EGF10 modules. The specific O-glycosylation states affected in vitro folding of EGF10 more than EGF11, while calcium ion had a larger effect on EGF11 folding. Comprehensive NMR studies shed light on the new type "sugar bridges" crosslinking Thr-O-GlcNAc in the consensus sequence C5-X-X-G-X-(T/S)-G-X-X-C6 and an amino acid in the hinge region between the domains, 445Thr-O-GlcNAc-IIe451 in domain 11 and 405Thr-O-GlcNAc-Gln411 in domain 10, respectively.
Collapse
Affiliation(s)
- Yasuhiro Yokoi
- Graduate School of Life Science and Faculty of Advanced Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo, 001-0021, Japan
| | - Shin-Ichiro Nishimura
- Graduate School of Life Science and Faculty of Advanced Life Science, Hokkaido University, N21, W11, Kita-ku, Sapporo, 001-0021, Japan
| |
Collapse
|
6
|
Calabrese C, Écija P, Compañón I, Vallejo-López M, Cimas Á, Parra M, Basterretxea FJ, Santos JI, Jiménez-Barbero J, Lesarri A, Corzana F, Cocinero EJ. Conformational Behavior of d-Lyxose in Gas and Solution Phases by Rotational and NMR Spectroscopies. J Phys Chem Lett 2019; 10:3339-3345. [PMID: 31141365 DOI: 10.1021/acs.jpclett.9b00978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Understanding the conformational preferences of carbohydrates is crucial to explain the interactions with their biological targets and to improve their use as therapeutic agents. We present experimental data resolving the conformational landscape of the monosaccharide d-lyxose, for which quantum mechanical (QM) calculations offer model-dependent results. This study compares the structural preferences in the gas phase, determined by rotational spectroscopy, with those in solution, resolved by nuclear magnetic resonance (NMR) and molecular dynamics (MD) simulations. In contrast to QM calculations, d-lyxose adopts only pyranose forms in the gas phase, with the α-anomer exhibiting both the 4C1 and 1C4 chairs (60:40). The predominantly populated β-anomer shows the 4C1 form exclusively, as determined experimentally by isotopic substitution. In aqueous solution, the pyranose forms are also dominant. However, in contrast to the gas phase, the α-anomer as 1C4 chair is the most populated, and its solvation is more effective than for the β derivative. Markedly, the main conformers found in the gas phase and solution are characterized by the lack of the stabilizing anomeric effect. From a mechanistic perspective, both rotational spectroscopy and solid-state nuclear magnetic resonance (NMR) corroborate that α ↔ β or furanose ↔ pyranose interconversions are prevented in the gas phase. Combining microwave (MW) and NMR results provides a powerful method for unraveling the water role in the conformational preferences of challenging molecules, such as flexible monosaccharides.
Collapse
Affiliation(s)
- Camilla Calabrese
- Departamento de Química Física, Facultad de Ciencia y Tecnología , Universidad del País Vasco (UPV/EHU) , 48080 Bilbao , Spain
- Instituto Biofisika (CSIC, UPV/EHU) , 48080 Bilbao , Spain
| | - Patricia Écija
- Departamento de Química Física, Facultad de Ciencia y Tecnología , Universidad del País Vasco (UPV/EHU) , 48080 Bilbao , Spain
| | - Ismael Compañón
- Departamento de Química, Centro de Investigación en Síntesis Química , Universidad de La Rioja , 26006 Logroño , Spain
| | - Montserrat Vallejo-López
- Departamento de Química Física, Facultad de Ciencia y Tecnología , Universidad del País Vasco (UPV/EHU) , 48080 Bilbao , Spain
| | - Álvaro Cimas
- Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement, LAMBE UMR8587 , Université d'Évry val d'Essonne , 91025 Évry , France
| | - Maider Parra
- Departamento de Química Física, Facultad de Ciencia y Tecnología , Universidad del País Vasco (UPV/EHU) , 48080 Bilbao , Spain
- Instituto Biofisika (CSIC, UPV/EHU) , 48080 Bilbao , Spain
| | - Francisco J Basterretxea
- Departamento de Química Física, Facultad de Ciencia y Tecnología , Universidad del País Vasco (UPV/EHU) , 48080 Bilbao , Spain
| | - José I Santos
- SGIker UPV/EHU , Centro Joxe Mari Korta , Tolosa Hiribidea 72 , 20018 Donostia , Spain
| | - Jesús Jiménez-Barbero
- Departamento de Química Orgánica II, Facultad de Ciencia y Tecnología , Universidad del País Vasco (UPV/EHU) , 48080 Bilbao , Spain
- IKERBASQUE, Basque Foundation for Science , 48009 Bilbao , Spain
- Chemical Glycobiology Laboratory, CIC bioGUNE , Bizkaia Technology Park , Building 800, 48160 Derio , Spain
| | - Alberto Lesarri
- Departamento de Química Física y Química Inorgánica-IU CINQUIMA, Facultad de Ciencias , Universidad de Valladolid , 47011 Valladolid , Spain
| | - Francisco Corzana
- Departamento de Química, Centro de Investigación en Síntesis Química , Universidad de La Rioja , 26006 Logroño , Spain
| | - Emilio J Cocinero
- Departamento de Química Física, Facultad de Ciencia y Tecnología , Universidad del País Vasco (UPV/EHU) , 48080 Bilbao , Spain
- Instituto Biofisika (CSIC, UPV/EHU) , 48080 Bilbao , Spain
| |
Collapse
|
7
|
Compañón I, Guerreiro A, Mangini V, Castro-López J, Escudero-Casao M, Avenoza A, Busto JH, Castillón S, Jiménez-Barbero J, Asensio JL, Jiménez-Osés G, Boutureira O, Peregrina JM, Hurtado-Guerrero R, Fiammengo R, Bernardes GJL, Corzana F. Structure-Based Design of Potent Tumor-Associated Antigens: Modulation of Peptide Presentation by Single-Atom O/S or O/Se Substitutions at the Glycosidic Linkage. J Am Chem Soc 2019; 141:4063-4072. [PMID: 30726084 DOI: 10.1021/jacs.8b13503] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
