1
|
Pramanick PK, Zhao S, Ji HT, Chen X, Yang G. Pd(II)-Catalyzed Asymmetric [2+2] Annulation for the Construction of Chiral Benzocyclobutenes. Angew Chem Int Ed Engl 2025; 64:e202415927. [PMID: 39485640 DOI: 10.1002/anie.202415927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/03/2024]
Abstract
Asymmetric de novo synthesis of benzocyclobutenes (BCBs) via catalytic intermolecular reaction is highly desired for efficient access to this important class of compounds, yet such a strategy remains unmet challenge. Here, we report a Pd/Pyrox-catalyzed asymmetric [2+2] annulation between arylboronic acids and functionalized alkenes, providing an unprecedented efficient protocol to access various enantio-enriched BCBs in a modular and versatile manner under mild conditions. A broad substrate scope with excellent enantioselectivity has been achieved under the current protocol. The isolation and characterization of the key chiral palladacycle intermediate, together with DFT calculations, provides strong evidence for the catalytic pathway including an enantiodetermining arylpalladation step.
Collapse
Affiliation(s)
- Pranab K Pramanick
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shen Zhao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hao-Tian Ji
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiangyang Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Guoqiang Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
2
|
Ding B, Xue Q, Wei H, Chen J, Liu ZS, Cheng HG, Cong H, Tang J, Zhou Q. Enantioconvergent synthesis of chiral fluorenols from racemic secondary alcohols via Pd(ii)/chiral norbornene cooperative catalysis. Chem Sci 2024; 15:7975-7981. [PMID: 38817591 PMCID: PMC11134410 DOI: 10.1039/d4sc01004c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/18/2024] [Indexed: 06/01/2024] Open
Abstract
An efficient protocol for the asymmetric synthesis of fluorenols has been developed through an enantioconvergent process enabled by Pd(ii)/chiral norbornene cooperative catalysis. This approach allows facile access to diverse functionalized chiral fluorenols with constantly excellent enantioselectivities, applying readily available racemic secondary ortho-bromobenzyl alcohols and aryl iodides as the starting materials.
Collapse
Affiliation(s)
- Bo Ding
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Qilin Xue
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Han Wei
- The Institute for Advanced Studies, Wuhan University Wuhan 430072 China
| | - Jiangwei Chen
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Ze-Shui Liu
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Hong-Gang Cheng
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Hengjiang Cong
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Jianting Tang
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, School of Environmental and Chemical Engineering, Chongqing Three Gorges University Chongqing 404100 China
| | - Qianghui Zhou
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
- The Institute for Advanced Studies, Wuhan University Wuhan 430072 China
| |
Collapse
|
3
|
Sukowski V, van Borselen M, Mathew S, de Bruin B, Fernández-Ibáñez MÁ. meta-C-H Arylation of Aniline Derivatives via Palladium/ S,O-Ligand/Norbornene Cooperative Catalysis. Angew Chem Int Ed Engl 2023:e202317741. [PMID: 38079090 DOI: 10.1002/anie.202317741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Aromatic amines are ubiquitous moieties in organic molecules and their direct functionalization is of great interest in many research areas due to their prevalence in pharmaceuticals and organic electronics. While several synthetic tools exist for the ortho- and para-functionalization of anilines, the functionalization of the less reactive meta-position is not easy to achieve with current methods. To date, the meta-C-H arylation of aniline derivatives has been restricted to either the use of directing groups & templates, or their transformation into anilides & quaternary anilinium salts. Herein, we report the first general and efficient meta-C-H-arylation of non-directed aniline derivatives via cooperative catalysis with a palladium-S,O-ligand-norbornene system. The reaction proceeds under mild conditions with a wide range of aniline derivatives and aryl iodides, while being operationally simple and scalable. Our preliminary mechanistic investigation-including the isolation of several palladium complexes and deuterium experiments-reveal useful insights into the substituent-effects of both the aniline-substrate and the norbornene-mediator during the meta-C-H activation step.
Collapse
Affiliation(s)
- Verena Sukowski
- Van't Hoff Institute for Molecular Sciences, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Manuela van Borselen
- Van't Hoff Institute for Molecular Sciences, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Simon Mathew
- Van't Hoff Institute for Molecular Sciences, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Bas de Bruin
- Van't Hoff Institute for Molecular Sciences, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | | |
Collapse
|
4
|
Li W, Yu Y, Zhang X, Zhang C, Chen M, Li T. NBE-Controlled Palladium-Catalyzed Intermolecular Selective C-H Silylation of Boronic Acids. J Org Chem 2023; 88:14659-14669. [PMID: 37787482 DOI: 10.1021/acs.joc.3c01655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
An efficient palladium-catalyzed intermolecular selective C-H silylation of boronic acids is described. The combination of palladium catalyst with copper oxidant enables ortho-selective C-H silylation by employing hexamethyldisilane as the trimethylsilyl source, which relies on the control of NBE derivatives as a switch, thus providing straightforward access to divergent organosilicon compounds.
