1
|
Musa S, Peretz Y, Dinnar G. Advances in Chiral Pincer Complexes: Insights and Applications in Catalytic Asymmetric Reactions. Int J Mol Sci 2024; 25:10344. [PMID: 39408673 PMCID: PMC11482493 DOI: 10.3390/ijms251910344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Chiral pincer complexes, characterized by their rigid tridentate coordination framework, have emerged as powerful catalysts in asymmetric synthesis. This review provides a comprehensive overview of recent advancements in the development of chiral pincer-type ligands and their corresponding transition metal complexes. We highlight the latest progress in their application across a range of catalytic asymmetric reactions, including the (transfer) hydrogenation of polar and non-polar bonds, hydrophosphination, alkynylation, Friedel-Crafts reactions, enantioselective reductive cyclization of alkynyl-tethered cyclohexadienones, enantioselective hydrosilylation, as well as Aza-Morita-Baylis-Hillman reactions. The structural rigidity and tunability of chiral pincer complexes enable precise control over stereoselectivity, resulting in high enantioselectivity and efficiency in complex molecular transformations. As the field advances, innovations in ligand design and the exploration of new metal centers are expected to expand the scope and utility of these catalysts, bearing significant implications for the synthesis of enantioenriched compounds in pharmaceuticals, materials science, and beyond.
Collapse
Affiliation(s)
- Sanaa Musa
- Natural Compounds and Organic Synthesis Laboratory, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel-Hai Academic College, Kiryat Shmona 11016, Israel
| | - Yuval Peretz
- Natural Compounds and Organic Synthesis Laboratory, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Gil Dinnar
- Natural Compounds and Organic Synthesis Laboratory, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel-Hai Academic College, Kiryat Shmona 11016, Israel
| |
Collapse
|
2
|
Ni Y, Wang Y, Liu J, Mao Y, Pan Y, Ni S, Yan L, Wang Y. Redox-Active α-Amino-CF 3 Reagents: Developing and Applications in Ni-Catalyzed Reductive Cross-Coupling. Org Lett 2024; 26:7398-7402. [PMID: 39177147 DOI: 10.1021/acs.orglett.4c02730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
α-Amino-CF3 compounds are widely employed in bio- and pharmaceutical chemistry for improved stability and bioactivities. Traditional methods often face challenges with functional group tolerance and lack a general approach for late-stage functionalization. Herein, we report a new type of redox-active α-amino-CF3 reagents, easily prepared from trifluoro acetaldehyde hydrates. These α-amino-CF3 reagents can serve as versatile building blocks for coupling with alkynyl bromides, aryl bromides, and enol triflates under nickel catalysis.
Collapse
Affiliation(s)
- Yifan Ni
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ying Wang
- School of Basic Medicine, Wannan Medical College, Wuhu 241000, China
| | - Jiyang Liu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu Mao
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shengyang Ni
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Liang Yan
- School of Basic Medicine, Wannan Medical College, Wuhu 241000, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Li Z, Ma C, Wu J, Wang X, Zheng C, Wu X. Copper-Catalyzed Direct Asymmetric Vinylogous Mannich Reaction between β,γ-Alkynyl-α-ketimino Esters and β,γ-Unsaturated N-Acylpyrazoles. Org Lett 2024; 26:1376-1381. [PMID: 38349071 DOI: 10.1021/acs.orglett.3c04292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
We report a Cu(I)-Ph-BPE-catalyzed asymmetric vinylogous Mannich reaction of β,γ-alkynyl-α-ketimino esters with β,γ-unsaturated N-acylpyrazoles. In this process, the Cu(I)-Ph-BPE catalyst activates the β,γ-alkynyl-α-ketimino ester through N,O-coordination, enabling the subsequent nucleophilic addition of a dienolate generated from the β,γ-unsaturated N-acylpyrazole via α-position deprotonation with a catalytic amount of tertiary amine. The reactions gave useful products with very high enantioselectivities. A broad range of substrates with various substituents are tolerated in this reaction. The versatility of this method was demonstrated by a gram-scale reaction, and subsequent elaboration of the Mannich adducts was also provided.
Collapse
Affiliation(s)
- Zhiming Li
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Chicheng Ma
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jiangbo Wu
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xuan Wang
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Changwu Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoyu Wu
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
4
|
Zhang Y, Vanderghinste J, Wang J, Das S. Challenges and recent advancements in the synthesis of α,α-disubstituted α-amino acids. Nat Commun 2024; 15:1474. [PMID: 38368416 PMCID: PMC10874380 DOI: 10.1038/s41467-024-45790-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 02/01/2024] [Indexed: 02/19/2024] Open
Abstract
α,α-Disubstituted α-amino acids (α-AAs) have improved properties compared to other types of amino acids. They serve as modifiers of peptide conformation and as precursors of bioactive compounds. Therefore, it has been a long-standing goal to construct this highly valuable scaffold efficiently in organic synthesis and drug discovery. However, access to α,α-disubstituted α-AAs is highly challenging and largely unexplored due to their steric constraints. To overcome these, remarkable advances have been made in the last decades. Emerging strategies such as synergistic enantioselective catalysis, visible-light-mediated photocatalysis, metal-free methodologies and CO2 fixation offer new avenues to access the challenging synthesis of α,α-disubstituted α-AAs and continuously bring additional contributions to this field. This review article aims to provide an overview of the recent advancements since 2015 and discuss existing challenges for the synthesis of α,α-disubstituted α-AAs and their derivatives.
Collapse
Affiliation(s)
- Yu Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, 201203, Shanghai, China.
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen, Belgium.
| | - Jaro Vanderghinste
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen, Belgium
| | - Jinxin Wang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, 201203, Shanghai, China
| | - Shoubhik Das
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerpen, Belgium.
- Department of Chemistry, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
5
|
Wu XX, Ma T, Qiao XX, Zou CP, Li G, He Y, Zhao XJ. Enantioselective Alkynylation of 2-Aryl-3H-indol-3-ones via Cooperative Catalysis of Copper/Chiral Phosphoric Acid. Chem Asian J 2023; 18:e202300526. [PMID: 37530657 DOI: 10.1002/asia.202300526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/03/2023]
Abstract
A facile enantioselective alkynylation of cyclic ketimines attached to a neutral functional group utilizing the dual Cu(I)-CPA catalysis is described. The strategy of the alkynylation of 2-aryl-3H-indol-3-one directly to chiral propargylic amines containing indolin-3-one moiety in good yields and enantioselectivities. Moreover, gram-scale synthesis of chiral propargylamines based C2-quaternary indolin-3-ones was performed. The synthetic applications were confirmed by transformations of the products with no decrease in the yield and enantioselectivity.
