1
|
Chinelli S, Cenciarelli F, Giuri D, Tomasini C. Application of a Dopa Derivative for the Formation of Gels in the Presence of Commercial Surfactants. Gels 2025; 11:320. [PMID: 40422340 DOI: 10.3390/gels11050320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/28/2025] Open
Abstract
Cosmetic formulations are complex mixtures of ingredients that must fulfill several requirements. One of the challenges of the cosmetic industry is to find natural alternatives to replace synthetic polymers, preserving desirable sensory characteristics. The aim of this work is to induce the formation of gels, by replacing synthetic polymers with a low-molecular-weight gelator (LMWG), a small molecule able to self-assemble and form supramolecular networks. The impact of low-molecular-weight gelators on the environment is reduced as they are highly biodegradable. Thus, the behavior of solutions containing Boc-L-Dopa(Bn)2-OH, an LMWG, together with ten different anionic surfactants, was studied to understand if the LMWG may act as a rheological modifier by increasing the viscosity of the formulation or forming gels with these ingredients. An amphoteric surfactant, cocamidopropyl betaine (CAPB), often used to increase cleansing gentleness, was also added to the solutions to better mimic a cosmetic formulation. In most cases, the addition of the gelator at only a 1% w/v concentration induces the gelification or an increase in the viscosity of the solutions, thus showing that this molecule is also able to self-assemble in complex mixtures.
Collapse
Affiliation(s)
- Sofia Chinelli
- Dipartimento di Chimica Giacomo Ciamician, Università di Bologna, Via Piero Gobetti, 85, 40129 Bologna, Italy
| | - Fabia Cenciarelli
- Dipartimento di Chimica Giacomo Ciamician, Università di Bologna, Via Piero Gobetti, 85, 40129 Bologna, Italy
| | - Demetra Giuri
- Dipartimento di Chimica Giacomo Ciamician, Università di Bologna, Via Piero Gobetti, 85, 40129 Bologna, Italy
| | - Claudia Tomasini
- Dipartimento di Chimica Giacomo Ciamician, Università di Bologna, Via Piero Gobetti, 85, 40129 Bologna, Italy
| |
Collapse
|
2
|
Saikia J, Sarkar M, Ramakrishnan V. Factors affecting the physical stability of peptide self-assembly in neurodegenerative disorders. Neuropeptides 2025; 111:102517. [PMID: 40112745 DOI: 10.1016/j.npep.2025.102517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
Biological systems comprise of diverse biomolecules, including proteins, nucleic acids, lipids, and carbohydrates. Peptides, which are short chains of amino acids, exhibit unique properties when assembled to nano-level architectures. Self-assembling peptides possess a remarkable ability to organize into structured aggregates such as nanofibers, nanotubes, nanoribbons, and nanovesicles. These intricate structures are linked to neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Prion disease, Huntington's disease, and type II diabetes. Peptide nano assembly can be guided by external stimuli, such as temperature, pH, ultrasound, electric and magnetic fields. In this review, the discussion will be centred around the various factors that influence the self-assembly of peptides alongside therapeutic interventions that align with the fundamental principles of thermodynamics and kinetics to modulate the aggregation characteristics of peptide self-assembly.
