1
|
Robertson AG, Hall AJ, Marfavi A, Rendina LM. Superior Tumor Cell Uptake by Mono- and Tri-Nuclear Rhodamine-Gadolinium(III) Agents. Chemistry 2024; 30:e202402244. [PMID: 39048509 DOI: 10.1002/chem.202402244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024]
Abstract
The synthesis and characterization of a novel trinuclear rhodamine-Gd(III) complex, along with two analogous mononuclear rhodamine-Gd(III) complexes, are reported. All complexes displayed good selectivity in a human glioma cell line (T98G) when compared to a glial cell line (SVG p12), with low cytotoxicities. Superior tumor cell uptake for these Gd(III) complexes was observed at lower incubation concentrations compared to previously-reported delocalized lipophilic cations such as a rhodamine-lanthanoid(III) probe and Gd(III)-arylphosphonium complexes, with ca. 150 % and 250 % increases in Gd uptake, respectively.
Collapse
Affiliation(s)
- Amy G Robertson
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew J Hall
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Anita Marfavi
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Nano Institute, Sydney, NSW 2006, Australia
| | - Louis M Rendina
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Nano Institute, Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
Howell N, Middleton RJ, Sierro F, Fraser BH, Wyatt NA, Chacon A, Bambery KR, Livio E, Dobie C, Bevitt JJ, Davies J, Dosseto A, Franklin DR, Garbe U, Guatelli S, Hirayama R, Matsufuji N, Mohammadi A, Mutimer K, Rendina LM, Rosenfeld AB, Safavi-Naeini M. Neutron Capture Enhances Dose and Reduces Cancer Cell Viability in and out of Beam During Helium and Carbon Ion Therapy. Int J Radiat Oncol Biol Phys 2024; 120:229-242. [PMID: 38479560 DOI: 10.1016/j.ijrobp.2024.02.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 02/10/2024] [Accepted: 02/24/2024] [Indexed: 04/14/2024]
Abstract
PURPOSE Neutron capture enhanced particle therapy (NCEPT) is a proposed augmentation of charged particle therapy that exploits thermal neutrons generated internally, within the treatment volume via nuclear fragmentation, to deliver a biochemically targeted radiation dose to cancer cells. This work is the first experimental demonstration of NCEPT, performed using both carbon and helium ion beams with 2 different targeted neutron capture agents (NCAs). METHODS AND MATERIALS Human glioblastoma cells (T98G) were irradiated by carbon and helium ion beams in the presence of NCAs [10B]-BPA and [157Gd]-DOTA-TPP. Cells were positioned within a polymethyl methacrylate phantom either laterally adjacent to or within a 100 × 100 × 60 mm spread out Bragg peak (SOBP). The effect of NCAs and location relative to the SOBP on the cells was measured by cell growth and survival assays in 6 independent experiments. Neutron fluence within the phantom was characterized by quantifying the neutron activation of gold foil. RESULTS Cells placed inside the treatment volume reached 10% survival by 2 Gy of carbon or 2 to 3 Gy of helium in the presence of NCAs compared with 5 Gy of carbon and 7 Gy of helium with no NCA. Cells placed adjacent to the treatment volume showed a dose-dependent decrease in cell growth when treated with NCAs, reaching 10% survival by 6 Gy of carbon or helium (to the treatment volume), compared with no detectable effect on cells without NCA. The mean thermal neutron fluence at the center of the SOBP was approximately 2.2 × 109 n/cm2/Gy (relative biological effectiveness) for the carbon beam and 5.8 × 109 n/cm2/Gy (relative biological effectiveness) for the helium beam and gradually decreased in all directions. CONCLUSIONS The addition of NCAs to cancer cells during carbon and helium beam irradiation has a measurable effect on cell survival and growth in vitro. Through the capture of internally generated neutrons, NCEPT introduces the concept of a biochemically targeted radiation dose to charged particle therapy. NCEPT enables the established pharmaceuticals and concepts of neutron capture therapy to be applied to a wider range of deeply situated and diffuse tumors, by targeting this dose to microinfiltrates and cells outside of defined treatment regions. These results also demonstrate the potential for NCEPT to provide an increased dose to tumor tissue within the treatment volume, with a reduction in radiation doses to off-target tissue.