Collapse
Affiliation(s)
- Xi-Xi Wu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Tao Ma
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Xiu-Xiu Qiao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Chang-Peng Zou
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| |
Collapse
|
6
|
Liu J, Zhang W, Tao X, Wang Q, Wang X, Pan Y, Ma J, Yan L, Wang Y. Photoredox Microfluidic Synthesis of Trifluoromethylated Amino Acids. Org Lett 2023; 25:3083-3088. [PMID: 37087760 DOI: 10.1021/acs.orglett.3c00915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Fluorinated amino acids are a class of highly valuable building blocks that are widely employed in biological science and pharmaceutical industry for improved stability, activity, and folding property of proteins. However, the synthetic approach has conventionally been constrained by harsh conditions and limited substrate range. We demonstrate a general synthetic protocol for photoinduced α-CF3 amino acids using continuous flow technology that benefits from enhanced fusion and precise control of reaction time, making it potentially useful in large-scale peptide synthesis.
Collapse
Affiliation(s)
- Jiyang Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weigang Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiangzhang Tao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qing Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaochen Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jinzhu Ma
- School of Basic Medicine, Wannan Medical College, Wuhu 241000, China
| | - Liang Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- School of Basic Medicine, Wannan Medical College, Wuhu 241000, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
7
|
Liu S, Zhang L, Xu L, Gao P, Duan XH, Guo LN. Fe-Catalyzed Alkylazidation of α-Trifluoromethylalkenes: An Access to Quaternary Stereocenters Containing CF 3 and N 3 Groups. Org Lett 2023. [PMID: 36815835 DOI: 10.1021/acs.orglett.3c00439] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
A concise Fe-catalyzed alkylazidation of α-trifluoromethylalkenes via a C-C bond cleavage/radical addition/azidation cascade is described. This protocol features a broad substrate scope, excellent functional group compatibility, and the ability to be performed on a gram scale, thus offering a practical and step-economic approach to the synthetically useful tertiary α-trifluoromethyl azides.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Lu Zhang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xin-jiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Pin Gao
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xin-Hua Duan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Li Na Guo
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
8
|
Zhou M, Feng Z, Zhang X. Recent advances in the synthesis of fluorinated amino acids and peptides. Chem Commun (Camb) 2023; 59:1434-1448. [PMID: 36651307 DOI: 10.1039/d2cc06787k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The site-selective modification of amino acids, peptides, and proteins has always been an intensive topic in organic synthesis, medicinal chemistry, and chemical biology due to the vital role of amino acids in life. Among the developed methods, the site-selective introduction of fluorine functionalities into amino acids and peptides has emerged as a useful approach to change their physicochemical and biological properties. With the increasing demand for life science, the direct fluorination/fluoroalkylation of proteins has also received increasing attention because of the unique properties of fluorine atom(s) that can change the protein structure, increase their lipophilicity, and enable fluorine functionality as a biological tracer or probe for chemical biology studies. In this feature article, we summarized the recent advances in the synthesis of fluorinated amino acids and peptides, wherein two strategies have been discussed. One is based on the fluorinated building blocks to prepare fluorinated amino acids and peptides with diversified structures, including the transformations of fluorinated imines and nickel-catalyzed dicarbofunctionalization of alkenes with bromodifluoroacetate and its derivatives; the other is direct fluorination/fluoroakylation of amino acids, peptides, and proteins, in which the selective transformations of the functional groups on serine, threonine, tyrosine, tryptophan, and cysteine lead to a wide range of fluorinated α-amino acids, peptides, and proteins, featuring synthetic convenience and late-stage modification of biomacromolecules. These two strategies complement each other, wherein transition-metal catalysis and new fluoroalkylating reagents provide powerful tools to selectively access fluorinated amino acids, peptides, and proteins, showing the prospect of medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Minqi Zhou
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhang Feng
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Xingang Zhang
- College of Chemistry, Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P. R. China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| |
Collapse
|
9
|
Pfeffer C, Probst P, Wannenmacher N, Frey W, Peters R. Direct Enantioselective Addition of Alkynes to Imines by a Highly Efficient Palladacycle Catalyst. Angew Chem Int Ed Engl 2022; 61:e202206835. [PMID: 35701311 PMCID: PMC9545068 DOI: 10.1002/anie.202206835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 11/12/2022]
Abstract
Enantiopure propargylic amines are highly valuable synthetic building blocks. Much effort has been devoted to develop methods for their preparation. The arguably most important strategy is the 1,2-addition of alkynes to imines. Despite remarkable progress, the known methods using Zn and Cu catalysts suffer from the need for high catalyst loadings, typically ranging from 2-60 mol % for neutral aldimine substrates. Here we report a planar chiral Pd complex acting as very efficient catalyst for direct asymmetric alkyne additions to imines, requiring very low catalyst loadings. Turnover numbers of up to 8700 were accomplished. Our investigation suggests that a Pd-acetylide complex is generated as a catalytically relevant intermediate by the aid of an acac ligand acting as internal catalytic base. It is shown that the catalyst is quite stable under the reaction conditions and that product inhibition is not an issue. A total of 39 examples is shown which all yielded almost enantiopure products.
