1
|
Singh P, Deepshikha, Lal N, Mane MV, Shaikh AC. Ruthenium-Catalyzed Intramolecular Allene-alkyne Cascade Cyclization: Access to the Sulfone-cyclopenta[ a]naphthalene Core. Org Lett 2025; 27:1153-1158. [PMID: 39879148 DOI: 10.1021/acs.orglett.4c04659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
A ruthenium-catalyzed intramolecular cascade cyclization of allene-alkyne has been achieved. This method offers a streamlined and atom-economical approach for the construction of sulfone bearing 1H-cyclopenta[a]naphthalenes, an important structural scaffold that exists in biologically active compounds. Our approach, backed by mechanistic insights from deuterium labeling, DFT calculations, and potential for reaction scale-up, presents synthetic chemists with an invaluable tool for efficiently producing a distinct carbon framework in a one-pot manner. This protocol is operationally simple, exhibiting a broad substrate scope with consistently high yields.
Collapse
Affiliation(s)
- Puja Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Deepshikha
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Nand Lal
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Manoj V Mane
- Centre of Nano and Material Sciences, Jain (Deemed-to-be-University), Jain Global Campus, Kanakapura, Bangalore, 562112 Karnataka, India
| | - Aslam C Shaikh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
2
|
Xu C, Zhang H, Lan S, Liu J, Yang S, Zhang Q, Fang X. Copper-Catalysed Rearrangement of Cyclic Ethynylethylene Carbonates: Synthetic Applications and Mechanistic Studies. Angew Chem Int Ed Engl 2023; 62:e202219064. [PMID: 36759324 DOI: 10.1002/anie.202219064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Transition-metal-catalysed reactions of cyclic ethynylethylene carbonates have been intensively studied because of their robustness in new bond formation and diversified molecule construction. Known reaction modes usually involve a substitution step occurring at either the propargylic or terminal alkyne positions. Here, we report an unprecedented reaction pattern in which cyclic ethynylethylene carbonates first undergo a rearrangement to release allenal intermediates, which subsequently react with diverse nucleophiles to furnish synthetically useful allylic and propargylic allenols, phosphorus ylides, and cyclopropylidene ketones through an addition process rather than a substitution pathway. The products enable various further transformations, and mechanistic studies and theoretical calculations reveal that the reaction does not proceed via a semipinacol type [1,2]-hydride shift, but through base-mediated deprotonation as the key step to induce the rearrangement.
Collapse
Affiliation(s)
- Chao Xu
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou, 350100, China
| | - Hao Zhang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou, 350100, China
| | - Shouang Lan
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou, 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou, 350100, China
| | - Qi Zhang
- Institute of Industry & Equipment Technology, Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Hefei University of Technology, Hefei, 230009, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou, 350100, China
| |
Collapse
|
3
|
Ghotekar GS, Shinde RA, Saswade SS, Muthukrishnan M. Palladium-Catalyzed Oxidative Cyclization of α-Allenols in the Presence of TBN: Access to 3(2 H)-Furanones. J Org Chem 2023; 88:4112-4122. [PMID: 36912461 DOI: 10.1021/acs.joc.2c02457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
A new palladium-catalyzed oxidative cyclization of α-allenols is described. The readily accessible α-allenols participate in intra-molecular oxidative cyclization in the presence of TBN to grant access to multisubstituted 3(2H)-furanones, which are common motifs in several biologically important natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Ganesh S Ghotekar
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ravi A Shinde
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sagar S Saswade
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - M Muthukrishnan
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Borra S, Kim HY, Oh K. One-Pot Tandem Nickel-Catalyzed α-Vinyl Aldol Reaction and Cycloaddition Approach to [1,2,3]Triazolo[1,5- a]quinolines. Org Lett 2023; 25:288-292. [PMID: 36580377 DOI: 10.1021/acs.orglett.2c04188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A one-pot tandem approach to [1,2,3]triazolo[1,5-a]quinolines was developed from (E)-β-chlorovinyl ketones and 2-azidoaryl carbonyls using a sequence of α-vinyl aldol and azide-alkyne cycloaddition reactions. In particular, the intramolecular azide-alkyne cycloaddition of allenol intermediates was readily promoted by a synergistic action of NEt3 and nickel catalysts. Given that the [1,2,3]triazolo[1,5-a]quinolines are useful synthetic precursors to α-diazoimines through ring-chain isomerization process, the subsequent denitrogenative transformations should provide ready access to valuable heterocyclic compounds.