GalNAc-glycopeptides derived from mucin MUC1 are an important class of tumor-associated antigens. α- O-glycosylation forces the peptide to adopt an extended conformation in solution, which is far from the structure observed in complexes with a model anti-MUC1 antibody. Herein, we propose a new strategy for designing potent antigen mimics based on modulating peptide/carbohydrate interactions by means of O → S/Se replacement at the glycosidic linkage. These minimal chemical modifications bring about two key structural changes to the glycopeptide. They increase the carbohydrate-peptide distance and change the orientation and dynamics of the glycosidic linkage. As a result, the peptide acquires a preorganized and optimal structure suited for antibody binding. Accordingly, these new glycopeptides display improved binding toward a representative anti-MUC1 antibody relative to the native antigens. To prove the potential of these glycopeptides as tumor-associated MUC1 antigen mimics, the derivative bearing the S-glycosidic linkage was conjugated to gold nanoparticles and tested as an immunogenic formulation in mice without any adjuvant, which resulted in a significant humoral immune response. Importantly, the mice antisera recognize cancer cells in biopsies of breast cancer patients with high selectivity. This finding demonstrates that the antibodies elicited against the mimetic antigen indeed recognize the naturally occurring antigen in its physiological context. Clinically, the exploitation of tumor-associated antigen mimics may contribute to the development of cancer vaccines and to the improvement of cancer diagnosis based on anti-MUC1 antibodies. The methodology presented here is of general interest for applications because it may be extended to modulate the affinity of biologically relevant glycopeptides toward their receptors.
Collapse
Affiliation(s)
- Ismael Compañón
- Departamento de Química , Universidad de La Rioja , Centro de Investigación en Síntesis Química , 26006 Logroño , Spain
| | - Ana Guerreiro
- Instituto de Medicina Molecular, Faculdade de Medicina , Universidade de Lisboa , Avenida Professor Egas Moniz , 1649-028 Lisboa , Portugal
| | - Vincenzo Mangini
- Center for Biomolecular Nanotechnologies@UniLe , Istituto Italiano di Tecnologia (IIT) , 73010 Arnesano , Lecce , Italy
| | - Jorge Castro-López
- Institute of Biocomputation and Physics of Complex Systems (BIFI) , University of Zaragoza , BIFI-IQFR (CSIC), Fundación ARAID , 50018 Zaragoza , Spain
| | - Margarita Escudero-Casao
- Departament de Química Analítica i Química Orgànica, Facultat de Química , Universitat Rovira i Virgili , 43007 Tarragona , Spain
| | - Alberto Avenoza
- Departamento de Química , Universidad de La Rioja , Centro de Investigación en Síntesis Química , 26006 Logroño , Spain
| | - Jesús H Busto
- Departamento de Química , Universidad de La Rioja , Centro de Investigación en Síntesis Química , 26006 Logroño , Spain
| | - Sergio Castillón
- Departament de Química Analítica i Química Orgànica, Facultat de Química , Universitat Rovira i Virgili , 43007 Tarragona , Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE , Bizkaia Technology Park , Building 801A , 48170 Derio , Spain.,Ikerbasque , Basque Foundation for Science , Maria Diaz de Haro 13 , 48009 Bilbao , Spain.,Department of Organic Chemistry II, Faculty of Science & Technology , University of the Basque Country , 48940 Leioa , Spain
| | - Juan L Asensio
- Instituto de Química Orgánica General , IQOG-CSIC , 28006 Madrid , Spain
| | - Gonzalo Jiménez-Osés
- Departamento de Química , Universidad de La Rioja , Centro de Investigación en Síntesis Química , 26006 Logroño , Spain.,CIC bioGUNE , Bizkaia Technology Park , Building 801A , 48170 Derio , Spain
| | - Omar Boutureira
- Departament de Química Analítica i Química Orgànica, Facultat de Química , Universitat Rovira i Virgili , 43007 Tarragona , Spain
| | - Jesús M Peregrina
- Departamento de Química , Universidad de La Rioja , Centro de Investigación en Síntesis Química , 26006 Logroño , Spain
| | - Ramón Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI) , University of Zaragoza , BIFI-IQFR (CSIC), Fundación ARAID , 50018 Zaragoza , Spain
| | - Roberto Fiammengo
- Center for Biomolecular Nanotechnologies@UniLe , Istituto Italiano di Tecnologia (IIT) , 73010 Arnesano , Lecce , Italy
| | - Gonçalo J L Bernardes
- Instituto de Medicina Molecular, Faculdade de Medicina , Universidade de Lisboa , Avenida Professor Egas Moniz , 1649-028 Lisboa , Portugal.,Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW Cambridge , U.K
| | - Francisco Corzana
- Departamento de Química , Universidad de La Rioja , Centro de Investigación en Síntesis Química , 26006 Logroño , Spain
| |
Collapse
|
8
|