Collapse
Affiliation(s)
- Nicholas Howell
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Ryan J Middleton
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Frederic Sierro
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Benjamin H Fraser
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Naomi A Wyatt
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Andrew Chacon
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Keith R Bambery
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Elle Livio
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Christopher Dobie
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Joseph J Bevitt
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Justin Davies
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Anthony Dosseto
- Wollongong Isotope Geochronology Laboratory, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - Daniel R Franklin
- School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, Australia
| | - Ulf Garbe
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Susanna Guatelli
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Ryoichi Hirayama
- National Institutes for Quantum Sciences and Technology, Chiba, Japan
| | | | - Akram Mohammadi
- National Institutes for Quantum Sciences and Technology, Chiba, Japan
| | - Karl Mutimer
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia
| | - Louis M Rendina
- School of Chemistry, The University of Sydney, Sydney, Australia; The University of Sydney Nano Institute, Sydney, Australia
| | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Mitra Safavi-Naeini
- Australian Nuclear Science and Technology Organisation, Lucas Heights, Australia; Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia.
| |
Collapse
|
3
|
Sun X, Wu L, Du L, Xu W, Han M. Targeting the organelle for radiosensitization in cancer radiotherapy. Asian J Pharm Sci 2024; 19:100903. [PMID: 38590796 PMCID: PMC10999375 DOI: 10.1016/j.ajps.2024.100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 04/10/2024] Open
Abstract
Radiotherapy is a well-established cytotoxic therapy for local solid cancers, utilizing high-energy ionizing radiation to destroy cancer cells. However, this method has several limitations, including low radiation energy deposition, severe damage to surrounding normal cells, and high tumor resistance to radiation. Among various radiotherapy methods, boron neutron capture therapy (BNCT) has emerged as a principal approach to improve the therapeutic ratio of malignancies and reduce lethality to surrounding normal tissue, but it remains deficient in terms of insufficient boron accumulation as well as short retention time, which limits the curative effect. Recently, a series of radiosensitizers that can selectively accumulate in specific organelles of cancer cells have been developed to precisely target radiotherapy, thereby reducing side effects of normal tissue damage, overcoming radioresistance, and improving radiosensitivity. In this review, we mainly focus on the field of nanomedicine-based cancer radiotherapy and discuss the organelle-targeted radiosensitizers, specifically including nucleus, mitochondria, endoplasmic reticulum and lysosomes. Furthermore, the organelle-targeted boron carriers used in BNCT are particularly presented. Through demonstrating recent developments in organelle-targeted radiosensitization, we hope to provide insight into the design of organelle-targeted radiosensitizers for clinical cancer treatment.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Linjie Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Lina Du
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wenhong Xu
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Afliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Min Han
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Afliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Hall AJ, Robertson AG, Baker RW, Hill LR, Rendina LM. Significant cell uptake of Gd(III)-diphenylphosphoryl-diphenylphosphonium complexes: evidence for a new conformationally-dependent tumour cell targeting vector. Chem Commun (Camb) 2023; 59:12511-12514. [PMID: 37789720 DOI: 10.1039/d3cc02706f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The synthesis, characterisation, and tumour cell uptake of six novel Gd(III)-diphenylphosphoryl-diphenylphosphonium complexes are reported. The propyl-linked Gd(III) complexes can accumulate inside human glioma cells at prodigious levels, approaching 1200%, over the parent triphenylphosphonium salts. DFT and quantum chemical topology analyses support a new type of conformationally-dependent tumour cell targeting vector.
Collapse
Affiliation(s)
- Andrew J Hall
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Amy G Robertson
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Robert W Baker
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Leila R Hill
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
| | - Louis M Rendina
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.