Collapse
Affiliation(s)
- Jahnu Saikia
- Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Mouli Sarkar
- Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Vibin Ramakrishnan
- Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India; Mehta Family School of Data Science & Artificial Intelligence, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| |
Collapse
|
3
|
Wang Y, Wang B, Liu K, Yin X, Chen P, Wang N. Tuning the through-space charge transfer emission in triarylborane and triarylamine functionalized dipeptide organogels. SOFT MATTER 2022; 18:1404-1411. [PMID: 35073569 DOI: 10.1039/d1sm01636a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report herein a new class of either carbazolyl or BMes2 (Mes = mesityl) group functionalized Boc-Lys(Z)-Phe-OMe (Z = carbobenzyloxy) dipeptides-Boc-Lys(Z)-Phe-C5-carbazolyl (N2) and Boc-Lys(Z)-Phe-C6-BMes2 (B2). Both of the compounds are able to gel in several common aromatic solvents at low concentration. The photophysical studies reveal the existence of intense through space charge transfer interaction between the donor and acceptor units in the B2 and N2 based dual-component supramolecular organogels. Furthermore, by tuning the B2 : N2 ratios in the binary gels, both the maximum emission wavelength and the morphologies of the dual-component gels can be effectively modulated.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Bowen Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Kanglei Liu
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Xiaodong Yin
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Pangkuan Chen
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Nan Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| |
Collapse
|
4
|
Liao L, Liu R, Hu S, Jiang W, Chen Y, Zhong J, Jia X, Liu H, Luo X. Self-assembled sonogels formed from 1,4-naphthalenedicarbonyldinicotinic acid hydrazide. RSC Adv 2022; 12:20218-20226. [PMID: 35919589 PMCID: PMC9280287 DOI: 10.1039/d2ra01391f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022] Open
Abstract
Ultrasound-induced gelation of a novel type of gelator, 1,4-naphthalenedicarbonyl- dinicotinic acid hydrazide, is reported. The gelator self-assembled into various architectures in different solvents.
Collapse
Affiliation(s)
- Lieqiang Liao
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Ruidong Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Shuwen Hu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Wenting Jiang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Yali Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Jinlian Zhong
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Xinjian Jia
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Huijin Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| | - Xuzhong Luo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China
| |
Collapse
|
5
|
Kida T, Teragaki A, Kalaw JM, Shigemitsu H. Supramolecular organogel formation through three-dimensional α-cyclodextrin nanostructures: solvent chirality-selective organogel formation. Chem Commun (Camb) 2020; 56:7581-7584. [PMID: 32510099 DOI: 10.1039/d0cc02112a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel supramolecular organogels were efficiently formed by mixing a 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) solution of α-cyclodextrin (α-CD) with 1- or 2-butanol via the formation of three-dimensional hexagonal nanostructures composed of head-to-tail α-CD channel assemblies. Mixing (R)- and (S)-2-butanol with an α-CD/HFIP solution realized (S)-2-butanol-selective organogel formation.
Collapse
Affiliation(s)
- Toshiyuki Kida
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan.
| | | | | | | |
Collapse
|
6
|
Ghosh D, Mulvee MT, Damodaran KK. Tuning Gel State Properties of Supramolecular Gels by Functional Group Modification. Molecules 2019; 24:E3472. [PMID: 31557821 PMCID: PMC6804314 DOI: 10.3390/molecules24193472] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 12/02/2022] Open
Abstract
The factors affecting the self-assembly process in low molecular weight gelators (LMWGs) were investigated by tuning the gelation properties of a well-known gelator N-(4-pyridyl)isonicotinamide (4PINA). The N-H∙∙∙N interactions responsible for gel formation in 4PINA were disrupted by altering the functional groups of 4PINA, which was achieved by modifying pyridyl moieties of the gelator to pyridyl N-oxides. We synthesized two mono-N-oxides (INO and PNO) and a di-N-oxide (diNO) and the gelation studies revealed selective gelation of diNO in water, but the two mono-N-oxides formed crystals. The mechanical strength and thermal stabilities of the gelators were evaluated by rheology and transition temperature (Tgel) experiments, respectively, and the analysis of the gel strength indicated that diNO formed weak gels compared to 4PINA. The SEM image of diNO xerogels showed fibrous microcrystalline networks compared to the efficient fibrous morphology in 4PINA. Single-crystal X-ray analysis of diNO gelator revealed that a hydrogen-bonded dimer interacts with adjacent dimers via C-H∙∙∙O interactions. The non-gelator with similar dimers interacted via C-H∙∙∙N interaction, which indicates the importance of specific non-bonding interactions in the formation of the gel network. The solvated forms of mono-N-oxides support the fact that these compounds prefer crystalline state rather than gelation due to the increased hydrophilic interactions. The reduced gelation ability (minimum gel concentration (MGC)) and thermal strength of diNO may be attributed to the weak intermolecular C-H∙∙∙O interaction compared to the strong and unidirectional N-H∙∙∙N interactions in 4PINA.
