1
|
Prasad GD, Niranjan R, Arockiaraj M, Rajeshkumar V, Mahadevegowda SH. Synthesis of Di(thiophen-2-yl) Substituted Pyrene-Pyridine Conjugated Scaffold and DFT Insights: A Selective and Sensitive Colorimetric, and Ratiometric Fluorescent Sensor for Fe(III) Ions. J Fluoresc 2025; 35:789-803. [PMID: 38175457 DOI: 10.1007/s10895-023-03554-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
In this context, we used the multicomponent Chichibabin pyridine synthesis reaction to synthesize a novel di(thiophen-2-yl) substituted and pyrene-pyridine fluorescent molecular hybrid. The computational (DFT and TD-DFT) and experimental investigations were performed to understand the photophysical properties of the synthesized new structural scaffold. The synthesized ligand displays highly selective fluorescent sensing properties towards Fe3+ ions when compared to other competitive metal ions (Al3+, Ba2+, Ca2+, Cd2+, Co2+, Cr3+, Cu2+, Fe2+, Hg2+, Na+, Ni2+, Pb2+, Sr2+, Sn2+ and Zn2+). The photophysical properties studies reveal that the synthesized hybrid molecule has a binding constant of 2.30 × 103 M-1 with limit of detection (LOD) of 4.56 × 10-5 M (absorbance mode) and 5.84 × 10-5 M (emission mode) for Fe3+ ions. We believe that the synthesized pyrene-conjugated hybrid ligand can serve as a potential fluorescent chemosensor for the selective and specific detection of Fe3+ ions.
Collapse
Affiliation(s)
- G Durga Prasad
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, 534101, Andhra Pradesh, India
| | - Raghvendra Niranjan
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, 534101, Andhra Pradesh, India
| | - Mariyaraj Arockiaraj
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda, 506004, Telangana, India
| | - Venkatachalam Rajeshkumar
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda, 506004, Telangana, India
| | - Surendra H Mahadevegowda
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, 534101, Andhra Pradesh, India.
| |
Collapse
|
2
|
Niranjan R, Prasad GD, Achankunju S, Arockiaraj M, Velumani K, Nachimuthu K, Sundramoorthy AK, Neogi I, Nallasivam JL, Rajeshkumar V, Mahadevegowda SH. Multicomponent Reaction Based Tolyl-substituted and Pyrene-Pyridine Conjugated Isomeric Ratiometric Fluorescent Probes: A Comparative Investigation of Photophysical and Hg(II)-Sensing Behaviors. J Fluoresc 2024; 34:2613-2628. [PMID: 37864613 DOI: 10.1007/s10895-023-03467-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/05/2023] [Indexed: 10/23/2023]
Abstract
Herein, the synthesis of pyrene conjugated 2,6-di-ortho-tolylpyridine and 2,6-di-para-tolylpyridine structural isomers were achieved efficiently through multicomponent Chichibabin pyridine synthesis reaction. The DFT, TD-DFT and experimental investigations were carried out to investigate the photophysical behaviors of the synthesized novel pyrene-pyridine based isomeric probes. Our studies revealed that, due to the continuous conjugation of the pyrene, pyridine and tolyl moieties, the dihedral angles of the trisubstituents on the central pyridine moiety significantly influences the photophysical properties of the synthesized novel pyrene based fluorescent probes. Further, we have comparatively investigated the sensing behaviors of the synthesized tolyl-substituted isomeric ratiometric fluorescent probes with metal ions, our studies reveals that both the ortho and para tolyl ratiometric fluorescent probes have distinct photoemissive properties in selectively sensing of Hg2+ ions. Our studies indicates that, the para-tolyl substituted isomer displays more red-shift in wavelength of emission band compared to its ortho isomer analogue during ratiometric fluorescent specific detection of Hg2+ ions.
Collapse
Affiliation(s)
- Raghvendra Niranjan
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, 534101, Andhra Pradesh, India
| | - G Durga Prasad
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, 534101, Andhra Pradesh, India
| | - Simi Achankunju
- Chemical Sciences and Technology Division, CSIR-NIIST, Thiruvananthapuram, 695019, Kerala, India
| | - Mariyaraj Arockiaraj
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda, 506004, Telangana, India
| | - Kotteswaran Velumani
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai, 600077, Tamil Nadu, India
| | - Kiruthika Nachimuthu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - Ashok K Sundramoorthy
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Velappanchavadi, Chennai, 600077, Tamil Nadu, India
| | - Ishita Neogi
- Chemical Sciences and Technology Division, CSIR-NIIST, Thiruvananthapuram, 695019, Kerala, India
| | - Jothi L Nallasivam
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, Tamil Nadu, India
| | - Venkatachalam Rajeshkumar
- Organic Synthesis & Catalysis Lab, Department of Chemistry, National Institute of Technology Warangal, Hanumakonda, 506004, Telangana, India
| | - Surendra H Mahadevegowda
- Department of Chemistry, School of Sciences, National Institute of Technology Andhra Pradesh, Tadepalligudem, 534101, Andhra Pradesh, India.