- The University of Sydney Nano Institute, Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Tabbakh F, Hosmane NS, Tajudin SM, Ghorashi AH, Morshedian N. Using 157Gd doped carbon and 157GdF4 nanoparticles in proton-targeted therapy for effectiveness enhancement and thermal neutron reduction: a simulation study. Sci Rep 2022; 12:17404. [PMID: 36258012 PMCID: PMC9579128 DOI: 10.1038/s41598-022-22429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/14/2022] [Indexed: 01/10/2023] Open
Abstract
There are two major problems in proton therapy. (1) In comparison with the gamma-ray therapy, proton therapy has only ~ 10% greater biological effectiveness, and (2) the risk of the secondary neutrons in proton therapy is another unsolved problem. In this report, the increase of biological effectiveness in proton therapy has been evaluated with better performance than 11B in the presence of two proposed nanomaterials of 157GdF4 and 157Gd doped carbon with the thermal neutron reduction due to the presence of 157Gd isotope. The present study is based on the microanalysis calculations using GEANT4 Monte Carlo tool and GEANT4-DNA package for the strand breaks measurement. It was found that the proposed method will increase the effectiveness corresponding to the alpha particles by more than 100% and also, potentially will decrease the thermal neutrons fluence, significantly. Also, in this work, a discussion is presented on a significant contribution of the secondary alpha particles in total effectiveness in proton therapy.
Collapse
Affiliation(s)
- Farshid Tabbakh
- grid.459846.20000 0004 0611 7306Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, Tehran, 14155-1339 Iran
| | - Narayan S. Hosmane
- grid.261128.e0000 0000 9003 8934Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115-2862 USA
| | - Suffian M. Tajudin
- grid.449643.80000 0000 9358 3479Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Terengganu, Terengganu Malaysia
| | - Amir-Hossein Ghorashi
- grid.459846.20000 0004 0611 7306Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, Tehran, 14155-1339 Iran
| | - Nader Morshedian
- grid.459846.20000 0004 0611 7306Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, Tehran, 14155-1339 Iran
| |
Collapse
|
6
|
Windsor MSA, Busse M, Morrison DE, Baker RW, Hill LR, Rendina LM. Selective delivery of remarkably high levels of gadolinium to tumour cells using an arsonium salt. Chem Commun (Camb) 2021; 57:8806-8809. [PMID: 34382631 DOI: 10.1039/d1cc03082e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of a triphenylarsonium vector for tumour cell-targeting leads to a dramatic increase in Gd3+ uptake in human glioblastoma multiforme cells by up to an order of magnitude over the isosteric triarylphosphonium analogue, with significant implications for 'theranostic' applications involving delivery of this important lanthanoid metal ion to tumour cells.
Collapse
|
7
|
Van Delinder KW, Khan R, Gräfe JL. Radiobiological impact of gadolinium neutron capture from proton therapy and alternative neutron sources using TOPAS-nBio. Med Phys 2021; 48:4004-4016. [PMID: 33959981 DOI: 10.1002/mp.14928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 02/02/2023] Open
Abstract
PURPOSE A multi-scale investigation of the biological properties of gadolinium neutron capture (GdNC) therapy with applications in particle therapy is conducted using the TOPAS Monte Carlo (MC) simulation code. The simulation results are used to quantify the amount of gadolinium dose enhancement produced as a result of the secondary neutron production from proton therapy scaled by measured data. MATERIALS AND METHODS MC modeling was performed using the radiobiology extension TOol for PArticle Simulation TOPAS-nBio MC simulation code to study the radiobiological effects produced from GdNC on a segment of DNA, a spherical cellular model, and from the modeling of previous experimental measurements. The average RBE values were calculated from two methods, microdosimetric kinematic (MK) and biological weighting r(y) within a 2 nm DNA segment for GdNC. The