Collapse
Affiliation(s)
- Wenguang Li
- Drug Synthesis Engineering Technology Research Center of Henan Province for Photoelectric Green Catalysis, Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan 473061, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, Henan Tianguan Enterprise Group Company Limited, Nanyang, Henan 473000, China
| | - Yongqi Yu
- Drug Synthesis Engineering Technology Research Center of Henan Province for Photoelectric Green Catalysis, Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan 473061, China
| | - Xu Zhang
- Drug Synthesis Engineering Technology Research Center of Henan Province for Photoelectric Green Catalysis, Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan 473061, China
| | - Chunyan Zhang
- Drug Synthesis Engineering Technology Research Center of Henan Province for Photoelectric Green Catalysis, Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan 473061, China
| | - Ming Chen
- Drug Synthesis Engineering Technology Research Center of Henan Province for Photoelectric Green Catalysis, Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan 473061, China
| | - Ting Li
- Drug Synthesis Engineering Technology Research Center of Henan Province for Photoelectric Green Catalysis, Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan 473061, China
| |
Collapse
|
5
|
Lutz MDR, Zhong H, Trapp N, Morandi B. Synthesis and Reversible H
2
Activation by Coordinatively Unsaturated Rhodium NHC Complexes. Helv Chim Acta 2023. [DOI: 10.1002/hlca.202200199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Marius D. R. Lutz
- Laboratorium für Organische Chemie ETH Zürich CH-8093 Zürich Switzerland
| | - Hongyu Zhong
- Laboratorium für Organische Chemie ETH Zürich CH-8093 Zürich Switzerland
| | - Nils Trapp
- Laboratorium für Organische Chemie ETH Zürich CH-8093 Zürich Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie ETH Zürich CH-8093 Zürich Switzerland
| |
Collapse
|
6
|
Cheng HG, Jia S, Zhou Q. Benzo-Fused-Ring Toolbox Based on Palladium/Norbornene Cooperative Catalysis: Methodology Development and Applications in Natural Product Synthesis. Acc Chem Res 2023; 56:573-591. [PMID: 36716326 DOI: 10.1021/acs.accounts.2c00781] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
ConspectusBenzo-fused skeletons are ubiquitous in agrochemicals, medicines, natural products, catalysts, and other organic function materials. The assembly of these skeletons in an efficient manner is an actively explored field in organic synthesis. Palladium/norbornene (Pd/NBE) cooperative catalysis is a powerful tool for the expeditious assembly of polysubstituted arenes through bis-functionalization of the ortho and ipso positions of aryl iodides in one operation. Owing to the efforts of Lautens, Catellani, and others, an array of Pd/NBE-promoted annulations for the syntheses of diversified benzo-fused rings have been developed. However, these methods have not been broadly applied in total synthesis yet.Our group is interested in efficient and practical total synthesis of biologically active molecules. In the past 7 years, we have been devoted to the development of new annulation strategies for the assembly of common benzo-fused skeletons through Pd/NBE-promoted reactions of aryl iodides with novel bifunctional reagents. In this Account, we summarize our laboratory's systematic efforts in this direction. First, readily available epoxides and aziridines were exploited as versatile bifunctional alkylating reagents, which enables quick assembly of a series of valuable benzo-fused heterocycles, including isochromans, dihydrobenzofurans, 1,3-cis-tetrahydroisoquinolines (THIQs), 1,3-trans-THIQs, etc. Second, a convergent access to 5-7-membered benzo-fused carbocycles (including indanes and tetrahydronaphthalenes) was developed by Pd/NBE-promoted annulation of aryl iodides with simple olefinic alcohol-containing alkylating reagents. Third, a Pd/NBE-promoted annulation between aryl iodides and cyclohexanone-containing amination reagents was developed for the construction of benzo-fused N-containing bridged scaffolds. Thus, we have established a practical and versatile toolbox for the quick assembly of diversified benzo-fused skeletons. These new annulation reactions are of high chemo-, regio-, and stereoselectivities with good step and atom economy. Moreover, they are able to rapidly increase molecular complexity from simple building blocks. Finally, their synthetic value has been demonstrated by immediate adoption in several efficient total syntheses of medicines and complex natural products. Compared to conventional synthetic logics, the Pd/NBE-promoted annulation toolbox allows the development of highly convergent strategies, which significantly improves the overall synthetic efficiency.We believe the results presented in this Account will have significant implications beyond our research. It can be envisaged that new Pd/NBE-promoted annulations as well as new applications in complex total synthesis will be revealed in the near future.
Collapse
Affiliation(s)
- Hong-Gang Cheng
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Shihu Jia
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| | - Qianghui Zhou
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
7
|
Zhang BS, Zhao SY, Li SX, Jia WY, Yang YX, Wang YM, Gou XY, Liang YM, Wang XC, Quan ZJ. Synthesis of C4-Aminated Carbazoles and Their Derivatives via Pd/NBE Chemistry. J Org Chem 2023; 88:1786-1795. [PMID: 36657999 DOI: 10.1021/acs.joc.2c02988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Carbazole, as one of the most important organic frameworks, has been used in optoelectronic materials and biochemistry. However, the synthesis of C4-substituted carbazole has always been an unsolved problem. This report describes the one-step synthesis of C4-aminated carbazoles and their derivatives through the series reaction of C-H amination and arylation. The substrate scope is wide. C4-Amino carbazoles substituted by C2, C6, C7, and C8 methyl groups, especially carbazole derivatives of fused rings, pyridine, and dibenzofuran, can be synthesized.
Collapse
Affiliation(s)
- Bo-Sheng Zhang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Sheng-Yan Zhao
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Shun-Xi Li
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Wan-Yuan Jia
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yu-Xi Yang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yi-Ming Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xue-Ya Gou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xi-Cun Wang
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Zheng-Jun Quan
- Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
8
|
Shi Y, Ji CL, Liu C. Palladium-Catalyzed Difunctionalization of Norbornenes via Arylation and Alkynylation. J Org Chem 2023; 88:261-271. [PMID: 36520655 DOI: 10.1021/acs.joc.2c02295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report the first general and practical method for the addition of aryl halides and alkynes to norbornenes with palladium catalysis. Norbornenes have been used as the unsaturated acceptors of aryl and alkynyl groups to construct saturated bridged C-C bonds. The combination of Pd(OAc)2/PCy3HBF4 has been identified as the optimal system promoting difunctionalization of norbornenes via the C-X/C-H bond cleavage and highly selective C(sp3)-C(sp2)/C(sp3)-C(sp) bond formation. Broad substrate scope and excellent functional group tolerance have been achieved to show the high efficiency of this approach. Mechanism studies based on experiments and DFT have been performed to gain insights into the catalytic mechanism.
Collapse
Affiliation(s)
- Yijun Shi
- Shandong Lunan Coal Chemical Research Institute of Engineering and Technology, Zaozhuang University, 1 Bei'an Road, Zaozhuang, Shandong277160, China
| | - Chong-Lei Ji
- Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou310027, China
| | - Chengwei Liu
- School of Chemical Engineering and Technology, Yantai Nanshan University, Longkou, Yantai265713, China.,Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai200444, China
| |
Collapse
|
9
|
Sukowski V, van Borselen M, Mathew S, Fernández‐Ibáñez MÁ. S,O-Ligand Promoted meta-C-H Arylation of Anisole Derivatives via Palladium/Norbornene Catalysis. Angew Chem Int Ed Engl 2022; 61:e202201750. [PMID: 35639463 PMCID: PMC9401001 DOI: 10.1002/anie.202201750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 11/07/2022]
Abstract
Reversing the conventional site-selectivity of C-H activation processes provides new retrosynthetic disconnections to otherwise unreactive bonds. Here, we report a new catalytic system based on palladium/norbornene and an S,O-ligand for the meta-C-H arylation of aryl ethers that significantly outperforms previously reported systems. We demonstrate the unique ability of this system to employ alkoxyarene substrates bearing electron donating and withdrawing substituents. Additionally, ortho-substituted aryl ethers are well tolerated, overcoming the "ortho constraint", which is the necessity to have a meta-substituent on the alkoxyarene to achieve high reaction efficiency, by enlisting novel norbornene mediators. Remarkably, for the first time the monoarylation of alkoxyarenes is achieved efficiently enabling the subsequent introduction of a second, different aryl coupling partner to rapidly furnish unsymmetrical terphenyls. Further insight into the reaction mechanism was achieved by isolation and characterization of some Pd-complexes-before and after meta C-H activation-prior to evaluation of their respective catalytic activities.