Bermejo IA, Usabiaga I, Compañón I, Castro-López J, Insausti A, Fernández JA, Avenoza A, Busto JH, Jiménez-Barbero J, Asensio JL, Peregrina JM, Jiménez-Osés G, Hurtado-Guerrero R, Cocinero EJ, Corzana F. Water Sculpts the Distinctive Shapes and Dynamics of the Tumor-Associated Carbohydrate Tn Antigens: Implications for Their Molecular Recognition. J Am Chem Soc 2018; 140:9952-9960. [PMID: 30004703 DOI: 10.1021/jacs.8b04801] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The tumor-associated carbohydrate Tn antigens include two variants, αGalNAc- O-Thr and αGalNAc- O-Ser. In solution, they exhibit dissimilar shapes and dynamics and bind differently to the same protein receptor. Here, we demonstrate experimentally and theoretically that their conformational preferences in the gas phase are highly similar, revealing the essential role of water. We propose that water molecules prompt the rotation around the glycosidic linkage in the threonine derivative, shielding its hydrophobic methyl group and allowing an optimal solvation of the polar region of the antigen. The unusual arrangement of αGalNAc- O-Thr features a water molecule bound into a "pocket" between the sugar and the threonine. This mechanism is supported by trapping, for the first time, such localized water in the crystal structures of an antibody bound to two glycopeptides that comprise fluorinated Tn antigens in their structure. According to several reported X-ray structures, installing oxygenated amino acids in specific regions of the receptor capable of displacing the bridging water molecule to the bulk-solvent may facilitate the molecular recognition of the Tn antigen with threonine. Overall, our data also explain how water fine-tunes the 3D structure features of similar molecules, which in turn are behind their distinct biological activities.
Collapse
Affiliation(s)
- Iris A Bermejo
- Departamento de Química, Centro de Investigación en Síntesis Química , Universidad de La Rioja , 26006 Logroño , Spain
| | - Imanol Usabiaga
- Departamento de Química Física, Facultad de Ciencia y Tecnología , Universidad del País Vasco (UPV-EHU), 48080 Bilbao , Spain
| | - Ismael Compañón
- Departamento de Química, Centro de Investigación en Síntesis Química , Universidad de La Rioja , 26006 Logroño , Spain
| | - Jorge Castro-López
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza , BIFI-IQFR (CSIC), 50018 Zaragoza , Spain
| | - Aran Insausti
- Departamento de Química Física, Facultad de Ciencia y Tecnología , Universidad del País Vasco (UPV-EHU), 48080 Bilbao , Spain.,Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), 48940 Leioa , Spain
| | - José A Fernández
- Departamento de Química Física, Facultad de Ciencia y Tecnología , Universidad del País Vasco (UPV-EHU), 48080 Bilbao , Spain
| | - Alberto Avenoza
- Departamento de Química, Centro de Investigación en Síntesis Química , Universidad de La Rioja , 26006 Logroño , Spain
| | - Jesús H Busto
- Departamento de Química, Centro de Investigación en Síntesis Química , Universidad de La Rioja , 26006 Logroño , Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE , Bizkaia Technology Park, Building 801A , 48170 Derio , Spain.,Ikerbasque , Basque Foundation for Science , Maria Diaz de Haro 13 , 48009 Bilbao , Spain.,Department of Organic Chemistry II, Faculty of Science & Technology , University of the Basque Country , 48940 Leioa , Spain
| | - Juan L Asensio
- Instituto de Química Orgánica General , IQOG-CSIC. 28006 Madrid , Spain
| | - Jesús M Peregrina
- Departamento de Química, Centro de Investigación en Síntesis Química , Universidad de La Rioja , 26006 Logroño , Spain
| | - Gonzalo Jiménez-Osés
- Departamento de Química, Centro de Investigación en Síntesis Química , Universidad de La Rioja , 26006 Logroño , Spain
| | - Ramón Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza , BIFI-IQFR (CSIC), 50018 Zaragoza , Spain.,Fundación ARAID , 50018 Zaragoza , Spain
| | - Emilio J Cocinero
- Departamento de Química Física, Facultad de Ciencia y Tecnología , Universidad del País Vasco (UPV-EHU), 48080 Bilbao , Spain.,Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country (UPV/EHU), 48940 Leioa , Spain
| | - Francisco Corzana
- Departamento de Química, Centro de Investigación en Síntesis Química , Universidad de La Rioja , 26006 Logroño , Spain
| |
Collapse
|
9
|
Rani L, Mallajosyula SS. Phosphorylation versus O-GlcNAcylation: Computational Insights into the Differential Influences of the Two Competitive Post-Translational Modifications. J Phys Chem B 2017; 121:10618-10638. [DOI: 10.1021/acs.jpcb.7b08790] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Lata Rani
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, India - 382355
| | - Sairam S. Mallajosyula
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat, India - 382355
| |
Collapse
|
10
|