| |
Collapse
|
3
|
Zhou Y, Maisonneuve S, Maurel F, Xie J, Métivier R. Competitive Photoisomerization and Energy Transfer Processes in Fluorescent Multichromophoric Systems. Chemistry 2022; 28:e202202071. [PMID: 36065043 PMCID: PMC10092411 DOI: 10.1002/chem.202202071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Indexed: 12/13/2022]
Abstract
Multichromophoric systems showing both fluorescence and photoisomerization are fascinating, with complex interchromophoric interactions. The experimental and theoretical study of a series of compounds, bearing a variable number of 4-dicyanomethylene-2-tert-butyl-6-(p-(N-(2-azidoethyl)-N-methyl)aminostyryl)-4H-pyran (DCM) units are reported. The photophysical properties of multi-DCM derivatives, namely 2DCM and 3DCM, were compared to the single model azido-functionalized DCM, in the E and Z isomers. The (EE)-2DCM and (EEE)-3DCM were synthesized via the click reaction. Steady-state spectroscopy and photokinetics experiments under UV or visible irradiation indicated the presence of intramolecular energy transfer processes among the DCM units. Homo- and hetero-energy transfer processes between adjacent chromophores were confirmed by fluorescence anisotropy and decays. Molecular dynamics simulations for 2DCM were carried out and analyzed using a Markov state model, providing geometrical parameters (orientation and distance between chromophores) and energy transfer efficiency. This work contributes to a better understanding and rationalization of multiple energy transfer processes occuring within multichromophoric systems.
Collapse
Affiliation(s)
- Yang Zhou
- ENS Paris-Saclay, Université Paris-Saclay CNRS, PPSM, 91190, Gif-sur-Yvette, France
| | - Stéphane Maisonneuve
- ENS Paris-Saclay, Université Paris-Saclay CNRS, PPSM, 91190, Gif-sur-Yvette, France
| | | | - Juan Xie
- ENS Paris-Saclay, Université Paris-Saclay CNRS, PPSM, 91190, Gif-sur-Yvette, France
| | - Rémi Métivier
- ENS Paris-Saclay, Université Paris-Saclay CNRS, PPSM, 91190, Gif-sur-Yvette, France
| |
Collapse
|
4
|
Villa M, Ceroni P, Fermi A. Tetrachromophoric Systems Based on Rigid Tetraphenylmethane (TPM) and Tetraphenylethylene (TPE) Scaffolds. Chempluschem 2022; 87:e202100558. [DOI: 10.1002/cplu.202100558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/01/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Marco Villa
- Universita di Bologna Department of Chemistry "Giacomo Ciamician" ITALY
| | - Paola Ceroni
- Universita di Bologna Depatment of Chemistry "G. Ciamician" ITALY
| | - Andrea Fermi
- Universita degli Studi di Bologna Dipartimento di Chimica Giacomo Ciamician Dipartimento di Chimica "Giacomo Ciamician" via Selmi 2 40126 Bologna ITALY
| |
Collapse
|
5
|
Villa M, Roy M, Bergamini G, Ceroni P, Gingras M. Highly Emissive Water-Soluble Polysulfurated Pyrene-Based Chromophores as Dual Mode Sensors of Metal Ions. Chempluschem 2021; 85:1481-1486. [PMID: 32644281 DOI: 10.1002/cplu.202000344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/16/2020] [Indexed: 12/27/2022]
Abstract
Pyrene-based materials have gained considerable attention as stimuli-responsive chemical sensors. We designed a polysulfurated arene system based on a tetra(phenylthio)pyrene core decorated with four carboxylic acid units. Three different regioisomers, ortho, meta and para were studied in organic and aqueous solution. These systems are soluble in water at pH≥8 due to the deprotonation of carboxylic acids. The addition of metal ions cannot only quench the fluorescence of the central pyrene core, but also control the formation of three-dimensional nanoscopic objects in a dual mode function. Several divalent metal ions were tested and compared. Addition of ethylenediaminetetraacetic acid (EDTA) disassembles the non-emissive supramolecular system and restores the initial fluorescence of the pyrene core.