Collapse
Affiliation(s)
- Camilla Pfeffer
- Universität StuttgartInstitut für Organische ChemiePfaffenwaldring 5570569StuttgartGermany
| | - Patrick Probst
- Universität StuttgartInstitut für Organische ChemiePfaffenwaldring 5570569StuttgartGermany
| | - Nick Wannenmacher
- Universität StuttgartInstitut für Organische ChemiePfaffenwaldring 5570569StuttgartGermany
| | - Wolfgang Frey
- Universität StuttgartInstitut für Organische ChemiePfaffenwaldring 5570569StuttgartGermany
| | - René Peters
- Universität StuttgartInstitut für Organische ChemiePfaffenwaldring 5570569StuttgartGermany
| |
Collapse
|
10
|
Zhang Y, Lv C, Hu C, Su Z. Mechanistic Study of Asymmetric Alkynylation of Isatin-Derived Ketimine Mediated by a Copper/Guanidine Catalyst. J Org Chem 2022; 87:11693-11707. [PMID: 36001814 DOI: 10.1021/acs.joc.2c01321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, we performed a mechanistic study of asymmetric alkynylation of isatin-derived N-Boc ketimine that was first reported by Feng, Liu, and co-workers (Chem. Commun. 2018, 54, 678-681). Guanidine-amide promoted the formation of highly nucleophilic copper acetylene species by abstracting the terminal proton of phenylacetylene with an imine moiety. The guanidinium salt-Cu(I) complex was the most active species in the addition of the C═N bond, in which copper acetylene coordinated to the O atom of the amide moiety, and the isatin-derived ketimine substrate was activated by hydrogen bonding as well as tert-butoxycarbonyl···Cu(I) coordination. Due to weak interaction between Cu(I) and the Ph group in the amide of guanidine, as well as the repulsion between the tert-butyl group in ketimine and the cyclohexyl group in guanidine, the copper acetylene preferred to attack isatin-derived ketimine from the re-face, leading to the S-configuration product with excellent stereoselectivity. The affinity of the counterion for the Cu(I) center in the copper salt affected the deprotonation of phenylacetylene and the formation of guanidinium salt active species. In contrast to CuBr and CuCl, the combination of CuI with aniline-derived guanidine-amide exhibited high catalytic activity and a chiral induction effect, contributing to a high turnover frequency (9.70 × 10-4 s-1) in catalysis and ee%.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Cidan Lv
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
11
|
Uchikura T, Aruga K, Suzuki R, Akiyama T. Enantioselective Friedel-Crafts Alkylation Reaction of Pyrroles with N-Unprotected Alkynyl Trifluoromethyl Ketimines. Org Lett 2022; 24:4699-4703. [PMID: 35728276 DOI: 10.1021/acs.orglett.2c01972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Developed herein is an enantioselective Friedel-Crafts alkylation reaction of N-unprotected alkynyl trifluoromethyl ketimines with pyrroles catalyzed by chiral phosphoric acid to furnish chiral primary α-trifluoromethyl-α-(2-pyrrolyl)propargylamines with high enantioselectivity. Transformation of the alkynyl group of the adducts afforded optically active α-trifluoromethylated amines bearing various substituents such as alkyl, alkenyl, enyne, and triazole without loss of optical purity.
Collapse
Affiliation(s)
- Tatsuhiro Uchikura
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Kureha Aruga
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Riku Suzuki
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Takahiko Akiyama
- Department of Chemistry, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
12
|
Pfeffer C, Probst P, Wannenmacher N, Frey W, Peters R. Direct Enantioselective Addition of Alkynes to Imines by a Highly Efficient Palladacycle Catalyst. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Camilla Pfeffer
- Universität Stuttgart: Universitat Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 D-70569 Stuttgart GERMANY
| | - Patrick Probst
- Universität Stuttgart: Universitat Stuttgart Institut für Organische Chemie GERMANY
| | - Nick Wannenmacher
- Universität Stuttgart: Universitat Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 D-70569 Stuttgart GERMANY
| | - Wolfgang Frey
- Universität Stuttgart: Universitat Stuttgart Institut für Organische Chemie Pfaffenwaldring 55 D-70569 Stuttgart GERMANY
| | - René Peters
- Universität Stuttgart Institut für Organische Chemie Pfaffenwaldring 55Raum 06.301 70569 Stuttgart GERMANY
| |
Collapse
|
13
|
Catalyst-free nitration of the aliphatic C-H bonds of tertiary β-keto esters with tert-butyl nitrite: access to α-quaternary α-amino acid precursors. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Gu C, Tian G, Yin Q, Wu F, Li Z, Wu X. Amide phosphonium salt catalyzed enantioselective Mannich addition of isoxazole-based nucleophiles to β,γ-alkynyl-α-ketimino esters. Org Biomol Chem 2022; 20:3323-3334. [PMID: 35353110 DOI: 10.1039/d2ob00309k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An enantioselective Mannich addition of 3,5-disubstituted 4-nitroisoxazoles to β,γ-alkynyl-α-ketimino esters promoted by an amide phosphonium salt-based catalyst has been developed. N-Cbz-protected ketimino esters with various aryl substituents attached to the alkyne unit were reacted with a series of isoxazoles with different substitution patterns. Chiral tertiary propargylic amine products were obtained with moderate to good yields and enantioselectivities. TIPS- and cyclopropyl-substituted alkynyl ketimines were also examined in the current system and the desired products were obtained with moderate yields and enantioselectivities. The potential scalability and utility of the current protocol were demonstrated by carrying out a relatively larger scale reaction followed by further transformations.
Collapse
Affiliation(s)
- Congzheng Gu
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| | - Guangzheng Tian
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| | - Qingyu Yin
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| | - Fan Wu
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| | - Zhiming Li
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| | - Xiaoyu Wu
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Lu, Shanghai 200444, People's Republic of China.
| |
Collapse
|
15
|
Modern Approaches to Synthetic Design of Chiral α-Tertiary Amines Based on Trifluoromethylcontaining Ketimines: A Review. THEOR EXP CHEM+ 2022. [DOI: 10.1007/s11237-022-09710-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Li M, Chen Y, Yan Y, Liu M, Huang M, Li W, Cao L, Zhang X. Organocatalytic asymmetric synthesis of quaternary α-isoxazole–α-alkynyl amino acid derivatives. Org Biomol Chem 2022; 20:8849-8854. [DOI: 10.1039/d2ob01746f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Chiral phosphoric acid catalyzed enantioselective addition of 5-amino-isoxazoles with β,γ-alkynyl-α-ketimino esters provided good yields and excellent enantioselectivities.
Collapse
Affiliation(s)
- Min Li
- Department of Chemistry, Xihua University, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yihua Chen
- Department of Chemistry, Xihua University, China
| | - Yingkun Yan
- Department of Chemistry, Xihua University, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Liu
- Department of Chemistry, Xihua University, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Huang
- Department of Chemistry, Xihua University, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenzhe Li
- Department of Chemistry, Xihua University, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lianyi Cao
- Department of Chemistry, Xihua University, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomei Zhang
- Department of Chemistry, Xihua University, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Morimoto H. Development of Greener Catalytic Synthetic Methods of Nitrogen-Containing Compounds Using <i>N</i>-Unprotected Ketimines. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Ramirez NP, Pisella G, Waser J. Cu(I)-Catalyzed gem-Aminoalkynylation of Diazo Compounds: Synthesis of Fluorinated Propargylic Amines. J Org Chem 2021; 86:10928-10938. [PMID: 34260244 DOI: 10.1021/acs.joc.1c01423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The gem-aminoalkynylation of fluorinated diazo compounds catalyzed by a simple Cu(I) salt is described. This three-component reaction allows the synthesis of propargylic amines with broad functional group tolerance. Both electron-rich and electron-poor anilines can be used as nucleophiles and alkyl-, aryl-, and silyl-substituted EthynylBenziodoXoles (EBX) as electrophiles.