Rojas-Ocáriz V, Compañón I, Aydillo C, Castro-Loṕez J, Jiménez-Barbero J, Hurtado-Guerrero R, Avenoza A, Zurbano MM, Peregrina JM, Busto JH, Corzana F. Design of α-S-Neoglycopeptides Derived from MUC1 with a Flexible and Solvent-Exposed Sugar Moiety. J Org Chem 2016; 81:5929-41. [PMID: 27305427 DOI: 10.1021/acs.joc.6b00833] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The use of vaccines based on MUC1 glycopeptides is a promising approach to treat cancer. We present herein several sulfa-Tn antigens incorporated in MUC1 sequences that possess a variable linker between the carbohydrate (GalNAc) and the peptide backbone. The main conformations of these molecules in solution have been evaluated by combining NMR experiments and molecular dynamics simulations. The linker plays a key role in the modulation of the conformation of these compounds at different levels, blocking a direct contact between the sugar moiety and the backbone, promoting a helix-like conformation for the glycosylated residue and favoring the proper presentation of the sugar unit for molecular recognition events. The feasibility of these novel compounds as mimics of MUC1 antigens has been validated by the X-ray diffraction structure of one of these unnatural derivatives complexed to an anti-MUC1 monoclonal antibody. These features, together with potential lack of immune suppression, render these unnatural glycopeptides promising candidates for designing alternative therapeutic vaccines against cancer.
Collapse
Affiliation(s)
- Víctor Rojas-Ocáriz
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja , Madre de Dios 53, 26006 Logroño, Spain
| | - Ismael Compañón
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja , Madre de Dios 53, 26006 Logroño, Spain
| | - Carlos Aydillo
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja , Madre de Dios 53, 26006 Logroño, Spain
| | - Jorge Castro-Loṕez
- BIFI, University of Zaragoza, BIFI-IQFR (CSIC) Joint Unit , Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
| | - Jesús Jiménez-Barbero
- Structural Biology Unit, CIC bioGUNE , Parque Tecnológico de Bizkaia Building 801 A, 48160 Derio, Spain.,IKERBASQUE, Basque Foundation for Science , 48011 Bilbao, Spain.,Department of Chemical and Physical Biology, Centro de Investigaciones Biológicas , CSIC Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ramón Hurtado-Guerrero
- BIFI, University of Zaragoza, BIFI-IQFR (CSIC) Joint Unit , Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain.,Fundación ARAID , 50018 Zaragoza, Spain
| | - Alberto Avenoza
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja , Madre de Dios 53, 26006 Logroño, Spain
| | - María M Zurbano
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja , Madre de Dios 53, 26006 Logroño, Spain
| | - Jesús M Peregrina
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja , Madre de Dios 53, 26006 Logroño, Spain
| | - Jesús H Busto
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja , Madre de Dios 53, 26006 Logroño, Spain
| | - Francisco Corzana
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja , Madre de Dios 53, 26006 Logroño, Spain
| |
Collapse
|
11
|
Rosa M, Marcelo F, Calle LP, Rougeot C, Jiménez-Barbero J, Arsequell G, Valencia G. Influence of polar side chains modifications on the dual enkephalinase inhibitory activity and conformation of human opiorphin, a pain perception related peptide. Bioorg Med Chem Lett 2015; 25:5190-3. [PMID: 26463133 DOI: 10.1016/j.bmcl.2015.09.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 10/22/2022]
Abstract
The dual inhibitory action of the pain related peptide opiorphin (H-Gln-Arg-Phe-Ser-Arg-OH) against neutral endopeptidase (NEP) and aminopeptidase N (AP-N) was further investigated by a SAR study involving minor modifications on the polar side chains of Arg residues and glycosylation with monosaccharides at Ser. None of them exerted dual or individual inhibitory potency superior than opiorphin. However, the correlations deduced offer further proof for the key role of these residues upon the binding and bioactive conformational stabilization of opiorphin. NMR conformational studies on the glycopeptides suggest that they are still very flexible compounds that may attain their respective bioactive conformations.
Collapse
Affiliation(s)
- Mònica Rosa
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), E-08034 Barcelona, Spain
| | - Filipa Marcelo
- UCIBIO, REQUIMTE Faculdade Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Luis P Calle
- CIC bioGUNE, Bizkaia Technological Park, E-48160 Derio, Spain
| | - Catherine Rougeot
- Institut Pasteur-Unité de Biochimie Structurale et Cellulaire/URA2185-CNRS, Paris Cedex 15 75724, France
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Bizkaia Technological Park, E-48160 Derio, Spain; Ikerbasque, Basque Foundation for Science, E-48013 Bilbao, Spain
| | - Gemma Arsequell
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), E-08034 Barcelona, Spain
| | - Gregorio Valencia
- Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), E-08034 Barcelona, Spain
| |
Collapse
|
12
|
Mezei PD, Csonka GI. Unified picture for the conformation and stabilization of the O-glycosidic linkage in glycopeptide model structures. Struct Chem 2015. [DOI: 10.1007/s11224-015-0666-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Elbaum MB, Zondlo NJ. OGlcNAcylation and phosphorylation have similar structural effects in α-helices: post-translational modifications as inducible start and stop signals in α-helices, with greater structural effects on threonine modification. Biochemistry 2014; 53:2242-60. [PMID: 24641765 PMCID: PMC4004263 DOI: 10.1021/bi500117c] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
OGlcNAcylation
and phosphorylation are the major competing intracellular
post-translational modifications of serine and threonine residues.
