1
|
Venrooij KR, de Bondt L, Bonger KM. Mutually Orthogonal Bioorthogonal Reactions: Selective Chemistries for Labeling Multiple Biomolecules Simultaneously. Top Curr Chem (Cham) 2024; 382:24. [PMID: 38971884 PMCID: PMC11227474 DOI: 10.1007/s41061-024-00467-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/13/2024] [Indexed: 07/08/2024]
Abstract
Bioorthogonal click chemistry has played a transformative role in many research fields, including chemistry, biology, and medicine. Click reactions are crucial to produce increasingly complex bioconjugates, to visualize and manipulate biomolecules in living systems and for various applications in bioengineering and drug delivery. As biological (model) systems grow more complex, researchers have an increasing need for using multiple orthogonal click reactions simultaneously. In this review, we will introduce the most common bioorthogonal reactions and discuss their orthogonal use on the basis of their mechanism and electronic or steric tuning. We provide an overview of strategies to create reaction orthogonality and show recent examples of mutual orthogonal chemistry used for simultaneous biomolecule labeling. We end by discussing some considerations for the type of chemistry needed for labeling biomolecules in a system of choice.
Collapse
Affiliation(s)
- Kevin R Venrooij
- Chemical Biology Group, Department of Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Lucienne de Bondt
- Chemical Biology Group, Department of Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Kimberly M Bonger
- Chemical Biology Group, Department of Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Poulou E, Hackenberger CPR. Staudinger Ligation and Reactions – From Bioorthogonal Labeling to Next‐Generation Biopharmaceuticals. Isr J Chem 2022. [DOI: 10.1002/ijch.202200057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eleftheria Poulou
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Strasse 10 13125 Berlin Germany
- Department of Chemistry Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Christian P. R. Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Strasse 10 13125 Berlin Germany
- Department of Chemistry Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| |
Collapse
|
3
|
Takemura H, Orimoto G, Kobayashi A, Hosoya T, Yoshida S. Modular synthesis of triazoles from 2-azidoacrylamides having a nucleophilic amino group. Org Biomol Chem 2022; 20:6007-6011. [DOI: 10.1039/d2ob00151a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Assembling methods using 2-azidoacrylamides having a nucleophilic amino group are disclosed. Divergent transformations of the amine-type trivalent platform were accomplished with a wide variety of electrophiles to provide a broad...
Collapse
|
4
|
Govindarajan A, Gnanasambandam V. Toward Intracellular Bioconjugation Using Transition-Metal-Free Techniques. Bioconjug Chem 2021; 32:1431-1454. [PMID: 34197073 DOI: 10.1021/acs.bioconjchem.1c00173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Bioconjugation is the chemical strategy of covalent modification of biomolecules, using either an external reagent or other biomolecules. Since its inception in the twentieth century, the technique has grown by leaps and bounds, and has a variety of applications in chemical biology. However, it is yet to reach its full potential in the study of biochemical processes in live cells, mainly because the bioconjugation strategies conflict with cellular processes. This has mostly been overcome by using transition metal catalysts, but the presence of metal centers limit them to in vitro use, or to the cell surface. These hurdles can potentially be circumvented by using metal-free strategies. However, the very modifications that are necessary to make such metal-free reactions proceed effectively may impact their biocompatibility. This is because biological processes are easily perturbed and greatly depend on the prevailing inter- and intracellular environment. With this taken into consideration, this review analyzes the applicability of the transition-metal-free strategies reported in this decade to the study of biochemical processes in vivo.