Collapse
Affiliation(s)
- Dipankar Ghosh
- Department of Chemistry, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavík, Iceland.
| | - Matthew T Mulvee
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK.
| | - Krishna K Damodaran
- Department of Chemistry, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavík, Iceland.
| |
Collapse
|
7
|
Núñez-Villanueva D, Jinks MA, Gómez Magenti J, Hunter CA. Ultrasound-induced gelation of a giant macrocycle. Chem Commun (Camb) 2018; 54:10874-10877. [PMID: 30204157 PMCID: PMC6156880 DOI: 10.1039/c8cc04742a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A 68-membered macrocycle undergoes ultrasound-induced supramolecular gelation in acetonitrile. The sonogel shows a remarkable thermostability, indicating that self-assembly is mediated by exceptionally robust non-covalent interactions. Model compounds indicate that the macrocyclic topology is essential for gelation to occur.
Collapse
Affiliation(s)
- Diego Núñez-Villanueva
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | | | | | | |
Collapse
|
8
|
Falcone N, Kraatz HB. Supramolecular Assembly of Peptide and Metallopeptide Gelators and Their Stimuli-Responsive Properties in Biomedical Applications. Chemistry 2018; 24:14316-14328. [DOI: 10.1002/chem.201801247] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/17/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Natashya Falcone
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; 200 College St M5S 3E5 Toronto Canada
- Department of Physical and Environmental Science; University of Toronto Scarborough; 1065 Military Trail M1C 1A4 Toronto Canada
| | - Heinz-Bernhard Kraatz
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; 200 College St M5S 3E5 Toronto Canada
- Department of Physical and Environmental Science; University of Toronto Scarborough; 1065 Military Trail M1C 1A4 Toronto Canada
- Department of Chemistry; University of Toronto; 80 St. George St M5S 3H6 Toronto Canada
| |
Collapse
|
9
|
Lee SS, Choi GE, Lee HJ, Kim Y, Choy JH, Jeong B. Layered Double Hydroxide and Polypeptide Thermogel Nanocomposite System for Chondrogenic Differentiation of Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42668-42675. [PMID: 29165981 DOI: 10.1021/acsami.7b17173] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Stem cell therapy for damaged cartilage suffers from low rates of retention, survival, and differentiation into chondrocytes at the target site. To solve these problems, here we propose a two-dimensional/three-dimensional (2D/3D) nanocomposite system. As a new two-dimensional (2D) material, hexagonal layered double hydroxides (LDHs) with a uniform lateral length of 2-3 μm were prepared by a hydrothermal process. Then, tonsil-derived mesenchymal stem cells (TMSCs), arginylglycylaspartic acid-coated LDHs, and kartogenin (KGN) were incorporated into the gel through the thermal-energy-driven gelation of the system. The cells exhibited a tendency to aggregate in the nanocomposite system. In particular, chondrogenic biomarkers of type II collagen and transcription factor SOX 9 significantly increased at both the mRNA and protein levels in the nanocomposite system, compared to the pure thermogel systems. The inorganic 2D materials increased the rigidity of the matrix, slowed down the release of a soluble factor (KGN), and improved cell-material interactions in the gel. The current 2D/3D nanocomposite system of bioactive LDH/thermogel can be a new platform material overcoming drawbacks of hydrogel-based 3D cell culture systems and is eventually expected to be applied as an injectable stem cell therapy.