single-strand breaks (SSBs) and double-strand breaks (DSBs) were calculated from within the nucleus of a 20 µm diameter, spherical cell model. From a previous experimental proton therapy measurement using a spread-out Bragg peak (SOBP) of 4.5-9.5 cm and a delivered absorbed dose of 10.4 Gy, the amount of Gd neutron captures was calculated and used to quantify the amount of GdNC absolute dose from particle therapy. RESULTS The average RBE from microdosimetric kinematic and biological weighting was 1.35, and 1.70 for a 10% cell survival on HSG cell-line and weighting function data from early intestinal tolerance of mice. From a central isotropic GdNC source, the energy deposition is found to decrease from roughly 2.7 eV per capture down to approximately 0.01 eV per capture, a drop of two orders of magnitude within 50 nm. This result suggests that Gd needs to be close to the DNA (within 10-20 nm) in order for neutron capture to induce a significant dose enhancement due to the short-range electrons emitted after Gd neutron capture. Within a spherical cell model, the SSBs, and DSBs were determined to be 39 and 1.5 per neutron capture, respectively. From the total neutron captures produced from an experimental proton therapy measurement on a 3000 PPM Gd solution, an insignificant absolute Gd dose enhancement was quantified to be 5.4 × 10-6 Gy per Gy of administered proton dose. CONCLUSION From this study and literature review, the production of secondary thermal neutrons from proton therapy is determined to be a limiting factor and unlikely to produce a clinically useful dose enhancement for secondary neutron capture therapy. Moreover, alternative neutron sources, such as, a compact deuterium-tritium (D-T) neutron generator, a "high yield" deuterium-deuterium (D-D) generator, or an industrial strength (100 mg) 252 Cf source were investigated, with the 252 Cf source the most likely to be capable of producing enough neutrons for 1 Gy of localized GdNC absolute dose within a reasonable treatment time.
Collapse
Affiliation(s)
- Kurt W Van Delinder
- Department of Physics, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON, M5B 2K3, Canada
| | - Rao Khan
- Department of Radiation Oncology, Medical Physics Division, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO, 63110, USA
| | - James L Gräfe
- Department of Physics, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON, M5B 2K3, Canada
| |
Collapse
|
8
|
Hall AJ, Robertson AG, Hill LR, Rendina LM. Synthesis and tumour cell uptake studies of gadolinium(III)-phosphonium complexes. Sci Rep 2021; 11:598. [PMID: 33436690 PMCID: PMC7804430 DOI: 10.1038/s41598-020-79893-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/14/2020] [Indexed: 11/09/2022] Open
Abstract
The synthesis of a new series of Gd(III)-arylphosphonium complexes is described and the solution stability of selected compounds is reported. Their lipophilicity and uptake in human glial (SVG p12) and human glioblastoma multiforme (T98G) cell lines are presented. The in vitro cytotoxicity of all complexes was determined to be low at therapeutically-relevant concentrations. Selected Gd(III) complexes are potential candidates for further investigation as theranostic agents.
Collapse
Affiliation(s)
- Andrew J Hall
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Amy G Robertson
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Leila R Hill
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Louis M Rendina
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia.
- The University of Sydney Nano Institute, Sydney, NSW, 2006, Australia.
| |
Collapse
|
9
|
Robertson AG, Rendina LM. Gadolinium theranostics for the diagnosis and treatment of cancer. Chem Soc Rev 2021; 50:4231-4244. [DOI: 10.1039/d0cs01075h] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Combining therapeutic and diagnostic tools into a single ‘theranostic’ platform lies at the forefront of cancer research. Some of the most promising theranostics exploit the unique nuclear and electronic properties of the lanthanoid metal gadolinium.