Collapse
Affiliation(s)
- Aaditya Govindarajan
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry - 605014, India
| | - Vasuki Gnanasambandam
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry - 605014, India
| |
Collapse
|
5
|
Heiss TK, Dorn RS, Prescher JA. Bioorthogonal Reactions of Triarylphosphines and Related Analogues. Chem Rev 2021; 121:6802-6849. [PMID: 34101453 PMCID: PMC10064493 DOI: 10.1021/acs.chemrev.1c00014] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioorthogonal phosphines were introduced in the context of the Staudinger ligation over 20 years ago. Since that time, phosphine probes have been used in myriad applications to tag azide-functionalized biomolecules. The Staudinger ligation also paved the way for the development of other phosphorus-based chemistries, many of which are widely employed in biological experiments. Several reviews have highlighted early achievements in the design and application of bioorthogonal phosphines. This review summarizes more recent advances in the field. We discuss innovations in classic Staudinger-like transformations that have enabled new biological pursuits. We also highlight relative newcomers to the bioorthogonal stage, including the cyclopropenone-phosphine ligation and the phospha-Michael reaction. The review concludes with chemoselective reactions involving phosphite and phosphonite ligations. For each transformation, we describe the overall mechanism and scope. We also showcase efforts to fine-tune the reagents for specific functions. We further describe recent applications of the chemistries in biological settings. Collectively, these examples underscore the versatility and breadth of bioorthogonal phosphine reagents.
Collapse
|
6
|
Yoshida S, Sakata Y, Misawa Y, Morita T, Kuribara T, Ito H, Koike Y, Kii I, Hosoya T. Assembly of four modules onto a tetraazide platform by consecutive 1,2,3-triazole formations. Chem Commun (Camb) 2021; 57:899-902. [PMID: 33367381 DOI: 10.1039/d0cc07789e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Efficient consecutive 1,2,3-triazole formations using multiazide platforms are disclosed. On the basis of unique clickability of the 1-adamantyl azido group, a four-step synthesis of tetrakis(triazole)s was achieved from a tetraazide platform molecule. This method was applied to a convergent synthesis of tetrafunctionalized probes in a modular synthetic manner.
Collapse
Affiliation(s)
- Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Yuki Sakata
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Yoshihiro Misawa
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Takamoto Morita
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Tomoko Kuribara
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Harumi Ito
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan. and Pathophysiological and Health Science Team, Division of Bio-Function Dynamics Imaging, Imaging Platform and Innovation Group, RIKEN Center for Life Science Technologies (CLST), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Yuka Koike
- Common Facilities Unit, Compass to Healthy Life Research Complex Program, RIKEN Cluster for Science and Technology Hub, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Isao Kii
- Pathophysiological and Health Science Team, Division of Bio-Function Dynamics Imaging, Imaging Platform and Innovation Group, RIKEN Center for Life Science Technologies (CLST), 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan and Common Facilities Unit, Compass to Healthy Life Research Complex Program, RIKEN Cluster for Science and Technology Hub, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
7
|
Deb T, Tu J, Franzini RM. Mechanisms and Substituent Effects of Metal-Free Bioorthogonal Reactions. Chem Rev 2021; 121:6850-6914. [DOI: 10.1021/acs.chemrev.0c01013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Titas Deb
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Julian Tu
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Raphael M. Franzini
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
8
|
Takemura H, Goto S, Hosoya T, Yoshida S. 2-Azidoacrylamides as compact platforms for efficient modular synthesis. Chem Commun (Camb) 2020; 56:15541-15544. [PMID: 33241832 DOI: 10.1039/d0cc07212e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Efficient methods to assemble modules with compact platform molecules by triazole formations and Michael reactions are disclosed. The good electrophilicity of 2-triazolylacrylamides realized Michael additions using various nucleophiles. An iterative synthesis of a tetrakis(triazole) was accomplished by orthogonal triazole formations and Michael reactions.
Collapse
Affiliation(s)
- Hinano Takemura
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | | | | | | |
Collapse
|
9
|
Terashima N, Sakata Y, Meguro T, Hosoya T, Yoshida S. Triazole formation of phosphinyl alkynes with azides through transient protection of phosphine by copper. Chem Commun (Camb) 2020; 56:14003-14006. [PMID: 33094760 DOI: 10.1039/d0cc06551j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An efficient preparation method of functionalized phosphines by copper-catalyzed azide-alkyne cycloaddition (CuAAC) through the transient protection of phosphine from the Staudinger reaction is disclosed. Diverse phosphines were prepared from phosphinyl alkynes and azides by the click reaction at the ethynyl group without damaging the phosphinyl group. Double- and triple-click assemblies of azides were accomplished by triazole formations and robust azaylide formation.