Collapse
Affiliation(s)
- Verena Sukowski
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Manuela van Borselen
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Simon Mathew
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - M. Ángeles Fernández‐Ibáñez
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
10
|
Sukowski V, van Borselen M, Mathew S, Fernández‐Ibáñez MÁ. S,O‐Ligand Promoted
meta
‐C−H Arylation of Anisole Derivatives via Palladium/Norbornene Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Verena Sukowski
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Manuela van Borselen
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Simon Mathew
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - M. Ángeles Fernández‐Ibáñez
- Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
11
|
Fujii T, Gallarati S, Corminboeuf C, Wang Q, Zhu J. Modular Synthesis of Benzocyclobutenes via Pd(II)-Catalyzed Oxidative [2+2] Annulation of Arylboronic Acids with Alkenes. J Am Chem Soc 2022; 144:8920-8926. [PMID: 35561421 DOI: 10.1021/jacs.2c03565] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Benzocyclobutenes (BCBs) are highly valuable compounds in organic synthesis, medicinal chemistry, and materials science. However, catalytic modular synthesis of functionalized BCBs from easily accessible starting materials remains limited. We report herein an efficient synthesis of diversely functionalized BCBs by a Pd(II)-catalyzed formal [2+2] annulation between arylboronic acids and alkenes in the presence of N-fluorobenzenesulfonimide (NFSI). An intermolecular carbopalladation followed by palladium oxidation, intramolecular C(sp2)-H activation by a transient C(sp3)-Pd(IV) species, and selective carbon-carbon (C-C) bond-forming reductive elimination from a high-valent five-membered palladacycle is proposed to account for the reaction outcome. Kinetically competent oxidation of alkylPd(II) to alkylPd(IV) species is important to avoid the formation of a Heck adduct. The reaction forges two C-C bonds of the cyclobutene core and is compatible with a wide range of functional groups. No chelating bidentate directing group in the alkene part is needed for this transformation.
Collapse
Affiliation(s)
- Takuji Fujii
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Simone Gallarati
- Laboratory for Computational Molecular Design (LCMD), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Clémence Corminboeuf
- Laboratory for Computational Molecular Design (LCMD), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Karpov GO, Bermeshev MV. Addition Polymerization of Cyclopentadiene in the Presence of Catalytic Systems Based on Pd(0) Complexes and Organic Cocatalysts. RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s1070427222030119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Han ML, Chen JJ, Xu H, Huang ZC, Huang W, Liu YW, Wang X, Liu M, Guo ZQ, Dai HX. Palladium/Norbornene-Catalyzed Decarbonylative Difunctionalization of Thioesters. JACS AU 2021; 1:1877-1884. [PMID: 34841406 PMCID: PMC8611674 DOI: 10.1021/jacsau.1c00328] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Indexed: 05/28/2023]
Abstract
The transition-metal-catalyzed decarboxylation of aryl carboxylic acids has drawn significant attention as an efficient and practical tool for the synthesis of substituted arenes. However, the decarboxylative construction of polysubstituted arenes with different contiguous substituents has not been widely reported. Herein, we describe a novel decarbonylative Catellani reaction via palladium-catalyzed, norbornene (NBE)-mediated polyfunctionalization of aromatic thioesters, which serve as readily available carboxylic acid derivatives. A variety of alkenyl, alkyl, aryl, and sulfur moieties could be conveniently introduced into the ipso-positions of the aromatic thioesters. By combining carboxyl-directed C-H functionalization and the classical Catellani reaction, our protocol allows for the construction of 1,2,3-trisubstituted and 1,2,3,4-tetrasubstituted arenes from simple aromatic acids. Furthermore, the late-stage functionalization of a series of drug molecules highlights the potential utility of the reaction.
Collapse
Affiliation(s)
- Ming-Liang Han
- Chinese
Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of
Chinese Academy of Sciences, Shanghai 201203, China
| | - Jun-Jie Chen
- Chinese
Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of
Chinese Academy of Sciences, Shanghai 201203, China
| | - Hui Xu
- Chinese
Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of
Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhi-Cong Huang
- Chinese
Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of
Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Huang
- Chinese
Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of
Chinese Academy of Sciences, Shanghai 201203, China
| | - Yu-Wen Liu
- Chinese
Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of
Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Wang
- Chinese
Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of
Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Liu
- Chinese
Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of
Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Qiong Guo
- Chinese
Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of
Chinese Academy of Sciences, Shanghai 201203, China
| | - Hui-Xiong Dai
- Chinese
Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of
Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Chen Z, Ding M, Jiang H, Zhang F. Palladium-catalyzed cyclobutenation of aryl chlorides with norbornenes. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
15
|
Affiliation(s)
- José‐Antonio García‐López
- Grupo de Química Organometálica Departamento de Química Inorgánica Facultad de Química Universidad de Murcia 30100 Murcia Spain
| | - Isabel Saura‐Llamas
- Grupo de Química Organometálica Departamento de Química Inorgánica Facultad de Química Universidad de Murcia 30100 Murcia Spain
| |
Collapse
|
16
|
Liu X, Wang J, Dong G. Modular Entry to Functionalized Tetrahydrobenzo[ b]azepines via the Palladium/Norbornene Cooperative Catalysis Enabled by a C7-Modified Norbornene. J Am Chem Soc 2021; 143:9991-10004. [PMID: 34161077 PMCID: PMC9142336 DOI: 10.1021/jacs.1c04575] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tetrahydrobenzo[b]azepines (THBAs) are commonly found in many bioactive compounds; however, the modular preparation of functionalized THBAs remains challenging to date. Here, we report a straightforward method to synthesize THBAs directly from simple aryl iodides via palladium/norbornene (Pd/NBE) cooperative catalysis. Capitalizing on an olefin-tethered electrophilic amine reagent, an ortho amination followed by 7-exo-trig Heck cyclization furnishes the seven-membered heterocycle. To overcome the difficulty with ortho-unsubstituted aryl iodide substrates, we discovered a unique C7-bromo-substituted NBE (N1) to offer the desired reactivity and selectivity. In addition to THBAs, synthesis of other benzo-seven-membered ring compounds can also be promoted by N1. Combined experimental and computational studies show that the C7-bromo group in N1 plays an important and versatile role in this catalysis, including promoting β-carbon elimination, suppressing benzocyclobutene formation, and stabilizing reaction intermediates. The mechanistic insights gained could guide future catalyst design. The synthetic utility has been demonstrated in a streamlined synthesis of tolvaptan and forming diverse pharmaceutically relevant THBA derivatives. Finally, a complementary and general catalytic condition to access C6-substituted THBAs from ortho-substituted aryl iodides has also been developed.