The structural effects of both post-translational modifications on
serine and threonine were examined within Baldwin model α-helical
peptides (Ac-AKAAAAKAAAAKAAGY-NH2 or Ac-YGAKAAAAKAAAAKAA-NH2). At the N-terminus of an α-helix, both phosphorylation
and OGlcNAcylation stabilized the α-helix relative to the free
hydroxyls, with a larger induced structure for phosphorylation than
for OGlcNAcylation, for the dianionic phosphate than for the monoanionic
phosphate, and for modifications on threonine than for modifications
on serine. Both phosphoserine and phosphothreonine resulted in peptides
more α-helical than alanine at the N-terminus, with dianionic
phosphothreonine the most α-helix-stabilizing residue here.
In contrast, in the interior of the α-helix, both post-translational
modifications were destabilizing with respect to the α-helix,
with the greatest destabilization seen for threonine OGlcNAcylation
at residue 5 and threonine phosphorylation at residue 10, with peptides
containing either post-translational modification existing as random
coils. At the C-terminus, both OGlcNAcylation and phosphorylation
were destabilizing with respect to the α-helix, though the induced
structural changes were less than in the interior of the α-helix.
In general, the structural effects of modifications on threonine were
greater than the effects on serine, because of both the lower α-helical
propensity of Thr and the more defined induced structures upon modification
of threonine than serine, suggesting threonine residues are particularly
important loci for structural effects of post-translational modifications.
The effects of serine and threonine post-translational modifications
are analogous to the effects of proline on α-helices, with the
effects of phosphothreonine being greater than those of proline throughout
the α-helix. These results provide a basis for understanding
the context-dependent structural effects of these competing protein
post-translational modifications.
Collapse
Affiliation(s)
- Michael B Elbaum
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | | |
Collapse
|
14
|
Brister M, Pandey AK, Bielska AA, Zondlo NJ. OGlcNAcylation and phosphorylation have opposing structural effects in tau: phosphothreonine induces particular conformational order. J Am Chem Soc 2014; 136:3803-16. [PMID: 24559475 PMCID: PMC4004249 DOI: 10.1021/ja407156m] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Indexed: 01/12/2023]
Abstract
Phosphorylation and OGlcNAcylation are dynamic intracellular protein post-translational modifications that frequently are alternatively observed on the same serine and threonine residues. Phosphorylation and OGlcNAcylation commonly occur in natively disordered regions of proteins, and often have opposing functional effects. In the microtubule-associated protein tau, hyperphosphorylation is associated with protein misfolding and aggregation as the neurofibrillary tangles of Alzheimer's disease, whereas OGlcNAcylation stabilizes the soluble form of tau. A series of peptides derived from the proline-rich domain (residues 174-251) of tau was synthesized, with free Ser/Thr hydroxyls, phosphorylated Ser/Thr (pSer/pThr), OGlcNAcylated Ser/Thr, and diethylphosphorylated Ser/Thr. Phosphorylation and OGlcNAcylation were found by CD and NMR to have opposing structural effects on polyproline helix (PPII) formation, with phosphorylation favoring PPII, OGlcNAcylation opposing PPII, and the free hydroxyls intermediate in structure, and with phosphorylation structural effects greater than OGlcNAcylation. For tau196-209, phosphorylation and OGlcNAcylation had similar structural effects, opposing a nascent α-helix. Phosphomimic Glu exhibited PPII-favoring structural effects. Structural changes due to Thr phosphorylation were greater than those of Ser phosphorylation or Glu, with particular conformational restriction as the dianion, with mean (3)JαN = 3.5 Hz (pThr) versus 5.4 Hz (pSer), compared to 7.2, 6.8, and 6.2 Hz for Thr, Ser, and Glu, respectively, values that correlate with the backbone torsion angle ϕ. Dianionic phosphothreonine induced strong phosphothreonine amide protection and downfield amide chemical shifts (δmean = 9.63 ppm), consistent with formation of a stable phosphate-amide hydrogen bond. These data suggest potentially greater structural importance of threonine phosphorylation than serine phosphorylation due to larger induced structural effects.