Collapse
Affiliation(s)
- Satheesh Borra
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Hun Young Kim
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| |
Collapse
|
5
|
Scott KA, Groch JR, Chogii I, Delost MD, Das P, Njardarson JT. Dienolate Annulation Approach for Assembly of Densely Substituted Aromatic Architectures. J Org Chem 2021; 86:10555-10567. [PMID: 34283591 DOI: 10.1021/acs.joc.1c01211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The efficient assembly of complex aromatic structures from simple acyclic building blocks is reported. An anion-cascade union of an enoate and a conjugated imine affords cyclohexenone products, which are readily aromatized to phenols. By engaging the intermediate cyclohexenones with Grignard reagents, a facile addition/elimination proceeds yielding chiral cyclohexadienes, which are then aromatized. In a complementary approach, the cyclohexenone products are converted into enol triflates, which provides a gateway to diverse aromatic architectures following cross-couplings and aromatization steps.
Collapse
|
6
|
Kulkarni AS, Ramesh E, Srinivasa Reddy D. One‐Pot Oxidation of Secondary Alcohols to
α
‐Hydroxy Ketones: Application to Synthesis of Oxoaplysinopsin D, E, F, & G. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Akshay S. Kulkarni
- Organic Chemistry Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Eagala Ramesh
- Organic Chemistry Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- CSIR-Indian Institute of Integrated Medicine Canal Road Jammu 180001 India
| | - D. Srinivasa Reddy
- Organic Chemistry Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- CSIR-Indian Institute of Integrated Medicine Canal Road Jammu 180001 India
| |
Collapse
|
7
|
Alonso JM, Almendros P. Deciphering the Chameleonic Chemistry of Allenols: Breaking the Taboo of a Onetime Esoteric Functionality. Chem Rev 2021; 121:4193-4252. [PMID: 33630581 PMCID: PMC8479864 DOI: 10.1021/acs.chemrev.0c00986] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 12/19/2022]
Abstract
The allene functionality has participated in one of the most exciting voyages in organic chemistry, from chemical curiosities to a recurring building block in modern organic chemistry. In the last decades, a special kind of allene, namely, allenol, has emerged. Allenols, formed by an allene moiety and a hydroxyl functional group with diverse connectivity, have become common building blocks for the synthesis of a wide range of structures and frequent motif in naturally occurring systems. The synergistic effect of the allene and hydroxyl functional groups enables allenols to be considered as a unique and sole functionality exhibiting a special reactivity. This Review summarizes the most significant contributions to the chemistry of allenols that appeared during the past decade, with emphasis on their synthesis, reactivity, and occurrence in natural products.
Collapse
Affiliation(s)
- José M. Alonso
- Grupo
de Lactamas y Heterociclos Bioactivos, Departamento de Química
Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Pedro Almendros
- Instituto
de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
8
|
Ghotekar GS, Shirsath SR, Shaikh AC, Muthukrishnan M. 1,6-Conjugate addition initiated formal [4+2] annulation of p-quinone methides with sulfonyl allenols: a unique access to spiro[5.5]undeca-1,4-dien-3-one scaffolds. Chem Commun (Camb) 2020; 56:5022-5025. [DOI: 10.1039/d0cc01005g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An expedient one-pot synthesis of carbocyclic spiro[5.5]undeca-1,4-dien-3-ones via 1,6-conjugate addition initiated formal [4+2] annulation sequences by employing p-quinone methides and sulfonyl allenols.