Collapse
Affiliation(s)
- Nieves P Ramirez
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Guillaume Pisella
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
19
|
Arai Y, Oguri H. Divergent synthesis of functionalized dihydropyridines and pyrroles via metal-free one-pot domino reactions of a gem-disubstituted propargyl amine and an alkynyl sulfone. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
20
|
Pan Y, Wang D, Chen Y, Zhang D, Liu W, Yang X. Kinetic Resolution of α-Tertiary Propargylic Amines through Asymmetric Remote Aminations of Anilines. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02331] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yongkai Pan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Donglei Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| | - Yunrong Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - DeKun Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
21
|
Connon R, Roche B, Rokade BV, Guiry PJ. Further Developments and Applications of Oxazoline-Containing Ligands in Asymmetric Catalysis. Chem Rev 2021; 121:6373-6521. [PMID: 34019404 PMCID: PMC8277118 DOI: 10.1021/acs.chemrev.0c00844] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 12/27/2022]
Abstract
The chiral oxazoline motif is present in many ligands that have been extensively applied in a series of important metal-catalyzed enantioselective reactions. This Review aims to provide a comprehensive overview of the most significant applications of oxazoline-containing ligands reported in the literature starting from 2009 until the end of 2018. The ligands are classified not by the reaction to which their metal complexes have been applied but by the nature of the denticity, chirality, and donor atoms involved. As a result, the continued development of ligand architectural design from mono(oxazolines), to bis(oxazolines), to tris(oxazolines) and tetra(oxazolines) and variations thereof can be more easily monitored by the reader. In addition, the key transition states of selected asymmetric transformations will be given to illustrate the features that give rise to high levels of asymmetric induction. As a further aid to the reader, we summarize the majority of schemes with representative examples that highlight the variation in % yields and % ees for carefully selected substrates. This Review should be of particular interest to the experts in the field but also serve as a useful starting point to new researchers in this area. It is hoped that this Review will stimulate both the development/design of new ligands and their applications in novel metal-catalyzed asymmetric transformations.
Collapse
Affiliation(s)
- Robert Connon
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Brendan Roche
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Balaji V. Rokade
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Patrick J. Guiry
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
22
|
Lupidi G, Palmieri A, Petrini M. Enantioselective Catalyzed Synthesis of Amino Derivatives Using Electrophilic Open‐Chain
N
‐Activated Ketimines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gabriele Lupidi
- School of Science and Technology, Chemistry Division Università di Camerino via S.Agostino, 1 I-62032 Camerino Italy
| | - Alessandro Palmieri
- School of Science and Technology, Chemistry Division Università di Camerino via S.Agostino, 1 I-62032 Camerino Italy
| | - Marino Petrini
- School of Science and Technology, Chemistry Division Università di Camerino via S.Agostino, 1 I-62032 Camerino Italy
| |
Collapse
|
23
|
Blackwell JH, Kumar R, Gaunt MJ. Visible-Light-Mediated Carbonyl Alkylative Amination to All-Alkyl α-Tertiary Amino Acid Derivatives. J Am Chem Soc 2021; 143:1598-1609. [PMID: 33428383 DOI: 10.1021/jacs.0c12162] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The all-alkyl α-tertiary amino acid scaffold represents an important structural feature in many biologically and pharmaceutically relevant molecules. Syntheses of this class of molecule, however, often involve multiple steps and require activating auxiliary groups on the nitrogen atom or tailored building blocks. Here, we report a straightforward, single-step, and modular methodology for the synthesis of all-alkyl α-tertiary amino esters. This new strategy uses visible light and a silane reductant to bring about a carbonyl alkylative amination reaction that combines a wide range of primary amines, α-ketoesters, and alkyl iodides to form functionally diverse all-alkyl α-tertiary amino esters. Brønsted acid-mediated in situ condensation of primary amine and α-ketoester delivers the corresponding ketiminium species, which undergoes rapid 1,2-addition of an alkyl radical (generated from an alkyl iodide by the action of visible light and silane reductant) to form an aminium radical cation. Upon a polarity-matched and irreversible hydrogen atom transfer from electron rich silane, the electrophilic aminium radical cation is converted to an all-alkyl α-tertiary amino ester product. The benign nature of this process allows for broad scope in all three components and generates structurally and functionally diverse suite of α-tertiary amino esters that will likely have widespread use in academic and industrial settings.
Collapse
Affiliation(s)
- J Henry Blackwell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Roopender Kumar
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Gaunt
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
24
|
Li Z, Wang L, Huang Y, Mei H, Konno H, Moriwaki H, Soloshonok VA, Han J. Asymmetric Mannich reactions of ( S)- N- tert-butylsulfinyl-3,3,3-trifluoroacetaldimines with yne nucleophiles. Beilstein J Org Chem 2020; 16:2671-2678. [PMID: 33178357 PMCID: PMC7607431 DOI: 10.3762/bjoc.16.217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/20/2020] [Indexed: 12/26/2022] Open
Abstract
In the present work, arylethynes were studied as new C-nucleophiles in the asymmetric Mannich addition reactions with (S)-N-tert-butylsulfinyl-3,3,3-trifluoroacetaldimine. The reactions were conducted under operationally convenient conditions affording the corresponding Mannich adducts with up to 87% yield and 70:30 diastereoselectivity. The isomeric products can be separated using regular column chromatography to afford diastereomerically pure compounds. The purified Mannich addition products were deprotected to give the target enantiomerically pure trifluoromethylpropargylamines. A mechanistic rationale for the observed stereochemical outcome is discussed.
Collapse
Affiliation(s)
- Ziyi Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Li Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yunqi Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Hiroyuki Konno
- Department of Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Hiroki Moriwaki
- Hamari Chemical Ltd., 1-4-29 Kunijima, Higashi-Yodogawa-ku, Osaka 533-0024, Japan
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36-5, Plaza Bizkaia, 48011 Bilbao, Spain
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| |
Collapse
|
25
|
Onyeagusi CI, Malcolmson SJ. Strategies for the Catalytic Enantioselective Synthesis of α-Trifluoromethyl Amines. ACS Catal 2020; 10:12507-12536. [PMID: 34306806 PMCID: PMC8302206 DOI: 10.1021/acscatal.0c03569] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The exploitation of the α-trifluoromethylamino group as an amide surrogate in peptidomimetics and drug candidates has been on the rise. In a large number of these cases, this moiety bears stereochemistry with the stereochemical identity having important consequences on numerous molecular properties, such as the potency of the compound. Yet, the majority of stereoselective syntheses of α-CF3 amines rely on diastereoselective couplings with chiral reagents. Concurrent with the rapid expansion of fluorine into pharmaceuticals has been the development of catalytic enantioselective means of preparing α-trifluoromethyl amines. In this work, we outline the strategies that have been employed for accessing these enantioenriched amines, including normal polarity approaches and several recent developments in imine umpolung transformations.