Collapse
Affiliation(s)
- Marco Villa
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi, 2, 40126, Bologna, Italy.,Aix Marseille University, CNRS, CINaM, Marseille, France
| | - Myriam Roy
- Aix Marseille University, CNRS, CINaM, Marseille, France
| | - Giacomo Bergamini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Paola Ceroni
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Marc Gingras
- Aix Marseille University, CNRS, CINaM, Marseille, France
| |
Collapse
|
6
|
Qian X, Gong W, Li X, Fang L, Kuang X, Ning G. Fluorescent Cross-Linked Supramolecular Polymer Constructed by Orthogonal Self-Assembly of Metal-Ligand Coordination and Host-Guest Interaction. Chemistry 2016; 22:6881-90. [DOI: 10.1002/chem.201600561] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Xiaomin Qian
- Sate Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; No. 2, Linggong Road, High Tech Zone Dalian P.R. China
| | - Weitao Gong
- Sate Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; No. 2, Linggong Road, High Tech Zone Dalian P.R. China
| | - Xiaopeng Li
- Department of Chemistry and Biochemistry; Texas State University; San Marcos Texas 78666 USA
| | - Le Fang
- Sate Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; No. 2, Linggong Road, High Tech Zone Dalian P.R. China
| | - Xiaojun Kuang
- Sate Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; No. 2, Linggong Road, High Tech Zone Dalian P.R. China
| | - Guiling Ning
- Sate Key Laboratory of Fine Chemicals; School of Chemical Engineering; Dalian University of Technology; No. 2, Linggong Road, High Tech Zone Dalian P.R. China
| |
Collapse
|
7
|
Dubey RK, Inan D, Sengupta S, Sudhölter EJR, Grozema FC, Jager WF. Tunable and highly efficient light-harvesting antenna systems based on 1,7-perylene-3,4,9,10-tetracarboxylic acid derivatives. Chem Sci 2016; 7:3517-3532. [PMID: 29997844 PMCID: PMC6007178 DOI: 10.1039/c6sc00386a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/08/2016] [Indexed: 01/03/2023] Open
Abstract
Efficient harvesting of solar energy, without interference from electron transfer, is reported for a series of bichromophoric light-harvesting antenna molecules.
We report the synthesis and excited-state dynamics of a series of five bichromophoric light-harvesting antenna systems, which are capable of efficient harvesting of solar energy in the spectral range of 350–580 nm. These antenna systems have been synthesized in a modular fashion by the covalent attachment of blue light absorbing naphthalene monoimide energy donors (D1, D2, and D3) to green light absorbing perylene-3,4,9,10-tetracarboxylic acid derived energy acceptors, 1,7-perylene-3,4,9,10-tetracarboxylic tetrabutylester (A1), 1,7-perylene-3,4,9,10-tetracarboxylic monoimide dibutylester (A2), and 1,7-perylene-3,4,9,10-tetracarboxylic bisimide (A3). The energy donors have been linked at the 1,7-bay-positions of the perylene derivatives, thus leaving the peri positions free for further functionalization and device construction. A highly stable and rigid structure, with no electronic communication between the donor and acceptor components, has been realized via an all-aromatic non-conjugated phenoxy spacer between the constituent chromophores. The selection of donor naphthalene derivatives for attachment with perylene derivatives was based on the effective matching of their respective optical properties to achieve efficient excitation energy transfer (EET) by the Förster mechanism. A comprehensive study of the excited-state dynamics, in toluene, revealed quantitative and ultrafast (ca. 1 ps) intramolecular EET from donor naphthalene chromophores to the acceptor perylenes in all the studied systems. Electron transfer from the donor naphthalene chromophores to the acceptor perylenes has not been observed, not even for antenna systems in which this process is thermodynamically allowed. Due to the combination of an efficient and fast energy transfer along with broad absorption in the visible region, these antenna systems are promising materials for solar-to-electric and solar-to-fuel devices.
Collapse
Affiliation(s)
- Rajeev K Dubey
- Laboratory of Organic Materials & Interfaces , Department of Chemical Engineering , Delft University of Technology , Julianalaan 136 , 2628BL Delft , The Netherlands . .,Laboratory of Optoelectronic Materials , Department of Chemical Engineering , Delft University of Technology , Julianalaan 136 , 2628BL Delft , The Netherlands
| | - Damla Inan
- Laboratory of Optoelectronic Materials , Department of Chemical Engineering , Delft University of Technology , Julianalaan 136 , 2628BL Delft , The Netherlands
| | - Sanchita Sengupta
- Laboratory of Organic Materials & Interfaces , Department of Chemical Engineering , Delft University of Technology , Julianalaan 136 , 2628BL Delft , The Netherlands . .,Laboratory of Optoelectronic Materials , Department of Chemical Engineering , Delft University of Technology , Julianalaan 136 , 2628BL Delft , The Netherlands
| | - Ernst J R Sudhölter
- Laboratory of Organic Materials & Interfaces , Department of Chemical Engineering , Delft University of Technology , Julianalaan 136 , 2628BL Delft , The Netherlands .