Collapse
Affiliation(s)
- Ganesh S. Ghotekar
- Division of Organic Chemistry
- CSIR-National Chemical Laboratory
- Pune 411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Sachin R. Shirsath
- Division of Organic Chemistry
- CSIR-National Chemical Laboratory
- Pune 411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Aslam C. Shaikh
- Division of Organic Chemistry
- CSIR-National Chemical Laboratory
- Pune 411008
- India
| | - M. Muthukrishnan
- Division of Organic Chemistry
- CSIR-National Chemical Laboratory
- Pune 411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
9
|
Yadav D, Menon RS. Recent developments in the chemistry of allenyl sulfones. Org Biomol Chem 2020; 18:365-378. [DOI: 10.1039/c9ob01912j] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Allenyl sulfones are versatile building blocks for the construction of various acyclic, carbocyclic and heterocyclic motifs. Recent developments in the preparation and synthetic applications of allenyl sulfones are summarised.
Collapse
Affiliation(s)
- Deepak Yadav
- Department of Chemistry
- School of Chemical Sciences
- Central University of Haryana
- Mahendergarh
- India
| | - Rajeev S. Menon
- Department of Chemistry
- School of Chemical Sciences
- Central University of Haryana
- Mahendergarh
- India
| |
Collapse
|
10
|
Hampton CS, Harmata M. Electrophilic trapping of α-lithio dienyl sulfones. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Zhao Y, Wang Y, Gu Z, Wang Z. [3,3]-Sigmatropic rearrangement of allenic alcohols: stereoselective synthesis of 1,3-diene-2-ol sulfonates. Org Biomol Chem 2017; 15:4014-4021. [PMID: 28443891 DOI: 10.1039/c7ob00578d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An efficient synthetic pathway to 1,3-diene-2-ol sulfonates involving the [3,3]-sigmatropic rearrangement of allenic alcohols with sulfonic acids under mild reaction conditions is described. These products can easily undergo reduction or transition-metal catalyzed cross-coupling reactions to yield a series of stereodefined multisubstituted 1,3-dienes.
Collapse
Affiliation(s)
- Yuyang Zhao
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311400, P. R. China.
| | | | | | | |
Collapse
|
12
|
Tata RR, Hampton CS, Harmata M. Preparation of Propargylic Sulfinates and their [2,3]-Sigmatropic Rearrangement to Allenic Sulfones. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201600986] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Rama Rao Tata
- Department of Chemistry; University of Missouri-Columbia; Columbia Missouri 65211 USA), Fax: (+1)-573-882-2754
| | - Carissa S. Hampton
- Department of Chemistry; University of Missouri-Columbia; Columbia Missouri 65211 USA), Fax: (+1)-573-882-2754
| | - Michael Harmata
- Department of Chemistry; University of Missouri-Columbia; Columbia Missouri 65211 USA), Fax: (+1)-573-882-2754
| |
Collapse
|
13
|
Tata RR, Harmata M. Silver-Catalyzed Cyclization of Sulfonyl Allenes to Dihydrofurans. Org Lett 2016; 18:5684-5687. [PMID: 27786483 DOI: 10.1021/acs.orglett.6b02917] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Rama Rao Tata
- Department of Chemistry, University of Missouri—Columbia, Columbia, Missouri 65211, United States
| | - Michael Harmata
- Department of Chemistry, University of Missouri—Columbia, Columbia, Missouri 65211, United States
| |
Collapse
|
14
|
Hampton CS, Harmata M. Mechanistic Aspects of the Palladium-Catalyzed Isomerization of Allenic Sulfones to 1-Arylsulfonyl 1,3-Dienes. J Org Chem 2016; 81:4807-22. [PMID: 27127922 DOI: 10.1021/acs.joc.6b00880] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Carissa S. Hampton
- Department of Chemistry, University of Missouri—Columbia, Columbia, Missouri 65211, United States
| | - Michael Harmata
- Department of Chemistry, University of Missouri—Columbia, Columbia, Missouri 65211, United States
| |
Collapse
|
15
|
Affiliation(s)
- Rama Rao Tata
- Department of Chemistry, University of Missouri—Columbia, Columbia, Missouri 65211, United States
| | - Michael Harmata
- Department of Chemistry, University of Missouri—Columbia, Columbia, Missouri 65211, United States
| |
Collapse
|