Collapse
Affiliation(s)
- Chibueze I Onyeagusi
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Steven J Malcolmson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
26
|
Zhang X, Gao Y, Hu X, Ji C, Liu Y, Yu J. Recent Advances in Catalytic Enantioselective Synthesis of Fluorinated α‐ and β‐Amino Acids. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000966] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xue‐Xin Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 People's Republic of China
| | - Yang Gao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 People's Republic of China
| | - Xiao‐Si Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 People's Republic of China
| | - Cong‐Bin Ji
- School of Chemistry and Environmental Sciences Shangrao Normal University Jiangxi 334001 People's Republic of China
| | - Yun‐Lin Liu
- School of Chemistry and Chemical Engineering Guangzhou University Guangzhou 510006 People's Republic of China
| | - Jin‐Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 People's Republic of China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education Hainan Normal University Haikou 571158 People's Republic of China
| |
Collapse
|
27
|
Sun XS, Wang XH, Tao HY, Wei L, Wang CJ. Catalytic asymmetric synthesis of quaternary trifluoromethyl α- to ε-amino acid derivatives via umpolung allylation/2-aza-Cope rearrangement. Chem Sci 2020; 11:10984-10990. [PMID: 34094346 PMCID: PMC8162408 DOI: 10.1039/d0sc04685j] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/17/2020] [Indexed: 11/21/2022] Open
Abstract
In this study, we developed an efficient Ir-catalyzed cascade umpolung allylation/2-aza-Cope rearrangement of tertiary α-trifluoromethyl α-amino acid derivatives for the preparation of a variety of quaternary α-trifluoromethyl α-amino acids in high yields with excellent enantioselectivities. The umpolung reactivity empowered by the activation of the key isatin-ketoimine moiety obviates the intractable enantioselectivity control in Pd-catalyzed asymmetric linear α-allylation. In combination with quasi parallel kinetic resolution or kinetic resolution, the generality of this method is further demonstrated by the first preparation of enantioenriched quaternary trifluoromethyl β-, γ-, δ- and ε-amino acid derivatives.
Collapse
Affiliation(s)
- Xi-Shang Sun
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Xing-Heng Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Hai-Yan Tao
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Liang Wei
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Chun-Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
28
|
Uchikura T, Suzuki R, Suda Y, Akiyama T. Enantioselective Synthesis of 2‐Substituted Indoles Bearing Trifluoromethyl Moiety by the Friedel‐Crafts Alkylation Reaction of 4,7‐Dihydroindole with
N
−H Trifluoromethyl Ketimines. ChemCatChem 2020. [DOI: 10.1002/cctc.202000920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tatsuhiro Uchikura
- Department of Chemistry Gakushuin University 1-5-1 Mejiro Toshima-ku, Tokyo Japan
| | - Riku Suzuki
- Department of Chemistry Gakushuin University 1-5-1 Mejiro Toshima-ku, Tokyo Japan
| | - Yusuke Suda
- Department of Chemistry Gakushuin University 1-5-1 Mejiro Toshima-ku, Tokyo Japan
| | - Takahiko Akiyama
- Department of Chemistry Gakushuin University 1-5-1 Mejiro Toshima-ku, Tokyo Japan
| |
Collapse
|
29
|
Zhao G, Samanta SS, Michieletto J, Roche SP. A Broad Substrate Scope of Aza-Friedel-Crafts Alkylation for the Synthesis of Quaternary α-Amino Esters. Org Lett 2020; 22:5822-5827. [PMID: 32649206 PMCID: PMC7654210 DOI: 10.1021/acs.orglett.0c01895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A versatile synthetic protocol of aza-Friedel-Crafts alkylation has been developed for the synthesis of quaternary α-amino esters. This operationally simple alkylation proceeds under ambient conditions with high efficiency, regioselectivity, and an exceptionally broad scope of arene nucleophiles. A key feature of this alkylation is the role associated with the silver(I) salt counteranions liberated during the reaction. Taking advantage of a phase-transfer counteranion/Brønsted acid pair mechanism, we also report a catalytic enantioselective example of the reaction.