Collapse
Affiliation(s)
- Norikazu Terashima
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Yuki Sakata
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Tomohiro Meguro
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
10
|
Chen X, Luo W, Wang Y, Li Z, Ma X, Peng AY. Efficient Synthesis of Phosphonamidates through One-Pot Sequential Reactions of Phosphonites with Iodine and Amines. Chemistry 2020; 26:14474-14480. [PMID: 32776399 DOI: 10.1002/chem.202002934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 11/10/2022]
Abstract
A one-pot sequential strategy to construct phosphonamidates has been developed by generating phosphonites in situ from arylmagnesium bromides and triethyl phosphite followed by treatment with iodine and amines. A variety of phosphonamidates were obtained with good to excellent yields at room temperature from easily available materials.
Collapse
Affiliation(s)
- Xunwei Chen
- School of Chemistry, Sun Yat-sen University, 135 Xingangxi Lu, Guangzhou, China
| | - Wenjun Luo
- School of Chemistry, Sun Yat-sen University, 135 Xingangxi Lu, Guangzhou, China
| | - Yanlin Wang
- School of Chemistry, Sun Yat-sen University, 135 Xingangxi Lu, Guangzhou, China
| | - Zikang Li
- School of Chemistry, Sun Yat-sen University, 135 Xingangxi Lu, Guangzhou, China
| | - Xiaorui Ma
- School of Chemistry, Sun Yat-sen University, 135 Xingangxi Lu, Guangzhou, China
| | - Ai-Yun Peng
- School of Chemistry, Sun Yat-sen University, 135 Xingangxi Lu, Guangzhou, China
| |
Collapse
|
11
|
Yoshida S. Sequential conjugation methods based on triazole formation and related reactions using azides. Org Biomol Chem 2020; 18:1550-1562. [PMID: 32016260 DOI: 10.1039/c9ob02698c] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent remarkable progress in azide chemistry has realized sequential conjugation methods with selective 1,2,3-triazole formation. On the basis of the diverse reactivities of azides and azidophiles, including terminal alkynes and cyclooctynes, various selective reactions to furnish triazoles and a wide range of platform molecules, such as diynes, diazides, triynes, and triazides, have been developed so far for bis- and tris(triazole) syntheses. This review highlights recent transformations involving selective triazole formation, allowing the efficient preparation of unsymmetric bis- and tris(triazole)s using diverse platform molecules.
Collapse
Affiliation(s)
- Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
12
|
Meguro T, Sakata Y, Morita T, Hosoya T, Yoshida S. Facile assembly of three cycloalkyne-modules onto a platform compound bearing thiophene S,S-dioxide moiety and two azido groups. Chem Commun (Camb) 2020; 56:4720-4723. [DOI: 10.1039/d0cc01810d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An efficient method to assemble three cycloalkyne-modules onto a platform bearing a thiophene S,S-dioxide moiety and two azido groups has been developed. The sequential reactions without catalysis or additives enabled the facile preparation of trifunctional molecules by a simple procedure.