Collapse
Affiliation(s)
| | - Louis M. Rendina
- School of Chemistry
- The University of Sydney
- Sydney
- Australia
- The University of Sydney
| |
Collapse
|
10
|
Van Delinder KW, Khan R, Gräfe JL. Neutron activation of gadolinium for ion therapy: a Monte Carlo study of charged particle beams. Sci Rep 2020; 10:13417. [PMID: 32770174 PMCID: PMC7414875 DOI: 10.1038/s41598-020-70429-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022] Open
Abstract
This study investigates the photon production from thermal neutron capture in a gadolinium (Gd) infused tumor as a result of secondary neutrons from particle therapy. Gadolinium contrast agents used in MRI are distributed within the tumor volume and can act as neutron capture agents. As a result of particle therapy, secondary neutrons are produced and absorbed by Gd in the tumor providing potential enhanced localized dose in addition to a signature photon spectrum that can be used to produce an image of the Gd enriched tumor. To investigate this imaging application, Monte Carlo (MC) simulations were performed for 10 different particles using a 5-10 cm spread out-Bragg peak (SOBP) centered on an 8 cm3, 3 mg/g Gd infused tumor. For a proton beam, 1.9 × 106 neutron captures per RBE weighted Gray Equivalent dose (GyE) occurred within the Gd tumor region. Antiprotons ([Formula: see text]), negative pions (- π), and helium (He) ion beams resulted in 10, 17 and 1.3 times larger Gd neutron captures per GyE than protons, respectively. Therefore, the characteristic photon based spectroscopic imaging and secondary Gd dose enhancement could be viable and likely beneficial for these three particles.
Collapse
Affiliation(s)
- Kurt W Van Delinder
- Department of Physics, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON, M5B 2K3, Canada.
| | - Rao Khan
- Medical Physics Division, Department of Radiation Oncology, Washington University School of Medicine, 660 S Euclid Ave, St Louis, MO, 63110, USA
| | - James L Gräfe
- Department of Physics, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON, M5B 2K3, Canada
| |
Collapse
|
11
|
Kolter M, Koszinowski K. Formation of Transient Anionic Metal Clusters in Palladium/Diene-Catalyzed Cross-Coupling Reactions. Chemistry 2019; 25:13376-13384. [PMID: 31335999 PMCID: PMC7687115 DOI: 10.1002/chem.201902610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/11/2019] [Indexed: 12/30/2022]
Abstract
Despite their considerable practical value, palladium/1,3-diene-catalyzed cross-coupling reactions between Grignard reagents RMgCl and alkyl halides AlkylX remain mechanistically poorly understood. Herein, we probe the intermediates formed in these reactions by a combination of electrospray-ionization mass spectrometry, UV/Vis spectroscopy, and NMR spectroscopy. According to our results and in line with previous hypotheses, the first step of the catalytic cycle brings about transmetalation to afford organopalladate anions. These organopalladate anions apparently undergo SN 2-type reactions with the AlkylX coupling partner. The resulting neutral complexes then release the cross-coupling products by reductive elimination. In gas-phase fragmentation experiments, the occurrence of reductive eliminations was observed for anionic analogues of the neutral complexes. Although the actual catalytic cycle is supposed to involve chiefly mononuclear palladium species, anionic palladium nanoclusters [Pdn R(DE)n ]- , (n=2, 4, 6; DE=diene) were also observed. At short reaction times, the dinuclear complexes usually predominated, whereas at longer times the tetra- and hexanuclear clusters became relatively more abundant. In parallel, the formation of palladium black pointed to continued aggregation processes. Thus, the present study directly shows dynamic behavior of the palladium/diene catalyst system and degradation of the active catalyst with increasing reaction time.