Collapse
Affiliation(s)
- Guangkuan Zhao
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Shyam S Samanta
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Jessica Michieletto
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Stéphane P Roche
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
- Center for Molecular Biology and Biotechnology, Florida Atlantic University, Jupiter, Florida 33458, United States
| |
Collapse
|
30
|
Chen JF, Li C. Cobalt/Bisoxazolinephosphine-Catalyzed Asymmetric Alkynylation of Isatins. Org Lett 2020; 22:4686-4691. [DOI: 10.1021/acs.orglett.0c01486] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jia-Feng Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Changkun Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
31
|
Morisaki K, Morimoto H, Ohshima T. Recent Progress on Catalytic Addition Reactions to N-Unsubstituted Imines. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01212] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kazuhiro Morisaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hiroyuki Morimoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takashi Ohshima
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
32
|
Kuwano S, Nishida Y, Suzuki T, Arai T. Catalytic Asymmetric Mannich‐Type Reaction of Malononitrile with N‐Boc α‐Ketiminoesters Using Chiral Organic Base Catalyst with Halogen Bond Donor Functionality. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000092] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Satoru Kuwano
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of ScienceChiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Yuki Nishida
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of ScienceChiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Takumi Suzuki
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of ScienceChiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| | - Takayoshi Arai
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Molecular Chirality Research Center (MCRC), Department of Chemistry, Graduate School of ScienceChiba University 1-33 Yayoi, Inage Chiba 263-8522 Japan
| |
Collapse
|
33
|
Park D, Jette CI, Kim J, Jung W, Lee Y, Park J, Kang S, Han MS, Stoltz BM, Hong S. Enantioselective Alkynylation of Trifluoromethyl Ketones Catalyzed by Cation‐Binding Salen Nickel Complexes. Angew Chem Int Ed Engl 2020; 59:775-779. [DOI: 10.1002/anie.201913057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/06/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Dongseong Park
- Department of ChemistryGwangju Institute of Science and Technology (GIST) 123 Cheomdan-gwagiro Buk-gu Gwangju 61005 Republic of Korea
| | - Carina I. Jette
- Warren And Katharine Schlinger Laboratory for Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena CA 91125 USA
| | - Jiyun Kim
- Department of ChemistryGwangju Institute of Science and Technology (GIST) 123 Cheomdan-gwagiro Buk-gu Gwangju 61005 Republic of Korea
| | - Woo‐Ok Jung
- Department of ChemistryGwangju Institute of Science and Technology (GIST) 123 Cheomdan-gwagiro Buk-gu Gwangju 61005 Republic of Korea
| | - Yongmin Lee
- School of Materials Science and EngineeringGwangju Institute of Science and Technology (GIST) 123 Cheomdan-gwagiro Buk-gu Gwangju 61005 Republic of Korea
| | - Jongwoo Park
- Department of ChemistryUniversity of Florida P.O.Box 117200 Gainesville FL 32611-7200 USA
- Current address: Process R&D CenterSK biotek 325 Exporo Yuseong-gu Daejeon 34124 Republic of Korea
| | - Seungyoon Kang
- Department of ChemistryGwangju Institute of Science and Technology (GIST) 123 Cheomdan-gwagiro Buk-gu Gwangju 61005 Republic of Korea
| | - Min Su Han
- Department of ChemistryGwangju Institute of Science and Technology (GIST) 123 Cheomdan-gwagiro Buk-gu Gwangju 61005 Republic of Korea
| | - Brian M. Stoltz
- Warren And Katharine Schlinger Laboratory for Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena CA 91125 USA
| | - Sukwon Hong
- Department of ChemistryGwangju Institute of Science and Technology (GIST) 123 Cheomdan-gwagiro Buk-gu Gwangju 61005 Republic of Korea
- School of Materials Science and EngineeringGwangju Institute of Science and Technology (GIST) 123 Cheomdan-gwagiro Buk-gu Gwangju 61005 Republic of Korea
| |
Collapse
|
34
|
Sun XS, Ou-Yang Q, Xu SM, Wang XH, Tao HY, Chung LW, Wang CJ. Asymmetric synthesis of quaternary α-trifluoromethyl α-amino acids by Ir-catalyzed allylation followed by kinetic resolution. Chem Commun (Camb) 2020; 56:3333-3336. [DOI: 10.1039/d0cc00845a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Facile access to quaternary α-trifluoromethyl α-amino acids has been developed. This sequential reaction involves an Ir-catalyzed asymmetric allylation of α-trifluoromethyl aldimine esters followed by an unprecedented kinetic resolution.
Collapse
Affiliation(s)
- Xi-Shang Sun
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- China
- State Key Laboratory of Organometallic Chemistry
| | - Qiu Ou-Yang
- Department of Chemistry and Shenzhen Grubbs Institute
- Southern University of Science and Technology (SUSTech)
- Shenzhen
- China
| | - Shi-Ming Xu
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- China
| | - Xing-Heng Wang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- China
| | - Hai-Yan Tao
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- China
| | - Lung Wa Chung
- Department of Chemistry and Shenzhen Grubbs Institute
- Southern University of Science and Technology (SUSTech)
- Shenzhen
- China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences
- Wuhan University
- Wuhan
- China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|
35
|
Park D, Jette CI, Kim J, Jung W, Lee Y, Park J, Kang S, Han MS, Stoltz BM, Hong S. Enantioselective Alkynylation of Trifluoromethyl Ketones Catalyzed by Cation‐Binding Salen Nickel Complexes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201913057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Dongseong Park
- Department of ChemistryGwangju Institute of Science and Technology (GIST) 123 Cheomdan-gwagiro Buk-gu Gwangju 61005 Republic of Korea
| | - Carina I. Jette
- Warren And Katharine Schlinger Laboratory for Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena CA 91125 USA
| | - Jiyun Kim
- Department of ChemistryGwangju Institute of Science and Technology (GIST) 123 Cheomdan-gwagiro Buk-gu Gwangju 61005 Republic of Korea
| | - Woo‐Ok Jung
- Department of ChemistryGwangju Institute of Science and Technology (GIST) 123 Cheomdan-gwagiro Buk-gu Gwangju 61005 Republic of Korea
| | - Yongmin Lee
- School of Materials Science and EngineeringGwangju Institute of Science and Technology (GIST) 123 Cheomdan-gwagiro Buk-gu Gwangju 61005 Republic of Korea
| | - Jongwoo Park
- Department of ChemistryUniversity of Florida P.O.Box 117200 Gainesville FL 32611-7200 USA
- Current address: Process R&D CenterSK biotek 325 Exporo Yuseong-gu Daejeon 34124 Republic of Korea
| | - Seungyoon Kang
- Department of ChemistryGwangju Institute of Science and Technology (GIST) 123 Cheomdan-gwagiro Buk-gu Gwangju 61005 Republic of Korea
| | - Min Su Han
- Department of ChemistryGwangju Institute of Science and Technology (GIST) 123 Cheomdan-gwagiro Buk-gu Gwangju 61005 Republic of Korea
| | - Brian M. Stoltz
- Warren And Katharine Schlinger Laboratory for Chemistry and Chemical EngineeringCalifornia Institute of Technology Pasadena CA 91125 USA
| | - Sukwon Hong
- Department of ChemistryGwangju Institute of Science and Technology (GIST) 123 Cheomdan-gwagiro Buk-gu Gwangju 61005 Republic of Korea
- School of Materials Science and EngineeringGwangju Institute of Science and Technology (GIST) 123 Cheomdan-gwagiro Buk-gu Gwangju 61005 Republic of Korea
| |
Collapse
|
36
|
Bhakta U, Kattamuri PV, Siitonen JH, Alemany LB, Kürti L. Enantioselective Catalytic Allylation of Acyclic Ketiminoesters: Synthesis of α-Fully-Substituted Amino Esters. Org Lett 2019; 21:9208-9211. [PMID: 31663756 DOI: 10.1021/acs.orglett.9b03574] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report the first direct catalytic enantioselective allylation of acyclic α-ketiminoesters to afford α-allyl-α-aryl and α-allyl-α-trifluoromethyl amino esters in excellent isolated yield (91-99%) and with high optical purity (90-99+% ee). The allylation proceeds on a gram scale with 5-10 mol % of indium(I) iodide and commercially available BOX-type ligands. The allylated products are easily converted to enantiomerically enriched α-substituted proline derivatives.