Collapse
Affiliation(s)
- Tomohiro Meguro
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- 2-3-10 Kanda-Surugadai
- Chiyoda-ku
- Tokyo 101-0062
| | - Yuki Sakata
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- 2-3-10 Kanda-Surugadai
- Chiyoda-ku
- Tokyo 101-0062
| | - Takamoto Morita
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- 2-3-10 Kanda-Surugadai
- Chiyoda-ku
- Tokyo 101-0062
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- 2-3-10 Kanda-Surugadai
- Chiyoda-ku
- Tokyo 101-0062
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering
- Tokyo Medical and Dental University (TMDU)
- 2-3-10 Kanda-Surugadai
- Chiyoda-ku
- Tokyo 101-0062
| |
Collapse
|
13
|
Kasper MA, Glanz M, Stengl A, Penkert M, Klenk S, Sauer T, Schumacher D, Helma J, Krause E, Cardoso MC, Leonhardt H, Hackenberger CPR. Cysteine-Selective Phosphonamidate Electrophiles for Modular Protein Bioconjugations. Angew Chem Int Ed Engl 2019; 58:11625-11630. [PMID: 30828930 DOI: 10.1002/anie.201814715] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Indexed: 01/23/2023]
Abstract
We describe a new technique in protein synthesis that extends the existing repertoire of methods for protein modification: A chemoselective reaction that induces reactivity for a subsequent bioconjugation. An azide-modified building block reacts first with an ethynylphosphonite through a Staudinger-phosphonite reaction (SPhR) to give an ethynylphosphonamidate. The resulting electron-deficient triple bond subsequently undergoes a cysteine-selective reaction with proteins or antibodies. We demonstrate that ethynylphosphonamidates display excellent cysteine-selective reactivity combined with superior stability of the thiol adducts, when compared to classical maleimide linkages. This turns our technique into a versatile and powerful tool for the facile construction of stable functional protein conjugates.
Collapse
Affiliation(s)
- Marc-André Kasper
- Chemical Biology Department, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125, Berlin, Germany.,Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Maria Glanz
- Chemical Biology Department, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125, Berlin, Germany.,Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Andreas Stengl
- Department of Biology II, and Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Großhadenerstr. 2, 82152, Martinsried, Germany
| | - Martin Penkert
- Chemical Biology Department, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125, Berlin, Germany.,Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Simon Klenk
- Chemical Biology Department, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125, Berlin, Germany.,Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Tom Sauer
- Chemical Biology Department, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Dominik Schumacher
- Chemical Biology Department, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125, Berlin, Germany.,Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.,Department of Biology II, and Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Großhadenerstr. 2, 82152, Martinsried, Germany
| | - Jonas Helma
- Department of Biology II, and Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Großhadenerstr. 2, 82152, Martinsried, Germany
| | - Eberhard Krause
- Chemical Biology Department, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - M Cristina Cardoso
- Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287, Darmstadt, Germany
| | - Heinrich Leonhardt
- Department of Biology II, and Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Großhadenerstr. 2, 82152, Martinsried, Germany
| | - Christian P R Hackenberger
- Chemical Biology Department, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Strasse 10, 13125, Berlin, Germany.,Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
14
|
Kasper M, Glanz M, Stengl A, Penkert M, Klenk S, Sauer T, Schumacher D, Helma J, Krause E, Cardoso MC, Leonhardt H, Hackenberger CPR. Cysteinselektive phosphonamidatbasierte Elektrophile für modulare Biokonjugationen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814715] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Marc‐André Kasper
- Chemische Biologie Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Deutschland
- Institut für Chemie Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Maria Glanz
- Chemische Biologie Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Deutschland
- Institut für Chemie Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Andreas Stengl
- Department Biologie II und Center for Integrated Protein Science Munich Ludwig-Maximilians-Universität München Großhadenerstraße 2 82152 Martinsried Deutschland
| | - Martin Penkert
- Chemische Biologie Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Deutschland
- Institut für Chemie Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Simon Klenk
- Chemische Biologie Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Deutschland
- Institut für Chemie Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Tom Sauer