Collapse
Affiliation(s)
- Marlene Kolter
- Institut für Organische und Biomolekulare ChemieUniversität GöttingenTammannstrasse 237077GöttingenGermany
| | - Konrad Koszinowski
- Institut für Organische und Biomolekulare ChemieUniversität GöttingenTammannstrasse 237077GöttingenGermany
| |
Collapse
|
12
|
Ong HC, Hu Z, Coimbra JTS, Ramos MJ, Kon OL, Xing B, Yeow EKL, Fernandes PA, García F. Enabling Mitochondrial Uptake of Lipophilic Dications Using Methylated Triphenylphosphonium Moieties. Inorg Chem 2019; 58:8293-8299. [DOI: 10.1021/acs.inorgchem.8b03380] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- How Chee Ong
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Zhang Hu
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - João T. S. Coimbra
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Maria J. Ramos
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Oi Lian Kon
- Division of Medical Sciences, Laboratory of Applied Human Genetics, Humphrey Oei Institute of Cancer Research, National Cancer Centre, 169610, Singapore
| | - Bengang Xing
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Edwin K. L. Yeow
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Pedro A. Fernandes
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Felipe García
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| |
Collapse
|
13
|
Petrović A, Milutinović MM, Petri ET, Živanović M, Milivojević N, Puchta R, Scheurer A, Korzekwa J, Klisurić OR, Bogojeski J. Synthesis of Camphor-Derived Bis(pyrazolylpyridine) Rhodium(III) Complexes: Structure-Reactivity Relationships and Biological Activity. Inorg Chem 2018; 58:307-319. [PMID: 30565467 DOI: 10.1021/acs.inorgchem.8b02390] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Two novel rhodium(III) complexes, namely, [RhIII(X)Cl3] (X = 2 2,6-bis((4 S,7 R)-7,8,8-trimethyl-4,5,6,7-tetrahydro-1 H-4,7-methanoindazol-3-yl)pyridine or 2,6-bis((4 S,7 R)-1,7,8,8-tetramethyl-4,5,6,7-tetrahydro-1 H-4,7-methanoindazol-3-yl)pyridine), were synthesized from camphor derivatives of a bis(pyrazolylpyridine), tridentate nitrogen-donor chelate system, giving [RhIII(H2L*)Cl3] (1a) and [RhIII(Me2L*)Cl3] (1b). A rhodium(III) terpyridine (terpy) ligand complex, [RhIII(terpy)Cl3] (1c), was also synthesized. By single-crystal X-ray analysis, 1b crystallizes in an orthorhombic P212121 system, with two molecules in the asymmetric unit. Tridentate coordination by the N,N,N-donor localizes the central nitrogen atom close to the rhodium(III) center. Compounds 1a and 1b were reactive toward l-methionine (l-Met), guanosine-5'-monophosphate (5'-GMP), and glutathione (GSH), with an order of reactivity of 5'-GMP > GSH > l-Met. The order of reactivity of the RhIII complexes was: 1b> 1a > 1c. The RhIII complexes showed affinity for calf thymus DNA and bovine serum albumin by UV-vis and emission spectral studies. Furthermore, 1b showed significant in vitro cytotoxicity against human epithelial colorectal carcinoma cells. Since the RhIII complexes have similar coordination modes, stability differences were evaluated by density functional theory (DFT) calculations (B3LYP(CPCM)/LANL2DZp). With (H2L*) and (terpy) as model ligands, DFT calculations suggest that both tridentate ligand systems have similar stability. In addition, molecular docking suggests that all test compounds have affinity for the minor groove of DNA, while 1b and 1c have potential for DNA intercalation.
Collapse
Affiliation(s)
- Angelina Petrović
- Faculty of Science , University of Kragujevac , Radoja Domanovića 12 , 34000 Kragujevac , Serbia
| | - Milan M Milutinović
- Faculty of Science , University of Kragujevac , Radoja Domanovića 12 , 34000 Kragujevac , Serbia.,Department of Organic Chemistry , University of Paderborn , Warburgerstraße 100 , 33098 Paderborn , Germany
| | | | - Marko Živanović
- Faculty of Science , University of Kragujevac , Radoja Domanovića 12 , 34000 Kragujevac , Serbia
| | - Nevena Milivojević
- Faculty of Science , University of Kragujevac , Radoja Domanovića 12 , 34000 Kragujevac , Serbia
| | | | | | | | | | - Jovana Bogojeski
- Faculty of Science , University of Kragujevac , Radoja Domanovića 12 , 34000 Kragujevac , Serbia
| |
Collapse
|
14
|
Safavi-Naeini M, Chacon A, Guatelli S, Franklin DR, Bambery K, Gregoire MC, Rosenfeld A. Opportunistic dose amplification for proton and carbon ion therapy via capture of internally generated thermal neutrons. Sci Rep 2018; 8:16257. [PMID: 30390002 PMCID: PMC6215016 DOI: 10.1038/s41598-018-34643-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
This paper presents Neutron Capture Enhanced Particle Therapy (NCEPT), a method for enhancing the radiation dose delivered to a tumour relative to surrounding healthy tissues during proton and carbon ion therapy by capturing thermal neutrons produced inside the treatment volume during irradiation. NCEPT utilises extant and in-development boron-10 and gadolinium-157-based drugs from the related field of neutron capture therapy. Using Monte Carlo simulations, we demonstrate that a typical proton or carbon ion therapy treatment plan generates an approximately uniform thermal neutron field within the target volume, centred around the beam path. The tissue concentrations of neutron capture agents required to obtain an arbitrary 10% increase in biological effective dose are estimated for realistic treatment plans, and compared to concentrations previously reported in the literature. We conclude that the proposed method is theoretically feasible, and can provide a worthwhile improvement in the dose delivered to the tumour relative to healthy tissue with readily achievable concentrations of neutron capture enhancement drugs.