Collapse
Affiliation(s)
- Xin Liu
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Jianchun Wang
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
17
|
Liu ZS, Xie PP, Hua Y, Wu C, Ma Y, Chen J, Cheng HG, Hong X, Zhou Q. An axial-to-axial chirality transfer strategy for atroposelective construction of C–N axial chirality. Chem 2021. [DOI: 10.1016/j.chempr.2021.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Hua Y, Liu Z, Xie P, Ding B, Cheng H, Hong X, Zhou Q. Kinetic Resolution of Tertiary Benzyl Alcohols via Palladium/Chiral Norbornene Cooperative Catalysis. Angew Chem Int Ed Engl 2021; 60:12824-12828. [DOI: 10.1002/anie.202103428] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 12/18/2022]
Affiliation(s)
- Yu Hua
- Sauvage Center for Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education) College of Chemistry and Molecular Sciences The Institute for Advanced Studies Wuhan University Wuhan 430072 China
| | - Ze‐Shui Liu
- Sauvage Center for Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education) College of Chemistry and Molecular Sciences The Institute for Advanced Studies Wuhan University Wuhan 430072 China
| | - Pei‐Pei Xie
- Department of Chemistry State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou 310058 China
| | - Bo Ding
- Sauvage Center for Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education) College of Chemistry and Molecular Sciences The Institute for Advanced Studies Wuhan University Wuhan 430072 China
| | - Hong‐Gang Cheng
- Sauvage Center for Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education) College of Chemistry and Molecular Sciences The Institute for Advanced Studies Wuhan University Wuhan 430072 China
| | - Xin Hong
- Department of Chemistry State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou 310058 China
| | - Qianghui Zhou
- Sauvage Center for Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education) College of Chemistry and Molecular Sciences The Institute for Advanced Studies Wuhan University Wuhan 430072 China
| |
Collapse
|
19
|
Hua Y, Liu Z, Xie P, Ding B, Cheng H, Hong X, Zhou Q. Kinetic Resolution of Tertiary Benzyl Alcohols via Palladium/Chiral Norbornene Cooperative Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yu Hua
- Sauvage Center for Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education) College of Chemistry and Molecular Sciences The Institute for Advanced Studies Wuhan University Wuhan 430072 China
| | - Ze‐Shui Liu
- Sauvage Center for Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education) College of Chemistry and Molecular Sciences The Institute for Advanced Studies Wuhan University Wuhan 430072 China
| | - Pei‐Pei Xie
- Department of Chemistry State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou 310058 China
| | - Bo Ding
- Sauvage Center for Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education) College of Chemistry and Molecular Sciences The Institute for Advanced Studies Wuhan University Wuhan 430072 China
| | - Hong‐Gang Cheng
- Sauvage Center for Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education) College of Chemistry and Molecular Sciences The Institute for Advanced Studies Wuhan University Wuhan 430072 China
| | - Xin Hong
- Department of Chemistry State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou 310058 China
| | - Qianghui Zhou
- Sauvage Center for Molecular Sciences Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education) College of Chemistry and Molecular Sciences The Institute for Advanced Studies Wuhan University Wuhan 430072 China
| |
Collapse
|
20
|
Bai M, Cao L, Cheng H, Zhou Q. One-Step Synthesis of THIQ via a Catellani Strategy. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2020.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Cao L, Hua Y, Cheng HG, Zhou Q. C–H hetero-functionalization of arenes through palladacyclopentane-type intermediates. Org Chem Front 2021. [DOI: 10.1039/d0qo01350a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this review article, we summarized recent advances in C–H hetero-functionalization of arenes through palladacyclopentane-type intermediates.
Collapse
Affiliation(s)
- Liming Cao
- Sauvage Center for Molecular Sciences
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- 430072 Wuhan
| | - Yu Hua
- Sauvage Center for Molecular Sciences
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- 430072 Wuhan
| | - Hong-Gang Cheng
- Sauvage Center for Molecular Sciences
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- 430072 Wuhan
| | - Qianghui Zhou
- Sauvage Center for Molecular Sciences
- Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education)
- College of Chemistry and Molecular Sciences
- Wuhan University
- 430072 Wuhan
| |
Collapse
|
22
|
Qi X, Wang J, Dong Z, Dong G, Liu P. Compatibility Score for Rational Electrophile Selection in Pd/NBE Cooperative Catalysis. Chem 2020; 6:2810-2825. [PMID: 34046530 DOI: 10.1016/j.chempr.2020.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A mechanistically guided approach is developed to predict electrophile compatibility in the palladium/norbornene (Pd/NBE) cooperative catalysis for the ipso/ortho difunctionalization of aryl halides. A key challenge in these reactions is to identify orthogonal electrophile and aryl hali de starting materials that react selectively with different transition metal complexes in separate oxidative addition events in the catalytic cycle. We performed detailed experimental and computational mechanistic studies to identify the catalytically active Pd(II) intermediate and the substrate-dependent mechanisms in reactions with various types of carbon and nitrogen electrophiles. We introduced the concept of electrophile compatibility score (ECS) to rationally select electrophiles based on the orthogonal reactivity of electrophile and aryl halide towards the Pd(0) and Pd(II) complexes. This approach was applied to predict electrophile compatibility in the Pd/NBE cooperative catalysis with a variety of electrophilic coupling partners used in alkylation, arylation, amination, and acylation reactions.