- Chemische Biologie Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Deutschland
| | - Dominik Schumacher
- Chemische Biologie Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Deutschland
- Institut für Chemie Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
- Department Biologie II und Center for Integrated Protein Science Munich Ludwig-Maximilians-Universität München Großhadenerstraße 2 82152 Martinsried Deutschland
| | - Jonas Helma
- Department Biologie II und Center for Integrated Protein Science Munich Ludwig-Maximilians-Universität München Großhadenerstraße 2 82152 Martinsried Deutschland
| | - Eberhard Krause
- Chemische Biologie Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Deutschland
| | - M. Cristina Cardoso
- Department Biologie Technische Universität Darmstadt Schnittspahnstraße 10 64287 Darmstadt Deutschland
| | - Heinrich Leonhardt
- Department Biologie II und Center for Integrated Protein Science Munich Ludwig-Maximilians-Universität München Großhadenerstraße 2 82152 Martinsried Deutschland
| | - Christian P. R. Hackenberger
- Chemische Biologie Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Robert-Rössle-Straße 10 13125 Berlin Deutschland
- Institut für Chemie Humboldt Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| |
Collapse
|
15
|
Tomlin FM, Gordon CG, Han Y, Wu TS, Sletten EM, Bertozzi CR. Site-specific incorporation of quadricyclane into a protein and photocleavage of the quadricyclane ligation adduct. Bioorg Med Chem 2018; 26:5280-5290. [PMID: 29754834 PMCID: PMC6170726 DOI: 10.1016/j.bmc.2018.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 01/20/2023]
Abstract
The quadricyclane (QC) ligation is a bioorthogonal reaction between a quadricyclane moiety and a nickel bis(dithiolene) derivative. Here we show that a QC amino acid can be incorporated into a protein site-specifically using the pyrrolysine-based genetic code expansion platform, and subsequently used for ligation chemistry. Additionally, we exploited the photolability of the QC ligation product to render the adduct cleavable with a handheld UV lamp. We further developed a protein purification method that involves QC ligation of biotin to a protein of interest, capture on streptavidin resin, and finally release using only UV light. The QC ligation thus brings novel chemical manipulations to the realm of bioorthogonal chemistry.
Collapse
Affiliation(s)
- Frederick M Tomlin
- Department of Chemistry, Stanford University, Stanford, CA 94305, United States; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Chelsea G Gordon
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Yisu Han
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Taia S Wu
- Department of Chemistry, Stanford University, Stanford, CA 94305, United States
| | - Ellen M Sletten
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, United States
| | - Carolyn R Bertozzi
- Department of Chemistry, Stanford University, Stanford, CA 94305, United States; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, United States; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, United States.
| |
Collapse
|
16
|
Siebertz KD, Hackenberger CPR. Chemoselective triazole-phosphonamidate conjugates suitable for photorelease. Chem Commun (Camb) 2018; 54:763-766. [PMID: 29308492 DOI: 10.1039/c7cc08605a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Herein, we describe a new method for the conjugation of azide-containing target compounds that can be readily released as amines by irradiation with near UV light. This concept is based on a two-step protocol employing the chemoselective CuAAC and Staudinger-phosphonite reactions to deliver photo-cleavable phosphonamidate conjugates in high yields starting from 2-nitrobenzyl substituted phosphonites.
Collapse
Affiliation(s)
- Kristina D Siebertz
- Humboldt-Universität zu Berlin, Institut für Chemie Brook-Taylor-Strasse 2, 12489 Berlin, Germany
| | | |
Collapse
|
17
|
Triazole-Functionalized Silica Supported Palladium(II) Complex: A Novel and Highly Active Heterogeneous Nano-catalyst for C–C Coupling Reactions in Aqueous Media. Catal Letters 2018. [DOI: 10.1007/s10562-018-2316-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Helma J, Leonhardt H, Hackenberger CPR, Schumacher D. Tub-Tag Labeling; Chemoenzymatic Incorporation of Unnatural Amino Acids. Methods Mol Biol 2018; 1728:67-93. [PMID: 29404991 DOI: 10.1007/978-1-4939-7574-7_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tub-tag labeling is a chemoenzymatic method that enables the site-specific labeling of proteins. Here, the natural enzyme tubulin tyrosine ligase incorporates noncanonical tyrosine derivatives to the terminal carboxylic acid of proteins containing a 14-amino acid recognition sequence called Tub-tag. The tyrosine derivative carries a unique chemical reporter allowing for a subsequent bioorthogonal modification of proteins with a great variety of probes. Here, we describe the Tub-tag protein modification protocol in detail and explain its utilization to generate labeled proteins for advanced applications in cell biology, imaging, and diagnostics.