Collapse
Affiliation(s)
- Seon Sook Lee
- Department of Chemistry and Nanoscience, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Go Eun Choi
- Department of Chemistry and Nanoscience, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Hyun Jung Lee
- Department of Chemistry and Nanoscience, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Yelin Kim
- Department of Chemistry and Nanoscience, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Jin-Ho Choy
- Department of Chemistry and Nanoscience, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University , 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| |
Collapse
|
10
|
Geng H, Ye L, Zhang AY, Shao Z, Feng ZG. Ultrasound-induced gelation of fluorenyl-9-methoxycarbonyl-l-lysine(fluorenyl-9-methoxycarbonyl)-OH and its dipeptide derivatives showing very low minimum gelation concentrations. J Colloid Interface Sci 2017; 490:665-676. [DOI: 10.1016/j.jcis.2016.11.106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 10/20/2022]
|
11
|
Wu Z, Sun J, Zhang Z, Yang H, Xue P, Lu R. Nontraditional π Gelators Based on β-Iminoenolate and Their Difluoroboron Complexes: Effect of Halogens on Gelation and Their Fluorescent Sensory Properties Towards Acids. Chemistry 2017; 23:1901-1909. [DOI: 10.1002/chem.201604573] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Zhu Wu
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; No. 2699 Qianjin Street Changchun P.R. China
| | - Jingbo Sun
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; No. 2699 Qianjin Street Changchun P.R. China
| | - Zhenqi Zhang
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; No. 2699 Qianjin Street Changchun P.R. China
| | - Hao Yang
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; No. 2699 Qianjin Street Changchun P.R. China
| | - Pengchong Xue
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; No. 2699 Qianjin Street Changchun P.R. China
| | - Ran Lu
- State Key Laboratory of Supramolecular Structure and Materials; College of Chemistry; Jilin University; No. 2699 Qianjin Street Changchun P.R. China
| |
Collapse
|
12
|
Kumar A, Singh RS, Kumar A, Ali A, Biswas A, Pandey DS. Fine-Tuning of Saponification-Triggered Gelation by Strategic Modification of Peripheral Substituents: Gelation Regulators. Chemistry 2016; 22:13799-13804. [PMID: 27434702 DOI: 10.1002/chem.201602561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Indexed: 12/13/2022]
Abstract
A pioneering approach towards controlling the efficiency of saponification assisted gelation in ethyl ester based ZnII -complexes have been described. Using four new ester containing bis-salen ZnII complexes (C1-C4) involving different para-azo phenyl substituted ligands it has been clearly shown that gelation efficiency is greatly influenced by the electronic effects of the substituents (-H (C1), -CH3 (C2), -NO2 (C3), and -OCH3 (C4)). Morphological, photophysical, and rheological investigations corroborated the experimental observations well and established that gelation efficiency was enhanced with electron-withdrawing characteristics of substituents (C4<C2<C1<C3). This conclusion was also supported by DFT studies.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, (U.P.), India
| | - Roop Shikha Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, (U.P.), India
| | - Amit Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, (U.P.), India
| | - Afsar Ali
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, (U.P.), India
| | - Arnab Biswas
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, (U.P.), India
| | - Daya Shankar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221 005, (U.P.), India.
| |
Collapse
|
13
|
Maity S, Das P, Reches M. Inversion of Supramolecular Chirality by Sonication-Induced Organogelation. Sci Rep 2015; 5:16365. [PMID: 26553508 PMCID: PMC4639836 DOI: 10.1038/srep16365] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/09/2015] [Indexed: 11/08/2022] Open
Abstract
Natural helical structures have inspired the formation of well-ordered peptide-based chiral nanostructures in vitro. These structures have drawn much attention owing to their diverse applications in the area of asymmetric catalysts, chiral photonic materials, and nanoplasmonics. The self-assembly of two enantiomeric fluorinated aromatic dipeptides into ordered chiral fibrillar nanostructures upon sonication is described. These fibrils form organogels. Our results clearly indicate that fluorine-fluorine interactions play an important role in self-assembly. Circular dichroism analysis revealed that both peptides (peptides 1 and 2), containing two fluorines, depicted opposite cotton effects in their monomeric form compared with their aggregated form. This shows that supramolecular chirality inversion took place during the stimuli-responsive self-aggregation process. Conversely, peptide 3, containing one fluorine, did not exhibit chirality inversion in sonication-induced organogelation. Therefore, our results clearly indicate that fluorination plays an important role in the organogelation process of these aromatic dipeptides. Our findings may have broad implications regarding the design of chiral nanostructures for possible applications such as chiroptical switches, asymmetric catalysis, and chiral recognitions.