Collapse
Affiliation(s)
- Mitra Safavi-Naeini
- Australian Nuclear Science and Technology Organisation (ANSTO), Sydney, Australia.
- Centre for Medical Radiation Physics, University of Wollongong, Sydney, Australia.
| | - Andrew Chacon
- Australian Nuclear Science and Technology Organisation (ANSTO), Sydney, Australia
- Centre for Medical Radiation Physics, University of Wollongong, Sydney, Australia
| | - Susanna Guatelli
- Centre for Medical Radiation Physics, University of Wollongong, Sydney, Australia
| | - Daniel R Franklin
- Faculty of Engineering & IT, University of Technology Sydney, Sydney, Australia
| | - Keith Bambery
- Australian Nuclear Science and Technology Organisation (ANSTO), Sydney, Australia
| | - Marie-Claude Gregoire
- Australian Nuclear Science and Technology Organisation (ANSTO), Sydney, Australia
- Centre for Medical Radiation Physics, University of Wollongong, Sydney, Australia
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Sydney, Australia
| |
Collapse
|
15
|
Kreyenschmidt F, Koszinowski K. Low-Valent Ate Complexes Formed in Cobalt-Catalyzed Cross-Coupling Reactions with 1,3-Dienes as Additives. Chemistry 2017; 24:1168-1177. [PMID: 29110364 DOI: 10.1002/chem.201704547] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Indexed: 12/23/2022]
Abstract
The combination of CoCl2 and 1,3-dienes is known to catalyze challenging alkyl-alkyl cross-coupling reactions between Grignard reagents and alkyl halides, but the mechanism of these valuable transformations remains speculative. Herein, electrospray-ionization mass spectrometry is used to identify and characterize the elusive intermediates of these and related reactions. The vast majority of detected species contain low-valent cobalt(I) centers and diene molecules. Charge tagging, deuterium labeling, and gas-phase fragmentation experiments elucidate the likely origin of these species and show that the diene not only binds to Co as a π ligand, but also undergoes migratory insertion reactions into Co-H and Co-R bonds. The resulting species have a strong tendency to form anionic cobalt(I) ate complexes, the superior nucleophilicity of which should render them highly reactive toward electrophilic substrates and, thus, presumably is the key to the high catalytic efficiency of the system under investigation. Upon the reaction of the in situ formed cobalt(I) ate complexes with organyl halides, only the final cross-coupling product could be detected, but no cobalt(III) species. This finding implies that this reaction step proceeds in a direct manner without any intermediate or, alternatively, that it involves an intermediate with a very short lifetime.