Collapse
Affiliation(s)
| | | | - Agata A. Bielska
- Department of Chemistry and
Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Neal J. Zondlo
- Department of Chemistry and
Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
15
|
Yuzwa SA, Cheung AH, Okon M, McIntosh LP, Vocadlo DJ. O-GlcNAc modification of tau directly inhibits its aggregation without perturbing the conformational properties of tau monomers. J Mol Biol 2014; 426:1736-52. [PMID: 24444746 DOI: 10.1016/j.jmb.2014.01.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/11/2013] [Accepted: 01/14/2014] [Indexed: 11/29/2022]
Abstract
The aggregation of the microtubule-associated protein tau into paired helical filaments to form neurofibrillary tangles constitutes one of the pathological hallmarks of Alzheimer's disease. Tau is post-translationally modified by the addition of N-acetyl-D-glucosamine O-linked to several serine and threonine residues (O-GlcNAc). Previously, increased O-GlcNAcylation of tau has been shown to block the accumulation of tau aggregates within a tauopathy mouse model. Here we show that O-GlcNAc modification of full-length human tau impairs the rate and extent of its heparin-induced aggregation without perturbing its activity toward microtubule polymerization. O-GlcNAcylation, however, does not impact the "global-fold" of tau as measured by a Förster resonance energy transfer assay. Similarly, nuclear magnetic resonance studies demonstrated that O-GlcNAcylation only minimally perturbs the local structural and dynamic features of a tau fragment (residues 353-408) spanning the last microtubule binding repeat to the major GlcNAc-acceptor Ser400. These data indicate that the inhibitory effects of O-GlcNAc on tau aggregation may result from enhanced monomer solubility or the destabilization of fibrils or soluble aggregates, rather than by altering the conformational properties of the monomeric protein. This work further underscores the potential of targeting the O-GlcNAc pathway for potential Alzheimer's disease therapeutics.
Collapse
Affiliation(s)
- Scott A Yuzwa
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6; Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
| | - Adrienne H Cheung
- Department of Biochemistry and Molecular Biology, Department of Chemistry, and the Michael Smith Laboratories, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | - Mark Okon
- Department of Biochemistry and Molecular Biology, Department of Chemistry, and the Michael Smith Laboratories, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | - Lawrence P McIntosh
- Department of Biochemistry and Molecular Biology, Department of Chemistry, and the Michael Smith Laboratories, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | - David J Vocadlo
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6; Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6.
| |
Collapse
|
16
|
Abstract
The glycosylation of proteins, specifically installation of O-GlcNAc on Ser/Thr residues, is a dynamic control element for transcription repression, protein degradation, and nutrient sensing. To provide homogeneous and stable structures with this motif, the synthesis of a C-linked mimic, C-GlcNAc Ser, has been prepared from the C-Glc Ser by a double inversion strategy using azide to insert the C-2 nitrogen functionality. The C-Glc Ser was available by a ring-closing metathesis and hydroalkoxylation route.
Collapse
Affiliation(s)
- Ernest G Nolen
- Department of Chemistry, Colgate University, Hamilton, New York 13346, USA.
| | | | | |
Collapse
|
17
|
Rodríguez F, Somovilla VJ, Corzana F, Busto JH, Avenoza A, Peregrina PJM. Cyclohexane Ring as a Tool to Select the Presentation of the Carbohydrate Moiety in Glycosyl Amino Acids. Chemistry 2012; 18:5096-104. [DOI: 10.1002/chem.201103089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 01/19/2012] [Indexed: 11/12/2022]
Affiliation(s)
- Fernando Rodríguez
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, UA‐CSI, Madre de Dios, 51, 26006 Logroño (Spain), Fax: (+34) 941‐299‐621
| | - Víctor J. Somovilla
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, UA‐CSI, Madre de Dios, 51, 26006 Logroño (Spain), Fax: (+34) 941‐299‐621
| | - Francisco Corzana
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, UA‐CSI, Madre de Dios, 51, 26006 Logroño (Spain), Fax: (+34) 941‐299‐621
| | - Jesús H. Busto
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, UA‐CSI, Madre de Dios, 51, 26006 Logroño (Spain), Fax: (+34) 941‐299‐621
| | - Alberto Avenoza
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, UA‐CSI, Madre de Dios, 51, 26006 Logroño (Spain), Fax: (+34) 941‐299‐621
| | - Prof Jesús M. Peregrina
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, UA‐CSI, Madre de Dios, 51, 26006 Logroño (Spain), Fax: (+34) 941‐299‐621
| |
Collapse
|
18
|
D’Amelio N, Coslovi A, Rossi M, Uggeri F, Paoletti S. Understanding the structural specificity of Tn antigen for its receptor: an NMR solution study. Carbohydr Res 2012; 351:114-20. [DOI: 10.1016/j.carres.2012.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 01/12/2012] [Accepted: 01/18/2012] [Indexed: 11/28/2022]
|
19
|
Guvench O, Mallajosyula SS, Raman EP, Hatcher E, Vanommeslaeghe K, Foster TJ, Jamison FW, MacKerell AD. CHARMM additive all-atom force field for carbohydrate derivatives and its utility in polysaccharide and carbohydrate-protein modeling. J Chem Theory Comput 2011; 7:3162-3180. [PMID: 22125473 PMCID: PMC3224046 DOI: 10.1021/ct200328p] [Citation(s) in RCA: 483] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Monosaccharide derivatives such as xylose, fucose, N-acetylglucosamine (GlcNAc), N-acetylgalactosamine (GlaNAc), glucuronic acid, iduronic acid, and N-acetylneuraminic acid (Neu5Ac) are important components of eukaryotic glycans. The present work details development of force-field parameters for these monosaccharides and their covalent connections to proteins via O-linkages to serine or threonine sidechains and via N-linkages to asparagine sidechains. The force field development protocol was designed to explicitly yield parameters that are compatible with the existing CHARMM additive force field for proteins, nucleic acids, lipids, carbohydrates, and small molecules. Therefore, when combined with previously developed parameters for pyranose and furanose monosaccharides, for glycosidic linkages between monosaccharides, and for proteins, the present set of parameters enables the molecular simulation of a wide variety of biologically-important molecules such as complex carbohydrates and glycoproteins. Parametrization included fitting to quantum mechanical (QM) geometries and conformational energies of model compounds, as well as to QM pair interaction energies and distances of model compounds with water. Parameters were validated in the context of crystals of relevant monosaccharides, as well NMR and/or x-ray crystallographic data on larger systems including oligomeric hyaluronan, sialyl Lewis X, O- and N-linked glycopeptides, and a lectin:sucrose complex. As the validated parameters are an extension of the CHARMM all-atom additive biomolecular force field, they further broaden the types of heterogeneous systems accessible with a consistently-developed force-field model.