Collapse
Affiliation(s)
- Xiaotian Qi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jianchun Wang
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Zhe Dong
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.,Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Lead Contact
| |
Collapse
|
23
|
Dutta U, Porey S, Pimparkar S, Mandal A, Grover J, Koodan A, Maiti D. para
‐Selective Arylation of Arenes: A Direct Route to Biaryls by Norbornene Relay Palladation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005664] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Uttam Dutta
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400 076 India
| | - Sandip Porey
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400 076 India
| | - Sandeep Pimparkar
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400 076 India
| | - Astam Mandal
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400 076 India
| | - Jagrit Grover
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400 076 India
| | - Adithyaraj Koodan
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400 076 India
| | - Debabrata Maiti
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400 076 India
- Tokyo Tech World Research Hub Initiative (WRHI) Laboratory for Chemistry and Life Science Tokyo Institute of Technology Tokyo 152-8550 Japan
| |
Collapse
|
24
|
Dutta U, Porey S, Pimparkar S, Mandal A, Grover J, Koodan A, Maiti D. para-Selective Arylation of Arenes: A Direct Route to Biaryls by Norbornene Relay Palladation. Angew Chem Int Ed Engl 2020; 59:20831-20836. [PMID: 32754958 DOI: 10.1002/anie.202005664] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/29/2020] [Indexed: 12/12/2022]
Abstract
Biaryl compounds are extremely important structural motifs in natural products, biologically active components and pharmaceuticals. Selective synthesis of biaryls by distinguishing the subtle reactivity difference of distal arene C-H bonds are significantly challenging. Herein, we describe para-selective C-H arylation, which is acheived by a unique combination of a meta-directing group and norbornene as a transient mediator. Upon direct meta-C-H palladation, one-bond relay palladation occurs in presence of norbornene and subsequently para-C-H arylation is achieved for sulfonates, phosphonates and phenols bearing 2,6-disubstitution patterns. The protocol is amenable to electron-deficient aryl iodides. Multisubstituted arenes and phenols are obtained by postsynthetic modification of the products. The protocol allows the synthesis of hexa-substituted benzene by sequential selective distal C-H functionalization.
Collapse
Affiliation(s)
- Uttam Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India
| | - Sandip Porey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India
| | - Sandeep Pimparkar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India
| | - Astam Mandal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India
| | - Jagrit Grover
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India
| | - Adithyaraj Koodan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India.,Tokyo Tech World Research Hub Initiative (WRHI) Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| |
Collapse
|
25
|
Ding YN, Shi WY, Liu C, Zheng N, Li M, An Y, Zhang Z, Wang CT, Zhang BS, Liang YM. Palladium-Catalyzed ortho-C-H Glycosylation/ ipso-Alkenylation of Aryl Iodides. J Org Chem 2020; 85:11280-11296. [PMID: 32786633 DOI: 10.1021/acs.joc.0c01392] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This report describes the first example of palladium-catalyzed ortho-C-H glycosylation/ipso-alkenylation of aryl iodides, and the easily accessible glycosyl chlorides are used as a glycosylation reagent. The reaction is compatible with the functional groups of the substrates, and a series of C-aryl glycosides have been synthesized in good to excellent yield and with excellent diastereoselectivity. It is found that a cheap 5-norbornene-2-carbonitrile as a transient mediator can effectively promote this reaction. In addition, ipso-arylation and cyanation were also realized by the strategy.
Collapse
Affiliation(s)
- Ya-Nan Ding
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Wei-Yu Shi
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Ce Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Nian Zheng
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Ming Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yang An
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Cui-Tian Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Bo-Sheng Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
26
|
Baccalini A, Faita G, Zanoni G, Maiti D. Transition Metal Promoted Cascade Heterocycle Synthesis through C−H Functionalization. Chemistry 2020; 26:9749-9783. [DOI: 10.1002/chem.202001832] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/16/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Alessio Baccalini
- Department of Chemistry University of Pavia Viale Taramelli 10 Pavia 27100 Italy
| | - Giuseppe Faita
- Department of Chemistry University of Pavia Viale Taramelli 10 Pavia 27100 Italy
| | - Giuseppe Zanoni
- Department of Chemistry University of Pavia Viale Taramelli 10 Pavia 27100 Italy
| | - Debabrata Maiti
- Department of Chemistry Indian Institute of Technology Bombay Powai, Mumbai 400076 India
- Tokyo Tech World Research Hub Initiative (WRHI), Laboratory for Chemistry and Life Science Tokyo Institute of Technology Tokyo 152-8550 Japan
| |
Collapse
|
27
|
Zhang L, Liu L, Huang T, Dong Q, Chen T. Palladium-Catalyzed Cyclobutanation of Aryl Sulfonates through both C–O and C–H Cleavage. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Liangwei Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People’s Republic of China
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, College of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, People’s Republic of China
| | - Tianzeng Huang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, College of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, People’s Republic of China
| | - Qizhi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People’s Republic of China
| | - Tieqiao Chen
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, People’s Republic of China
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, College of Chemical Engineering and Technology, Hainan University, Haikou, Hainan 570228, People’s Republic of China
| |
Collapse
|
28
|
Deng T, Mazumdar W, Ford RL, Jana N, Izar R, Wink DJ, Driver TG. Oxidation of Nonactivated Anilines to Generate N-Aryl Nitrenoids. J Am Chem Soc 2020; 142:4456-4463. [PMID: 32043887 DOI: 10.1021/jacs.9b13599] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A low-temperature, protecting-group-free oxidation of 2-substituted anilines has been developed to generate an electrophilic N-aryl nitrenoid intermediate that can engage in C-NAr bond formation to construct functionalized N-heterocycles. The exposure of 2-substituted anilines to PIFA and trifluoroacetic acid or 10 mol % Sc(OTf)3 triggers nitrenoid formation, followed by productive and selective C-NAr and C-C bond formation to yield spirocyclic- or bicyclic 3H-indoles or benzazepinones. Our experiments demonstrate the breadth of these oxidative processes, uncover underlying fundamental elements that control selectivity, and demonstrate how the distinct reactivity patterns embedded in N-aryl nitrenoid reactive intermediates can enable access to functionalized 3H-indoles or benzazepinones.