Collapse
Affiliation(s)
- Friedrich Kreyenschmidt
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Konrad Koszinowski
- Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| |
Collapse
|
16
|
Tumor cell uptake and selectivity of gadolinium(III)-phosphonium complexes: The role of delocalisation at the phosphonium centre. J Inorg Biochem 2017; 177:313-321. [DOI: 10.1016/j.jinorgbio.2017.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/21/2017] [Accepted: 07/02/2017] [Indexed: 12/22/2022]
|
17
|
Zielonka J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J, Cheng G, Lopez M, Kalyanaraman B. Mitochondria-Targeted Triphenylphosphonium-Based Compounds: Syntheses, Mechanisms of Action, and Therapeutic and Diagnostic Applications. Chem Rev 2017; 117:10043-10120. [PMID: 28654243 PMCID: PMC5611849 DOI: 10.1021/acs.chemrev.7b00042] [Citation(s) in RCA: 1053] [Impact Index Per Article: 131.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria are recognized as one of the most important targets for new drug design in cancer, cardiovascular, and neurological diseases. Currently, the most effective way to deliver drugs specifically to mitochondria is by covalent linking a lipophilic cation such as an alkyltriphenylphosphonium moiety to a pharmacophore of interest. Other delocalized lipophilic cations, such as rhodamine, natural and synthetic mitochondria-targeting peptides, and nanoparticle vehicles, have also been used for mitochondrial delivery of small molecules. Depending on the approach used, and the cell and mitochondrial membrane potentials, more than 1000-fold higher mitochondrial concentration can be achieved. Mitochondrial targeting has been developed to study mitochondrial physiology and dysfunction and the interaction between mitochondria and other subcellular organelles and for treatment of a variety of diseases such as neurodegeneration and cancer. In this Review, we discuss efforts to target small-molecule compounds to mitochondria for probing mitochondria function, as diagnostic tools and potential therapeutics. We describe the physicochemical basis for mitochondrial accumulation of lipophilic cations, synthetic chemistry strategies to target compounds to mitochondria, mitochondrial probes, and sensors, and examples of mitochondrial targeting of bioactive compounds. Finally, we review published attempts to apply mitochondria-targeted agents for the treatment of cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Lodz University of Technology, ul. Wroblewskiego 15, 93-590 Lodz, Poland
| | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR, UMR 7273, 13013 Marseille, France
| | - Jeannette Vasquez-Vivar
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Gang Cheng
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Marcos Lopez
- Translational Biomedical Research Group, Biotechnology Laboratories, Cardiovascular Foundation of Colombia, Carrera 5a No. 6-33, Floridablanca, Santander, Colombia, 681003
- Graduate Program of Biomedical Sciences, Faculty of Health, Universidad del Valle, Calle 4B No. 36-00, Cali, Colombia, 760032
| | - Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
18
|
Kardashinsky M, Lengkeek N, Rendina LM. Synthesis and stability studies of Ga-67 labeled phosphonium salts. J Labelled Comp Radiopharm 2016; 60:4-11. [DOI: 10.1002/jlcr.3448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 08/30/2016] [Indexed: 11/05/2022]
Affiliation(s)
| | - Nigel Lengkeek
- ANSTO Life Sciences, Australian Nuclear Science and Technology Organisation; NSW 2232 Australia
| | - Louis M. Rendina
- School of Chemistry; The University of Sydney; Sydney NSW 2006 Australia
| |
Collapse
|
19
|
Esteghamat-Panah R, Farrokhpour H, Hadadzadeh H, Abyar F, Rudbari HA. An experimental and quantum chemical study on the non-covalent interactions of a cyclometallated Rh(iii) complex with DNA and BSA. RSC Adv 2016. [DOI: 10.1039/c5ra24540k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The interaction of a new cyclometallated Rh(iii) complex with DNA and BSA was investigated. The three-layer ONIOM method was employed to calculate the interaction energy between DNA and the complex.
Collapse
Affiliation(s)
| | - Hossein Farrokhpour
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | - Hassan Hadadzadeh
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | - Fatemeh Abyar
- Department of Engineering
- Ardakan University
- Ardakan 89518-95491
- Iran
| | | |
Collapse
|
20
|
Zhang X, Ba Q, Gu Z, Guo D, Zhou Y, Xu Y, Wang H, Ye D, Liu H. Fluorescent Coumarin-Artemisinin Conjugates as Mitochondria-Targeting Theranostic Probes for Enhanced Anticancer Activities. Chemistry 2015; 21:17415-21. [DOI: 10.1002/chem.201502543] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 12/20/2022]
|