Collapse
Affiliation(s)
- Olgun Guvench
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy, Portland, Maine 04103
| | - Sairam S. Mallajosyula
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn St., HSF II-629, Baltimore, MD 21201
| | - E. Prabhu Raman
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn St., HSF II-629, Baltimore, MD 21201
| | - Elizabeth Hatcher
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn St., HSF II-629, Baltimore, MD 21201
| | - Kenno Vanommeslaeghe
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn St., HSF II-629, Baltimore, MD 21201
| | - Theresa J. Foster
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy, Portland, Maine 04103
| | - Francis W. Jamison
- Department of Pharmaceutical Sciences, University of New England College of Pharmacy, Portland, Maine 04103
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn St., HSF II-629, Baltimore, MD 21201
| |
Collapse
|
20
|
Mallajosyula SS, MacKerell AD. Influence of solvent and intramolecular hydrogen bonding on the conformational properties of o-linked glycopeptides. J Phys Chem B 2011; 115:11215-29. [PMID: 21823626 PMCID: PMC3179525 DOI: 10.1021/jp203695t] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A detailed investigation of the conformational properties of all the biologically relevant O-glycosidic linkages using the Hamiltonian replica exchange (HREX) simulation methodology and the recently developed CHARMM carbohydrate force field parameters is presented. Fourteen biologically relevant O-linkages between the five sugars N-acetylgalactosamine (GalNAc), N-acetylglucosamine (GlcNAc), D-glucose (Glc), D-mannose (Man), and L-fucose (Fuc) and the amino acids serine and threonine were studied. The force field was tested by comparing the simulation results of the model glycopeptides to various NMR (3)J coupling constants, NOE distances, and data from molecular dynamics with time-averaged restraints (tar-MD). The results show the force field to be in overall agreement with experimental and previous tar-MD simulations, although some small limitations are identified. An in-depth hydrogen bond and bridging water analysis revealed an interplay of hydrogen bonding and bridge water interactions influencing the geometry of the underlying peptide backbone, with the O-linkages favoring extended β-sheet and polyproline type II (PPII) conformations over the compact α(R)-helical conformation. The newly developed parameters were also able to identify hydrogen bonding and water mediated interactions between O-linked sugars and proteins. These results indicate that the newly developed parameters in tandem with HREX conformational sampling provide the means to study glycoproteins in the absence of targeted NMR restraint data.
Collapse
Affiliation(s)
- Sairam S. Mallajosyula
- Department of Pharmaceutical Sciences, 20 Penn Street HSF II, University of Maryland, Baltimore, Maryland 21201
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, 20 Penn Street HSF II, University of Maryland, Baltimore, Maryland 21201
| |
Collapse
|
21
|
Arsequell G, Rosa M, Mayato C, Dorta RL, Gonzalez-Nunez V, Barreto-Valer K, Marcelo F, Calle LP, Vázquez JT, Rodríguez RE, Jiménez-Barbero J, Valencia G. Synthesis, biological evaluation and structural characterization of novel glycopeptide analogues of nociceptin N/OFQ. Org Biomol Chem 2011; 9:6133-42. [PMID: 21773621 DOI: 10.1039/c1ob05197k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
To examine if the biological activity of the N/OFQ peptide, which is the native ligand of the pain-related and viable drug target NOP receptor, could be modulated by glycosylation and if such effects could be conformationally related, we have synthesized three N/OFQ glycopeptide analogues, namely: [Thr(5)-O-α-D-GalNAc-N/OFQ] (glycopeptide 1), [Ser(10)-O-α-D-GalNAc]-N/OFQ (glycopeptide 2) and [Ser(10)-O-β-D-GlcNAc]-N/OFQ] (glycopeptide 3). They were tested for biological activity in competition binding assays using the zebrafish animal model in which glycopeptide 2 exhibited a slightly improved binding affinity, whereas glycopeptide 1 showed a remarkably reduced binding affinity compared to the parent compound and glycopeptide 3. The structural analysis of these glycopeptides and the parent N/OFQ peptide by NMR and circular dichroism indicated that their aqueous solutions are mainly populated by random coil conformers. However, in membrane mimic environments a certain proportion of the molecules of all these peptides exist as α-helix structures. Interestingly, under these experimental conditions, glycopeptide 1 (glycosylated at Thr-5) exhibited a population of folded hairpin-like geometries. From these facts it is tempting to speculate that nociceptin analogues showing linear helical structures are more complementary and thus interact more efficiently with the native NOP receptor than folded structures, since glycopeptide 1 showed a significantly reduced binding affinity for the NOP receptor.