Collapse
Affiliation(s)
- Tianning Deng
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061, United States
| | - Wrickban Mazumdar
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061, United States
| | - Russell L Ford
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061, United States
| | - Navendu Jana
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061, United States
| | - Ragda Izar
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061, United States
| | - Donald J Wink
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061, United States
| | - Tom G Driver
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607-7061, United States
| |
Collapse
|
29
|
Li MZ, Tong Q, Han WY, Yang SY, Cui BD, Wan NW, Chen YZ. Synthesis of chromone-containing polycyclic compounds via palladium-catalyzed [2 + 2 + 1] annulation. Org Biomol Chem 2020; 18:1112-1116. [PMID: 31984976 DOI: 10.1039/c9ob02690h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A palladium-catalyzed [2 + 2 + 1] domino annulation of 3-iodochromones, α-bromo carbonyl compounds, and tetracyclododecene (TCD) is described. This approach provides a facile, efficient and atom-economical route to a variety of chromone-containing polycyclic compounds bearing fused/bridged-ring systems in good yields (up to 81%) with excellent diastereoselectivities (99 : 1 dr in all cases).
Collapse
Affiliation(s)
- Mi-Zhuan Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China. and School of Public Health, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Qi Tong
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China.
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China. and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Si-Yi Yang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China.
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China. and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Nan-Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China. and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, P. R. China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, P. R. China. and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, P. R. China
| |
Collapse
|
30
|
Padhi B, Kang G, Kim E, Ha J, Kim HT, Lim J, Joo JM. Pd-Catalyzed C–H Annulation of Five-Membered Heteroaryl Halides with Norbornene Derivatives. ACS Catal 2019. [DOI: 10.1021/acscatal.9b05177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Birakishore Padhi
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Geunhee Kang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Eunmin Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Jeongmin Ha
- Department of Chemistry and Research Institute for Basic Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun Tae Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Jeewoo Lim
- Department of Chemistry and Research Institute for Basic Science, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jung Min Joo
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
31
|
Yang SY, Han WY, He C, Cui BD, Wan NW, Chen YZ. 2,2-Bifunctionalization of Norbornene in Palladium-Catalyzed Domino Annulation. Org Lett 2019; 21:8857-8860. [DOI: 10.1021/acs.orglett.9b03565] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Si-Yi Yang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China
| | - Chen He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China
| | - Nan-Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China
| |
Collapse
|
32
|
Chen S, Wang P, Cheng HG, Yang C, Zhou Q. Redox-neutral ortho-C-H amination of pinacol arylborates via palladium(ii)/norbornene catalysis for aniline synthesis. Chem Sci 2019; 10:8384-8389. [PMID: 31803416 PMCID: PMC6839810 DOI: 10.1039/c9sc02759a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/22/2019] [Indexed: 12/28/2022] Open
Abstract
A palladium(ii)/norbornene cooperative catalysis enabled redox-neutral ortho-C-H amination of pinacol aryl- or heteroarylborates for the synthesis of structurally diverse anilines is reported. This method is scalable, robust (tolerance of air and moisture), phosphine ligand-free, and compatible with a wide range of functionalities. These practical features make this reaction amenable for industry. A plethora of synthetically very useful halogenated anilines, which often cannot be prepared via other transition-metal-catalyzed aminations, are readily produced using this method. Particularly, the orthogonal reactivity between pinacol arylborates and aryl iodides is demonstrated. Preliminary deuterium-labeling studies reveal a redox-neutral ipso-protonation mechanism of this process, which will surely inspire the future development of this field. Overall, the exceptionally broad scope (47 examples) and reliability of this procedure, together with the wide availability of pinacol arylborates, make this chemistry a valuable addition to the existing methods for aniline synthesis.
Collapse
Affiliation(s)
- Shuqing Chen
- Sauvage Center for Molecular Sciences , Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , China
| | - Peng Wang
- Sauvage Center for Molecular Sciences , Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , China
| | - Hong-Gang Cheng
- Sauvage Center for Molecular Sciences , Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , China
| | - Chihui Yang
- Sauvage Center for Molecular Sciences , Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , China
| | - Qianghui Zhou
- Sauvage Center for Molecular Sciences , Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education) , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , 430072 , China
- The Institute for Advanced Studies , Wuhan University , 430072 , Wuhan , China .
| |
Collapse
|
33
|
Abstract
Palladium/norbornene cooperative catalysis has emerged as a distinct approach to construct polyfunctionalized arenes from readily available starting materials. This Review provides a comprehensive overview of this field, including the early stoichiometric investigations, catalytic reaction developments, as well as the applications in the syntheses of bioactive compounds and polymers. The section of catalytic reactions is divided into two parts according to the reaction initiation mode: Pd(0)-initiated reactions and Pd(II)-initiated reactions.
Collapse
Affiliation(s)
- Jianchun Wang
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
34
|
Zhang BS, Li Y, Zhang Z, An Y, Wen YH, Gou XY, Quan SQ, Wang XG, Liang YM. Synthesis of C4-Aminated Indoles via a Catellani and Retro-Diels–Alder Strategy. J Am Chem Soc 2019; 141:9731-9738. [DOI: 10.1021/jacs.9b05009] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Bo-Sheng Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yang An
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yu-Hua Wen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xue-Ya Gou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Si-Qi Quan
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xin-Gang Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
35
|
Cheng H, Chen S, Chen R, Zhou Q. Palladium(II)‐Initiated Catellani‐Type Reactions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813491] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hong‐Gang Cheng
- College of Chemistry and Molecular SciencesInstitute for Advanced Studies (IAS)Wuhan University 430072 Wuhan P. R. China
| | - Shuqing Chen
- College of Chemistry and Molecular SciencesInstitute for Advanced Studies (IAS)Wuhan University 430072 Wuhan P. R. China
| | - Ruiming Chen
- College of Chemistry and Molecular SciencesInstitute for Advanced Studies (IAS)Wuhan University 430072 Wuhan P. R. China
| | - Qianghui Zhou
- College of Chemistry and Molecular SciencesInstitute for Advanced Studies (IAS)Wuhan University 430072 Wuhan P. R. China
| |
Collapse
|
36
|
Cheng H, Chen S, Chen R, Zhou Q. Palladium(II)‐Initiated Catellani‐Type Reactions. Angew Chem Int Ed Engl 2019; 58:5832-5844. [DOI: 10.1002/anie.201813491] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Hong‐Gang Cheng
- College of Chemistry and Molecular SciencesInstitute for Advanced Studies (IAS)Wuhan University 430072 Wuhan P. R. China
| | - Shuqing Chen
- College of Chemistry and Molecular SciencesInstitute for Advanced Studies (IAS)Wuhan University 430072 Wuhan P. R. China
| | - Ruiming Chen
- College of Chemistry and Molecular SciencesInstitute for Advanced Studies (IAS)Wuhan University 430072 Wuhan P. R. China
| | - Qianghui Zhou
- College of Chemistry and Molecular SciencesInstitute for Advanced Studies (IAS)Wuhan University 430072 Wuhan P. R. China
| |
Collapse
|
37
|
Cai W, Gu Z. Selective Ortho Thiolation Enabled by Tuning the Ancillary Ligand in Palladium/Norbornene Catalysis. Org Lett 2019; 21:3204-3209. [PMID: 30978028 DOI: 10.1021/acs.orglett.9b00923] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Site-selective introduction of a sulfur group into aromatic compounds is essential and useful in organic, material, and pharmaceutical chemistry. A palladium/norbornene-catalyzed chemoselective ortho thiolation of aryl halides was reported. The selectivity of reductive elimination for C(Ar)-SR bond formation was well controlled by tuning the ancillary ligand in the aryl-NBE palladacycle Pd(IV) intermediate. The reaction showcased good substrate scope: both S-alkyl and S-aryl thiosulfonates were compatible.