Collapse
Affiliation(s)
- Urmibhusan Bhakta
- Department of Chemistry , Rice University , 6500 Main Street , Houston , Texas 77030 , United States
| | - Padmanabha V Kattamuri
- Department of Chemistry , Rice University , 6500 Main Street , Houston , Texas 77030 , United States
| | - Juha H Siitonen
- Department of Chemistry , Rice University , 6500 Main Street , Houston , Texas 77030 , United States
| | - Lawrence B Alemany
- Department of Chemistry , Rice University , 6500 Main Street , Houston , Texas 77030 , United States
- Shared Equipment Authority , Rice University , 6100 Main Street , Houston , Texas 77005 , United States
| | - László Kürti
- Department of Chemistry , Rice University , 6500 Main Street , Houston , Texas 77030 , United States
| |
Collapse
|
37
|
Winter M, Kim H, Waser M. Pd-Catalyzed Allylation of Imines to Access α-CF 3-Substituted α-Amino Acid Derivatives. European J Org Chem 2019; 2019:7122-7127. [PMID: 31798337 PMCID: PMC6887540 DOI: 10.1002/ejoc.201901272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Indexed: 01/06/2023]
Abstract
We herein report a high yielding protocol for the direct α-allylation of easily accessible trifluoropyruvate-derived imines using Pd-catalysis. The reaction gives access to a variety of different α-allylated-α-CF3-amino acids in a straightforward manner, starting from commercially available trifluoropyruvate. We also provide a proof-of-concept for an enantioselective protocol (up to er = 75:25) by using chiral phosphane ligands.
Collapse
Affiliation(s)
- Michael Winter
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| | - Hyunwoo Kim
- Department of ChemistryKorea Advanced Institute of Science and Technology291 Daehak‐ro34141DaejeonYuseong‐guRepublic of Korea
| | - Mario Waser
- Institute of Organic ChemistryJohannes Kepler University LinzAltenbergerstr. 694040LinzAustria
| |
Collapse
|
38
|
Takata T, Hirano K, Miura M. Synthesis of α-Trifluoromethylamines by Cu-Catalyzed Regio- and Enantioselective Hydroamination of 1-Trifluoromethylalkenes. Org Lett 2019; 21:4284-4288. [DOI: 10.1021/acs.orglett.9b01471] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Tatsuaki Takata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
39
|
Miyagawa M, Yoshida M, Kiyota Y, Akiyama T. Enantioselective Friedel–Crafts Alkylation Reaction of Heteroarenes with N‐Unprotected Trifluoromethyl Ketimines by Means of Chiral Phosphoric Acid. Chemistry 2019; 25:5677-5681. [DOI: 10.1002/chem.201901020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Masamichi Miyagawa
- Department of ChemistryFaculty of ScienceGakushuin University, Mejiro Toshima-ku Tokyo 171-8588 Japan
| | - Masaru Yoshida
- Department of ChemistryFaculty of ScienceGakushuin University, Mejiro Toshima-ku Tokyo 171-8588 Japan
| | - Yuki Kiyota
- Department of ChemistryFaculty of ScienceGakushuin University, Mejiro Toshima-ku Tokyo 171-8588 Japan
| | - Takahiko Akiyama
- Department of ChemistryFaculty of ScienceGakushuin University, Mejiro Toshima-ku Tokyo 171-8588 Japan
| |
Collapse
|
40
|
Yeung K, Talbot FJT, Howell GP, Pulis AP, Procter DJ. Copper-Catalyzed Borylative Multicomponent Synthesis of Quaternary α-Amino Esters. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04563] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Kay Yeung
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Fabien J. T. Talbot
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Gareth P. Howell
- Pharmaceutical Technology and Development, AstraZeneca, Silk Road Business Park, Macclesfield SK10 2NA, United Kingdom
| | - Alexander P. Pulis
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - David J. Procter
- School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
41
|
Liu P, Lei ZL, Peng YY, Liu ZJ, Zhu FQ, Liu JT, Wu F. Diastereoselective Trifluoromethylation of Chiral α,β-UnsaturatedN-tert-Butanesulfinyl Ketimines with Ruppert-Prakash Reagent: Asymmetric Synthesis of α-Tertiary Trifluoromethyl Allylic Amines. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800625] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Peng Liu
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 People's Republic of China
| | - Zhong-Liang Lei
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 People's Republic of China
| | - Ying-Ying Peng
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 People's Republic of China
| | - Zhen-Jiang Liu
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 People's Republic of China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Feng-Qun Zhu
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 People's Republic of China
| | - Jin-Tao Liu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Fanhong Wu
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 People's Republic of China
| |
Collapse
|
42
|
Zhang Y, Nie J, Zhang FG, Ma JA. Zinc-mediated enantioselective addition of terminal 3-en-1-ynes to cyclic trifluoromethyl ketimines. J Fluor Chem 2018. [DOI: 10.1016/j.jfluchem.2018.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Caillé J, Boukattaya F, Boeda F, Pearson-Long MSM, Ammar H, Bertus P. Successive addition of two different Grignard reagents to nitriles: access to α,α-disubstituted propargylamine derivatives. Org Biomol Chem 2018; 16:1519-1526. [PMID: 29419848 DOI: 10.1039/c7ob03047a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The successive addition of two different Grignard reagents to acyl cyanohydrins was performed with success by taking advantage of the low reactivity of alkynyl Grignard reagents. The experimental conditions were adjusted so that they were not reactive during the first addition step, but reactive only in the second one. The synthetic utility of the prepared compounds was validated by the preparation of chiral quaternary α-amino acids.
Collapse
Affiliation(s)
- Julien Caillé
- Le Mans Université (Université du Maine), CNRS UMR 6283, Institut des Molécules et Matériaux du Mans (IMMM), 72085 Le Mans Cedex 09, France.
| | | | | | | | | | | |
Collapse
|
44
|
Morisaki K, Morimoto H, Mashima K, Ohshima T. Development of Direct Enantioselective Alkynylation of α-Ketoester and α-Ketiminoesters Catalyzed by Phenylbis(oxazoline)Rh(III) Complexes. J SYN ORG CHEM JPN 2018. [DOI: 10.5059/yukigoseikyokaishi.76.226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | | | | | - Takashi Ohshima
- Graduate School of Pharmaceutical Sciences, Kyushu University
| |
Collapse
|
45
|
Chen Q, Xie L, Li Z, Tang Y, Zhao P, Lin L, Feng X, Liu X. Copper/guanidine-catalyzed asymmetric alkynylation of isatin-derived ketimines. Chem Commun (Camb) 2018; 54:678-681. [DOI: 10.1039/c7cc08920a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asymmetric alkynylation of isatin-derived ketimines was achieved using an easily available chiral guanidine ligand in combination with CuI under mild reaction conditions.