Collapse
Affiliation(s)
- Gemma Arsequell
- Instituto de Química Avanzada de Cataluña (IQAC-CSIC), Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Corzana F, Busto JH, Marcelo F, García de Luis M, Asensio JL, Martín-Santamaría S, Sáenz Y, Torres C, Jiménez-Barbero J, Avenoza A, Peregrina JM. Rational design of a Tn antigen mimic. Chem Commun (Camb) 2011; 47:5319-21. [DOI: 10.1039/c1cc10192g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Corzana F, Fernández-Tejada A, Busto JH, Joshi G, Davis AP, Jiménez-Barbero J, Avenoza A, Peregrina JM. Molecular Recognition of β-O-GlcNAc Glycopeptides by a Lectin-Like Receptor: Binding Modulation by the Underlying Ser or Thr Amino Acids. Chembiochem 2010; 12:110-7. [DOI: 10.1002/cbic.201000526] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Frank M, Schloissnig S. Bioinformatics and molecular modeling in glycobiology. Cell Mol Life Sci 2010; 67:2749-72. [PMID: 20364395 PMCID: PMC2912727 DOI: 10.1007/s00018-010-0352-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 03/08/2010] [Accepted: 03/11/2010] [Indexed: 12/11/2022]
Abstract
The field of glycobiology is concerned with the study of the structure, properties, and biological functions of the family of biomolecules called carbohydrates. Bioinformatics for glycobiology is a particularly challenging field, because carbohydrates exhibit a high structural diversity and their chains are often branched. Significant improvements in experimental analytical methods over recent years have led to a tremendous increase in the amount of carbohydrate structure data generated. Consequently, the availability of databases and tools to store, retrieve and analyze these data in an efficient way is of fundamental importance to progress in glycobiology. In this review, the various graphical representations and sequence formats of carbohydrates are introduced, and an overview of newly developed databases, the latest developments in sequence alignment and data mining, and tools to support experimental glycan analysis are presented. Finally, the field of structural glycoinformatics and molecular modeling of carbohydrates, glycoproteins, and protein-carbohydrate interaction are reviewed.
Collapse
Affiliation(s)
- Martin Frank
- Molecular Structure Analysis Core Facility-W160, Deutsches Krebsforschungszentrum (German Cancer Research Centre), 69120 Heidelberg, Germany.
| | | |
Collapse
|
25
|
Corzana F, Busto JH, García de Luis M, Fernández-Tejada A, Rodríguez F, Jiménez-Barbero J, Avenoza A, Peregrina JM. Dynamics and Hydration Properties of Small Antifreeze-Like Glycopeptides Containing Non-Natural Amino Acids. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000375] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Fernández-Tejada A, Corzana F, Busto JH, Avenoza A, Peregrina JM. Conformational effects of the non-natural alpha-methylserine on small peptides and glycopeptides. J Org Chem 2010; 74:9305-13. [PMID: 19924838 DOI: 10.1021/jo901988w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis and the conformational analysis in aqueous solution of a peptide and a glycopeptide containing the sequence threonine-alanine-alanine (Thr-Ala-Ala) are reported. Furthermore, the threonine residue has been replaced by the quaternary amino acid alpha-methylserine (MeSer) and their corresponding non-natural peptide and glycopeptide are also studied. The conformational analysis in aqueous solution combines NOEs and coupling constants data with Molecular Dynamics (MD) simulations with time-averaged restraints. The study reveals that the beta-O-glycosylation produces a remarkable and completely different effect on the backbone of the peptide derived from Thr and MeSer. In the former, the beta-O-glycosylation is responsible for the experimentally observed shift from extended conformations (peptide) to folded ones (glycopeptide). In contrast, the beta-O-glycosylation of the MeSer-containing peptide, which clearly shows two main conformations in aqueous solution [extended ones (70%) and beta-turn (30%)], causes a high degree of flexibility for the backbone.
Collapse
Affiliation(s)
- Alberto Fernández-Tejada
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Sintesis Química, Grupo de Sintesis Química de La Rioja, UA-CSIC, 26006 Logroño, Spain
| | | | | | | | | |
Collapse
|
27
|
Cocinero E, Stanca-Kaposta E, Dethlefsen M, Liu B, Gamblin D, Davis B, Simons J. Hydration of Sugars in the Gas Phase: Regioselectivity and Conformational Choice inN-Acetyl Glucosamine and Glucose. Chemistry 2009; 15:13427-34. [DOI: 10.1002/chem.200901830] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Katalyse: S. Bellemin-Laponnaz ausgezeichnet / NMR: Preis für J. Jiménez-Barbero / Physikalische Chemie: F. Caruso gewählt. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200904822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Catalysis: S. Bellemin-Laponnaz Awarded / NMR: Prize for J. Jiménez-Barbero / Physical Chemistry: F. Caruso Elected. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/anie.200904822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|