| | - Ferdinand C Grozema
- Laboratory of Optoelectronic Materials , Department of Chemical Engineering , Delft University of Technology , Julianalaan 136 , 2628BL Delft , The Netherlands
| | - Wolter F Jager
- Laboratory of Organic Materials & Interfaces , Department of Chemical Engineering , Delft University of Technology , Julianalaan 136 , 2628BL Delft , The Netherlands .
| |
Collapse
|
8
|
Wu Y, Wang J, Zeng F, Huang S, Huang J, Xie H, Yu C, Wu S. Pyrene Derivative Emitting Red or near-Infrared Light with Monomer/Excimer Conversion and Its Application to Ratiometric Detection of Hypochlorite. ACS APPLIED MATERIALS & INTERFACES 2016; 8:1511-1519. [PMID: 26701212 DOI: 10.1021/acsami.5b11023] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Fluorescent sensors are attractive and versatile tools for both chemical sensing and biological imaging. Herein, a novel pyrene derivative fluorophore, Py-Cy, possessing the monomer/excimer conversion feature, was synthesized; and the design rationale for this fluorophore is combination of extending conjugation length and incorporating donor-π-acceptor structure. The positively charged Py-Cy shows quite good water solubility and exhibits absorption in the visible-light range, and its monomer and excimer emit red light and near-infrared light respectively, which is extremely beneficial for biosensing or bioimaging. To explore the potential utilization of this new fluorophore, we choose hypochlorite as a model analyte, which can break the double bond in the molecular structure, thereby generating the water-insoluble pyrenecarboxaldehyde; this process correspondingly leads to fluorescence changes and thus affords the ratiometric fluorescent detection of hypochlorite in real samples and cell imaging. The approach offers new insights for designing other fluorophores which emit red or near-infrared light and for devising technically simple ratiometric fluorescent sensors.
Collapse
Affiliation(s)
- Yinglong Wu
- College of Materials Science & Engineering, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology , Guangzhou 510640, China
| | - Jun Wang
- College of Materials Science & Engineering, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology , Guangzhou 510640, China
| | - Fang Zeng
- College of Materials Science & Engineering, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology , Guangzhou 510640, China
| | - Shuailing Huang
- College of Materials Science & Engineering, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology , Guangzhou 510640, China
| | - Jing Huang
- College of Materials Science & Engineering, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology , Guangzhou 510640, China
| | - Huiting Xie
- College of Materials Science & Engineering, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology , Guangzhou 510640, China
| | - Changmin Yu
- College of Materials Science & Engineering, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology , Guangzhou 510640, China
| | - Shuizhu Wu
- College of Materials Science & Engineering, State Key Laboratory of Luminescent Materials & Devices, South China University of Technology , Guangzhou 510640, China
| |
Collapse
|
9
|
Praveen VK, Ajayaghosh A. Metallosupramolecular Materials for Energy Applications: Light Harvesting. FUNCTIONAL METALLOSUPRAMOLECULAR MATERIALS 2015. [DOI: 10.1039/9781782622673-00318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Excitation energy transfer, a key process in natural light harvesting systems, has been extensively investigated with the help of synthetic molecular and supramolecular systems. The knowledge gathered from these studies has contributed to the development of novel energy harvesting materials that could find applications in nano-electronics and photonics, of which metallosupramolecular assemblies are one such class. In this chapter, the exciting developments in the use of metallosupramolecular materials in energy applications such as light harvesting are described. Emphasis is given to the state-of-the-art summary in the design and properties of metal–organic frameworks, self-assembled coordination polymers and metallogels, which all have prospects for light harvesting applications.
Collapse
Affiliation(s)
- Vakayil K. Praveen
- Photosciences and Photonics Group, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Trivandrum-695019 India
| | - Ayyappanpillai Ajayaghosh
- Photosciences and Photonics Group, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Trivandrum-695019 India
| |
Collapse
|
10
|
Molloy JK, Pillai Z, Sakamoto J, Ceroni P, Bergamini G. Lanthanide Terpyridine-Based Assemblies: Towards Dual Luminescent Probes. ASIAN J ORG CHEM 2015. [DOI: 10.1002/ajoc.201402268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Karmakar S, Maity D, Mardanya S, Baitalik S. Multichromophoric Bimetallic Ru(II) Terpyridine Complexes Based on Pyrenyl-bis-phenylimidazole Spacer: Synthesis, Photophysics, Spectroelectrochemistry, and TD-DFT Calculations. Inorg Chem 2014; 53:12036-49. [DOI: 10.1021/ic501741r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Srikanta Karmakar
- Department of Chemistry,
Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Dinesh Maity
- Department of Chemistry,
Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Sourav Mardanya
- Department of Chemistry,
Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Sujoy Baitalik
- Department of Chemistry,
Inorganic Chemistry Section, Jadavpur University, Kolkata 700032, India
| |
Collapse
|