Collapse
Affiliation(s)
- Quangang Chen
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Lihua Xie
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Zhaojing Li
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Yu Tang
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Peng Zhao
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Lili Lin
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
| |
Collapse
|
46
|
Bai XY, Zhang WW, Li Q, Li BJ. Highly Enantioselective Synthesis of Propargyl Amides through Rh-Catalyzed Asymmetric Hydroalkynylation of Enamides: Scope, Mechanism, and Origin of Selectivity. J Am Chem Soc 2017; 140:506-514. [PMID: 29232516 DOI: 10.1021/jacs.7b12054] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Chiral propargyl amides are particularly useful structural units in organic synthesis. The enantioselective synthesis of propargyl amide is highly desirable. Conventional approach involves the use of a stoichiometric amount of metal reagent or chiral auxiliary. In comparison, direct alkynylation with terminal alkyne is attractive because it avoids the use of stoichiometric organometallic reagent. The asymmetric coupling of aldehyde, amine, and alkyne (A3-coupling) provides an efficient method for the synthesis of N-alkyl and N-aryl-substituted propargyl amines, but this strategy is not amenable for the direct enantioselective synthesis of propargyl amide. We have developed a new strategy and report here a Rh-catalyzed asymmetric hydroalkynylation of enamides. Alkynylations occur regioselectively at the α position of an enamide to produce chiral propargyl amides. High yield and enantioselectivity were observed. Previous alkynylation methods to prepare chiral propargyl amine involve the nucleophilic addition to an electron-deficient imine. In contrast, our current approach proceeds through regioselective hydroalkynylation of an electron-rich alkene. Kinetic studies indicated that migratory insertion of the enamide to the rhodium hydride is turnover limiting. Computational studies revealed the origin of regio- and enantioselectivities. This novel strategy provides an efficient method to access chiral propargyl amides directly from terminal alkynes.
Collapse
Affiliation(s)
- Xiao-Yan Bai
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Wen-Wen Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Qian Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University , Beijing 100084, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University , Beijing 100084, China
| |
Collapse
|
47
|
Sawa M, Morisaki K, Kondo Y, Morimoto H, Ohshima T. Direct Access to N-Unprotected α- and/or β-Tetrasubstituted Amino Acid Esters via Direct Catalytic Mannich-Type Reactions Using N-Unprotected Trifluoromethyl Ketimines. Chemistry 2017; 23:17022-17028. [PMID: 28950035 DOI: 10.1002/chem.201703516] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Indexed: 11/08/2022]
Abstract
Direct catalytic C-C bond-forming addition to N-unprotected ketimines is an efficient and straightforward method of synthesizing N-unprotected tetrasubstituted amines that eliminates prior protection/deprotection steps and allows facile transformation of the products. Despite its advantages, however, N-unprotected ketimines have difficulties in C-C bond-forming reactions, and only a limited number of reactions and substrates are reported compared with their N-protected counterparts. Herein we report that N-unprotected trifluoromethyl ketimines are effective for C-C bond-forming reactions using Mannich-type reactions as a model case. We demonstrate that Lewis acid catalysis was effective for promoting reactions with various N-unprotected trifluoromethyl ketimines, and thiourea organocatalysis was effective for promoting highly enantioselective reactions with various carbonyl nucleophiles, providing direct access to various N-unprotected α- and/or β-tetrasubstituted amino acid esters. Furthermore, direct construction of vicinal tetrasubstituted chiral carbon stereocenters was achieved for the first time in a highly enantio- and diastereoselective manner. These results demonstrate the potential of N-unprotected ketimines as substrates applicable to many other addition reactions.
Collapse
Affiliation(s)
- Masanao Sawa
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazuhiro Morisaki
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuta Kondo
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroyuki Morimoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takashi Ohshima
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
48
|
Foster RW, Lenz EN, Simpkins NS, Stead D. Organocatalytic Stereoconvergent Synthesis of α-CF 3 Amides: Triketopiperazines and Their Heterocyclic Metamorphosis. Chemistry 2017; 23:8810-8813. [PMID: 28493292 DOI: 10.1002/chem.201701548] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Indexed: 11/09/2022]
Abstract
The highly enantioselective alkylation of α-CF3 enolates, generated from triketopiperazines, has been accomplished through use of a bifunctional thiourea organocatalyst to facilitate 1,4-addition to varied enone acceptors. On treatment with appropriate nitrogen nucleophiles, the chiral triketopiperazine products undergo a metamorphosis, to provide novel fused heterocyclic lactams such as extended pyrazolopyrimidines.
Collapse
Affiliation(s)
- Robert W Foster
- Oncology, Innovative Medicines and Early Development, AstraZeneca, Darwin Building, 310 Cambridge Science Park, Cambridge, CB4 0WG, UK
| | - Eva N Lenz
- Oncology, Innovative Medicines and Early Development, AstraZeneca, Darwin Building, 310 Cambridge Science Park, Cambridge, CB4 0WG, UK
| | - Nigel S Simpkins
- School of Chemistry, University of Birmingham, Birmingham, B15 2TT, UK
| | - Darren Stead
- Oncology, Innovative Medicines and Early Development, AstraZeneca, Darwin Building, 310 Cambridge Science Park, Cambridge, CB4 0WG, UK
| |
Collapse
|
49
|
Affiliation(s)
| | - Maryam Zirak
- Department
of Chemistry, Payame Noor University, Tehran 19395-3697, Iran
| |
Collapse
|
50
|
Ling Z, Singh S, Xie F, Wu L, Zhang W. Copper-catalyzed asymmetric alkynylation of cyclic N-sulfonyl ketimines. Chem Commun (Camb) 2017; 53:5364-5367. [DOI: 10.1039/c7cc02159c] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A Cu-catalyzed asymmetric alkynylation of cyclic N-sulfonyl ketimines was developed, providing the corresponding chiral α-tertiary amines with up to 98% ee.
Collapse
Affiliation(s)
- Zheng Ling
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Sonia Singh
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Fang Xie
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Liang Wu
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Wanbin Zhang
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|