Collapse
Affiliation(s)
- Sibaprasad Maity
- Institute of Chemistry, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Priyadip Das
- Institute of Chemistry, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Meital Reches
- Institute of Chemistry, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| |
Collapse
|
14
|
Afrasiabi R, Kraatz HB. Rational Design and Application of a Redox-Active, Photoresponsive, Discrete Metallogelator. Chemistry 2015; 21:7695-700. [DOI: 10.1002/chem.201500704] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Indexed: 12/25/2022]
|
15
|
Bhattacharjee S, Bhattacharya S. Charge Transfer Induces Formation of Stimuli-Responsive, Chiral, Cohesive Vesicles-on-a-String that Eventually Turn into a Hydrogel. Chem Asian J 2015; 10:572-80. [DOI: 10.1002/asia.201403205] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Indexed: 12/24/2022]
|
16
|
Sarma RJ, Devi K. Cystine-derived bis-naphthalimides as stimuli-responsive fluorescent gelators. NEW J CHEM 2015. [DOI: 10.1039/c4nj01755b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stimuli-responsive fluorescence modulation of two cystine-derived bis-naphthalimide gelators was demonstrated using fluoride/tetrafluoroborate anions as the chemical inputs.
Collapse
Affiliation(s)
| | - Kakali Devi
- Department of Chemistry
- Gauhati University
- Guwahati
- India
| |
Collapse
|
17
|
Jędrzejewska H, Wierzbicki M, Cmoch P, Rissanen K, Szumna A. Dynamic Formation of Hybrid Peptidic Capsules by Chiral Self-Sorting and Self-Assembly. Angew Chem Int Ed Engl 2014; 53:13760-4. [DOI: 10.1002/anie.201407802] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/02/2014] [Indexed: 01/29/2023]
|
18
|
Jędrzejewska H, Wierzbicki M, Cmoch P, Rissanen K, Szumna A. Dynamic Formation of Hybrid Peptidic Capsules by Chiral Self-Sorting and Self-Assembly. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407802] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Yu X, Chen L, Zhang M, Yi T. Low-molecular-mass gels responding to ultrasound and mechanical stress: towards self-healing materials. Chem Soc Rev 2014; 43:5346-71. [DOI: 10.1039/c4cs00066h] [Citation(s) in RCA: 383] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
20
|
Maity I, Rasale DB, Das AK. Peptide nanofibers decorated with Pd nanoparticles to enhance the catalytic activity for C–C coupling reactions in aerobic conditions. RSC Adv 2014. [DOI: 10.1039/c3ra44787a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
21
|
Fan J, Zou J, He X, Zhang F, Zhang S, Raymond JE, Wooley KL. Tunable mechano-responsive organogels by ring-opening copolymerizations of N-carboxyanhydrides. Chem Sci 2014; 5:10.1039/C3SC52504J. [PMID: 24363890 PMCID: PMC3865608 DOI: 10.1039/c3sc52504j] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The simple copolymerization of N-carboxyanhydride (NCA) monomers is utilized to generate copolypeptides having a combination of α-helix and β-sheet sub-structures that, when grown from a solvophilic synthetic polymer block segment, are capable of driving mechano-responsive supramolecular sol-to-gel-to-sol and sol-to-gel-to-gel transitions reversibly, which allow also for injection-based processing and self-healing behaviors. A new type of polypeptide-based organogelator, methoxy poly(ethylene glycol)-block-poly(γ-benzyl-l-glutamate-co-glycine) (mPEG-b-P(BLG-co-Gly)), is facilely synthesized by statistical ring-opening copolymerizations (ROPs) of γ-benzyl-l-glutamate (BLG) and glycine (Gly) NCAs initiated by mPEG-amine. These systems exhibit tunable secondary structures and result in sonication stimulus responsiveness of the organogels with the polypeptide segment variation, controlled by varying the ratio of BLG NCA to Gly NCA during the copolymerizations. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) studies indicate the α-helical component decreases while the β-sheet content increases systematically with a higher mole fraction of Gly in the polypeptide segment. The supramolecular assembly of β-sheet nanofibrils, having a tunable width over the range of 10.4 - 14.5 nm with varied BLG to Gly ratio, are characterized by transmission electron microscopy (TEM). The further self-assembly of these nanostructures into 3-D gel networks within N,N-dimethylformamide (DMF) occurs at low critical gelation concentrations (CGC) (lowest ca. 0.6 wt %). Increased BLG to Gly ratios lead to an increase of the α-helical component in the secondary structures of the polypeptide segments, resulting in wider and more flexible nanofibrils. The presence of α-helical component in the polymers enhances the stability of the organogels against sonication, and instantaneous gel-to-gel transitions are observed as in situ reconstruction of networks occurs within the gelled materials after sonication. In marked contrast, the β-sheet-rich gel, prepared from mPEG-b-PGly, exhibits an instant gel-to-sol transition after sonication is applied. The CGC concentration and stiffness of this mPEG-b-P(BLG-co-Gly) organogel system can be tuned by simply varying the percentages of α-helix and β-sheet in the secondary structures through control of the BLG to Gly ratio during synthesis. The mechanical properties of these organogels are studied by dynamic mechanical analyses (DMA), having storage moduli of ca. 12.1 kPa at room temperature. The injectability and self-healing capabilities are demonstrated by direct observation of the macroscopic self-healing behavior experiment.
Collapse
Affiliation(s)
- Jingwei Fan
- Departments of Chemistry and Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX, 77842, USA
| | - Jiong Zou
- Departments of Chemistry and Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX, 77842, USA
| | - Xun He
- Departments of Chemistry and Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX, 77842, USA
| | - Fuwu Zhang
- Departments of Chemistry and Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX, 77842, USA
| | - Shiyi Zhang
- Departments of Chemistry and Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX, 77842, USA
| | - Jeffery E. Raymond
- Departments of Chemistry and Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX, 77842, USA
| | - Karen L. Wooley
- Departments of Chemistry and Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. BOX 30012, 3255 TAMU, College Station, TX, 77842, USA
| |
Collapse
|
22
|
Rizzo C, D'Anna F, Marullo S, Vitale P, Noto R. Two-Component Hydrogels Formed by Cyclodextrins and Dicationic Imidazolium Salts. European J Org Chem 2013. [DOI: 10.1002/ejoc.201301428] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Afrasiabi R, Kraatz H. Stimuli‐Responsive Supramolecular Gelation in Ferrocene–Peptide Conjugates. Chemistry 2013; 19:17296-300. [DOI: 10.1002/chem.201302450] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Indexed: 12/11/2022]
Affiliation(s)
- Rouzbeh Afrasiabi
- Department of Physical and Environmental Sciences, University of Toronto at Scarborough, 1265 Military Trail, Toronto, M1C 1A4 (Canada)
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6 (Canada), Fax: (+1) 416‐287‐7279
| | - Heinz‐Bernhard Kraatz
- Department of Physical and Environmental Sciences, University of Toronto at Scarborough, 1265 Military Trail, Toronto, M1C 1A4 (Canada)
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6 (Canada), Fax: (+1) 416‐287‐7279
| |
Collapse
|
24
|
Afrasiabi R, Kraatz HB. Small-Peptide-Based Organogel Kit: Towards the Development of Multicomponent Self-Sorting Organogels. Chemistry 2013; 19:15862-71. [DOI: 10.1002/chem.201303116] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Indexed: 11/06/2022]
|
25
|
Malicka JM, Sandeep A, Monti F, Bandini E, Gazzano M, Ranjith C, Praveen VK, Ajayaghosh A, Armaroli N. Ultrasound Stimulated Nucleation and Growth of a Dye Assembly into Extended Gel Nanostructures. Chemistry 2013; 19:12991-3001. [DOI: 10.1002/chem.201301539] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Indexed: 01/01/2023]
|