Collapse
Affiliation(s)
- Wenqiang Cai
- Department of Chemistry, Center for Excellence in Molecular Synthesis, and Hefei National Laboratory for Physical Sciences at the Microscale , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , P.R. China
| | - Zhenhua Gu
- Department of Chemistry, Center for Excellence in Molecular Synthesis, and Hefei National Laboratory for Physical Sciences at the Microscale , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , P.R. China
| |
Collapse
|
38
|
|
39
|
Li Z, Zheng J, Li C, Wu W, Jiang H. Palladium-Catalyzed Three-Component Coupling Reaction of Allyl Carboxylates, Norbornenes and Diboronates Involving Sequential Olefins Insertion and Borylation Reaction. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201800536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zun Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Jia Zheng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Chunsheng Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering; South China University of Technology; Guangzhou Guangdong 510640 China
| |
Collapse
|
40
|
Gao Q, Liu ZS, Hua Y, Li L, Cheng HG, Cong H, Zhou Q. A palladium/norbornene cooperative catalysis to access N-containing bridged scaffolds. Chem Commun (Camb) 2019; 55:8816-8819. [PMID: 31120461 DOI: 10.1039/c9cc03126j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A palladium/norbornene cooperative catalysis promoted annulation involving an ortho-C-H amination and intramolecular Heck cascade between aryl iodides and functionalized amination reagents is reported, thereby providing a highly convergent access to the unique N-containing bridged scaffolds: hexahydro-2,6-methano-1-benzazocine. The salient features of the reaction include its broad substrate scope (with respect to aryl iodides), its high step economy, and good chemoselectivity. Preliminary studies underscore the future promise of rendering this Catellani-type annulation enantioselective.
Collapse
Affiliation(s)
- Qianwen Gao
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
41
|
Zhang BS, Li Y, An Y, Zhang Z, Liu C, Wang XG, Liang YM. Carboxylate Ligand-Exchanged Amination/C(sp3)–H Arylation Reaction via Pd/Norbornene Cooperative Catalysis. ACS Catal 2018. [DOI: 10.1021/acscatal.8b04163] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Bo-Sheng Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yang An
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Ce Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xin-Gang Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
42
|
Wang Z, Li T, Zhao J, Shi X, Jiao D, Zheng H, Chen C, Zhu B. Expeditious Synthesis of 6-Fluoroalkyl-Phenanthridines via Palladium-Catalyzed Norbornene-Mediated Dehydrogenative Annulation. Org Lett 2018; 20:6640-6645. [PMID: 30350669 DOI: 10.1021/acs.orglett.8b02588] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel palladium-catalyzed, norbornene-mediated intermolecular dehydrogenative annulation approach for the synthesis of 6-fluoroalkyl-phenanthridines from aryl iodides and fluorinated imidoyl chlorides, which are important structural motifs for bioactive molecules, is reported. Fluorinated imidoyl chlorides served as a new type of electrophilic reagent in the Catellani-type reaction, which, in turn, could be readily prepared from various anilines and fluorinated carboxylic acids. Control experiments were carried out to study the mechanism of the reaction. This transformation is scalable and tolerates a broad range of functional groups.
Collapse
Affiliation(s)
- Zhuo Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Tongyu Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Jinghui Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Xiaonan Shi
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Dequan Jiao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Han Zheng
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Chen Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Bolin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; Key Laboratory of Inorganic-Organic Hybrid Functional Materials Chemistry (Tianjin Normal University), Ministry of Education; College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| |
Collapse
|
43
|
Xu Y, Liu X, Chen W, Deng G, Liang Y, Yang Y. Palladium/Norbornene Chemistry: Synthesis of Norbornene-Containing Arylsilanes Involving Double C–Si Bond Formation. J Org Chem 2018; 83:13930-13939. [DOI: 10.1021/acs.joc.8b02282] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yankun Xu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xiaodong Liu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Wenqi Chen
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Guobo Deng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yun Liang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yuan Yang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
44
|
Liu ZS, Gao Q, Cheng HG, Zhou Q. Alkylating Reagents Employed in Catellani-Type Reactions. Chemistry 2018; 24:15461-15476. [PMID: 30016558 DOI: 10.1002/chem.201802818] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Indexed: 12/12/2022]
Abstract
The Catellani reaction is a powerful strategy that allows the expeditious synthesis of highly substituted arenes, which are not easily accessible through traditional transition-metal-catalyzed cross-coupling reactions. This reaction utilizes the synergistic interplay of palladium and norbornene catalysis to facilitate sequential ortho-C-H functionalization and ipso termination of aryl iodides in a single operation. Since pioneering work by the group of Catellani in 1997, and later by the group of Lautens, this chemistry has attracted considerable attention from the synthetic chemistry community. Dramatic progress has been made by a number of groups in the past two decades. In this Minireview, the alkylating reagents employed in this intriguing reaction and the corresponding applications in organic synthesis are summarized; thus complementing existing reviews to inspire future developments.