Collapse
Affiliation(s)
- Jonas Helma
- Department of Biology II, Center for Integrated Protein Science Munich, Ludwig Maximilians Universität München, Planegg-Martinsried, Germany
| | - Heinrich Leonhardt
- Department of Biology II, Center for Integrated Protein Science Munich, Ludwig Maximilians Universität München, Planegg-Martinsried, Germany
| | - Christian P R Hackenberger
- Department of Chemical-Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Department of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| | - Dominik Schumacher
- Department of Chemical-Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
- Department of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
19
|
Sherratt AR, Chigrinova M, MacKenzie DA, Rastogi NK, Ouattara MTM, Pezacki AT, Pezacki JP. Dual Strain-Promoted Alkyne–Nitrone Cycloadditions for Simultaneous Labeling of Bacterial Peptidoglycans. Bioconjug Chem 2016; 27:1222-6. [DOI: 10.1021/acs.bioconjchem.6b00063] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Allison R. Sherratt
- Life
Sciences Division, National Research Council of Canada, 100 Sussex
Drive, Ottawa K1A 0R6, Canada
| | - Mariya Chigrinova
- Life
Sciences Division, National Research Council of Canada, 100 Sussex
Drive, Ottawa K1A 0R6, Canada
| | - Douglas A. MacKenzie
- Life
Sciences Division, National Research Council of Canada, 100 Sussex
Drive, Ottawa K1A 0R6, Canada
- Department
of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa K1N 6N5, Canada
| | - Neelabh K. Rastogi
- Life
Sciences Division, National Research Council of Canada, 100 Sussex
Drive, Ottawa K1A 0R6, Canada
- Department
of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa K1N 6N5, Canada
| | - Myriam T. M. Ouattara
- Life
Sciences Division, National Research Council of Canada, 100 Sussex
Drive, Ottawa K1A 0R6, Canada
| | - Aidan T. Pezacki
- Department
of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa K1N 6N5, Canada
| | - John P. Pezacki
- Life
Sciences Division, National Research Council of Canada, 100 Sussex
Drive, Ottawa K1A 0R6, Canada
- Department
of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa K1N 6N5, Canada
| |
Collapse
|
20
|
Nischan N, Kasper MA, Mathew T, Hackenberger CPR. Bis(arylmethyl)-substituted unsymmetrical phosphites for the synthesis of lipidated peptides via Staudinger-phosphite reactions. Org Biomol Chem 2016; 14:7500-8. [DOI: 10.1039/c6ob00843g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With this study we introduce new unsymmetrical phosphites to obtain lipidated peptide-conjugates starting from easily accessible azide-modified amino acid or peptide precursors.
Collapse
Affiliation(s)
- N. Nischan
- Freie Universität Berlin
- Institut für Chemie und Biochemie
- 14195 Berlin
- Germany
- Leibniz-Institut für Molekulare Pharmakologie (FMP)
| | - M.-A. Kasper
- Leibniz-Institut für Molekulare Pharmakologie (FMP)
- 13125 Berlin
- Germany
- Humboldt-Universität zu Berlin
- Institut für Chemie
| | - T. Mathew
- Freie Universität Berlin
- Institut für Chemie und Biochemie
- 14195 Berlin
- Germany
| | - C. P. R. Hackenberger
- Freie Universität Berlin
- Institut für Chemie und Biochemie
- 14195 Berlin
- Germany
- Leibniz-Institut für Molekulare Pharmakologie (FMP)
| |
Collapse
|
21
|
Fei N, Sauter B, Gillingham D. The pKa of Brønsted acids controls their reactivity with diazo compounds. Chem Commun (Camb) 2016; 52:7501-4. [DOI: 10.1039/c6cc03561b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We study the O-alkylation of phosphate groups by alkyl diazo compounds in a range of small molecules and biopolymers.
Collapse
Affiliation(s)
- Na Fei
- Department of Chemistry
- University of Basel
- Basel
- Switzerland
| | | | | |
Collapse
|