Collapse
Affiliation(s)
- Ze-Shui Liu
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P.R. China
| | - Qianwen Gao
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P.R. China
| | - Hong-Gang Cheng
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P.R. China
| | - Qianghui Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, P.R. China.,The Institute for Advanced Studies, Wuhan University, 430072, Wuhan, P.R. China
| |
Collapse
|
45
|
Mabit T, Siard A, Legros F, Guillarme S, Martel A, Lebreton J, Carreaux F, Dujardin G, Collet S. Stereospecific C‐Glycosylation by Mizoroki–Heck Reaction: A Powerful and Easy‐to‐Set‐Up Synthetic Tool to Accessα‐ andβ‐Aryl‐C‐Glycosides. Chemistry 2018; 24:14069-14074. [DOI: 10.1002/chem.201803674] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Thibaud Mabit
- UMR CNRS 6230 CEISAMUniversité de Nantes 2 rue de la Houssinière 44322 Nantes Cedex 3 France
- UMR CNRS 6283 IMMMLe Mans Université Avenue Olivier Messiaen 72085 Le Mans France
| | - Aymeric Siard
- UMR CNRS 6230 CEISAMUniversité de Nantes 2 rue de la Houssinière 44322 Nantes Cedex 3 France
| | - Frédéric Legros
- UMR CNRS 6283 IMMMLe Mans Université Avenue Olivier Messiaen 72085 Le Mans France
| | - Stéphane Guillarme
- UMR CNRS 6283 IMMMLe Mans Université Avenue Olivier Messiaen 72085 Le Mans France
| | - Arnaud Martel
- UMR CNRS 6283 IMMMLe Mans Université Avenue Olivier Messiaen 72085 Le Mans France
| | - Jacques Lebreton
- UMR CNRS 6230 CEISAMUniversité de Nantes 2 rue de la Houssinière 44322 Nantes Cedex 3 France
| | - François Carreaux
- UMR CNRS 6226 ISCRUniversité de Rennes 1 261 Avenue du Général Leclerc 35700 Rennes France
| | - Gilles Dujardin
- UMR CNRS 6283 IMMMLe Mans Université Avenue Olivier Messiaen 72085 Le Mans France
| | - Sylvain Collet
- UMR CNRS 6230 CEISAMUniversité de Nantes 2 rue de la Houssinière 44322 Nantes Cedex 3 France
| |
Collapse
|
46
|
Qian G, Bai M, Gao S, Chen H, Zhou S, Cheng HG, Yan W, Zhou Q. Modular One-Step Three-Component Synthesis of Tetrahydroisoquinolines Using a Catellani Strategy. Angew Chem Int Ed Engl 2018; 57:10980-10984. [PMID: 29956881 DOI: 10.1002/anie.201806780] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Indexed: 11/06/2022]
Abstract
Reported is a modular one-step three-component synthesis of tetrahydroisoquinolines using a Catellani strategy. This process exploits aziridines as the alkylating reagents, through palladium/norbornene cooperative catalysis, to enable a Catellani/Heck/aza-Michael addition cascade. This mild, chemoselective, and scalable protocol has broad substrate scope (43 examples, up to 90 % yield). The most striking feature of this protocol is the excellent regioselectivity and diastereoselectivity observed for 2-alkyl- and 2-aryl-substituted aziridines to access 1,3-cis-substituted and 1,4-cis-substituted tetrahydroisoquinolines, respectively. Moreover, this is a versatile process with high step and atom economy.
Collapse
Affiliation(s)
- Guangyin Qian
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Miao Bai
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Shijun Gao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Han Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Siwei Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Hong-Gang Cheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei Yan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Qianghui Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.,The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
47
|
Qian G, Bai M, Gao S, Chen H, Zhou S, Cheng HG, Yan W, Zhou Q. Modular One-Step Three-Component Synthesis of Tetrahydroisoquinolines Using a Catellani Strategy. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806780] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guangyin Qian
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Miao Bai
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Shijun Gao
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Han Chen
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Siwei Zhou
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Hong-Gang Cheng
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Wei Yan
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Qianghui Zhou
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
- The Institute for Advanced Studies; Wuhan University; Wuhan 430072 China
| |
Collapse
|
48
|
Dong Z, Lu G, Wang J, Liu P, Dong G. Modular ipso/ ortho Difunctionalization of Aryl Bromides via Palladium/Norbornene Cooperative Catalysis. J Am Chem Soc 2018; 140:8551-8562. [PMID: 29906109 PMCID: PMC6430613 DOI: 10.1021/jacs.8b04153] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Palladium/norbornene (Pd/NBE) cooperative catalysis has emerged as a useful tool for preparing poly substituted arenes; however, its substrate scope has been largely restricted to aryl iodides. While aryl bromides are considered as standard substrates for Pd-catalyzed cross coupling reactions, their use in Pd/NBE catalysis remains elusive. Here we describe the development of general approaches for aryl bromide-mediated Pd/NBE cooperative catalysis. Through careful tuning the phosphine ligands and quenching nucleophiles, ortho amination, acylation and alkylation of aryl bromides have been realized in good efficiency. Importantly, various heteroarene substrates also work well and a wide range of functional groups are tolerated. In addition, the utility of these methods has been demonstrated in sequential cross coupling/ ortho functionalization reactions, consecutive Pd/NBE-catalyzed difunctionalization to construct penta-substituted aromatics and two-step meta functionalization reactions. Moreover, the origin of the ligand effect in ortho amination reactions has been explored through DFT studies. It is expected that this effort would significantly expand the reaction scope and enhance the synthetic potential for Pd/NBE catalysis in preparing complex aromatic compounds.
Collapse
Affiliation(s)
- Zhe Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Gang Lu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jianchun Wang
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
49
|
Complementary site-selectivity in arene functionalization enabled by overcoming the ortho constraint in palladium/norbornene catalysis. Nat Chem 2018; 10:866-872. [DOI: 10.1038/s41557-018-0074-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 04/24/2018] [Indexed: 11/08/2022]
|
50
|
Ding L, Sui X, Gu Z. Enantioselective Synthesis of Biaryl Atropisomers via Pd/Norbornene-Catalyzed Three-Component Cross-Couplings. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01037] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Linlin Ding
- Department of Chemistry, Center for Excellence in Molecular Synthesis, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Xianwei Sui
- Department of Chemistry, Center for Excellence in Molecular Synthesis, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Zhenhua Gu
- Department of Chemistry, Center for Excellence in Molecular Synthesis, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| |
Collapse
|