1
|
Schädle D, Litlabø R, Meermann-Zimmermann M, Thim-Spöring R, Schädle C, Maichle-Mössmer C, Törnroos KW, Anwander R. Rare-Earth-Metal Methyl and Methylidene Complexes Stabilized by Tp R,R'-Scorpionato Ligands─Size Matters. Inorg Chem 2024; 63:9624-9637. [PMID: 38407062 DOI: 10.1021/acs.inorgchem.3c04422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Homoleptic tetramethylaluminates Ln(AlMe4)3 react with KTptBu,Me (TptBu,Me = tris(3-tBu-5-Me-pyrazolyl)borato) to yield rare-earth-metal methylidene complexes (TptBu,Me)Ln(μ3-CH2)[(μ-Me)AlMe2]2 (Ln = La, Ce, Nd). The lanthanum reaction is prone to additional C-H- and B-N-bond activation, affording coproducts La[HB(pzMe,tBu)(pzCMe2,Me)2][(μ-CH2)(μ-Me)AlMe2]2 and [La(μ-pztBu,Me)(AlMe4)2]2 (pztBu,Me = 3-tBu-5-Me-pyrazolato). The protonolysis reaction of Ln(AlMe4)3 and HpztBu,Me provides more efficient access to [Ln(μ-pztBu,Me)(AlMe4)2]2 (Ln = La, Nd). Treatment of Ln(AlMe4)3 with KTpMe,Me led to methylidene complexes (TpMe,Me)Ln(μ3-CH2)[(μ-Me)AlMe2]2 (Ln = Nd, Sm) or bis(tetramethylaluminate) complexes (TpMe,Me)Ln(AlMe4)2 (Ln = Y, Lu). The neodymium reaction generated methine derivative (TpMe,Me)Nd[(μ4-CH)(AlMe2)2(μ-pz,Me,Me)][(μ-Me)AlMe2] as a minor coproduct. The reaction of Ln(GaMe4)3 (Ln = Y, La, Ce, Nd, Sm, Ho) with HTptBu,Me gave methylidene complexes (TptBu,Me)Ln(μ3-CH2)[(μ-Me)GaMe2]2 (Ln = La, Ce, Nd, Sm) and alkyl complexes (TptBu,Me)LnMe[(μ-Me)GaMe3] (Ln = Y, Ho), while competing B-N bond activation reactions produced GaMe2[BH(Me)(μ-pztBu,Me)2] and (TptBu,Me)Ln(η2-pztBu,Me)[(μ-Me)GaMe3] (Ln = Y, Ho). The steric impact of the TpR,Me ligands was examined by cone angle calculations. Rare-earth-metal methylidene complexes (TptBu,Me)Ln(μ3-CH2)[(μ-Me)EMe2]2 (E = Al, Ga) successfully promote carbonyl methylenation reactions upon addition of ketone.
Collapse
Affiliation(s)
- Dorothea Schädle
- Institut für Anorganische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Rannveig Litlabø
- Institut für Anorganische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
- Department of Chemistry, University of Bergen, Allégaten 41, 5007 Bergen, Norway
| | - Melanie Meermann-Zimmermann
- Institut für Anorganische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
- Department of Chemistry, University of Bergen, Allégaten 41, 5007 Bergen, Norway
| | - Renita Thim-Spöring
- Institut für Anorganische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Christoph Schädle
- Institut für Anorganische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Cäcilia Maichle-Mössmer
- Institut für Anorganische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Karl W Törnroos
- Department of Chemistry, University of Bergen, Allégaten 41, 5007 Bergen, Norway
| | - Reiner Anwander
- Institut für Anorganische Chemie, Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| |
Collapse
|
2
|
Jiang W, Rajeshkumar T, Guo M, Lin Y, Maron L, Zhang L. Rare-earth metal ethylene and ethyne complexes. Chem Sci 2024; 15:3495-3501. [PMID: 38455028 PMCID: PMC10915835 DOI: 10.1039/d3sc06599e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/26/2024] [Indexed: 03/09/2024] Open
Abstract
Guanidinate homometallic rare-earth ethyl complexes [LLn(μ2-η1:η2-Et)(Et)]2 (Ln = Y(1-Y), Lu(1-Lu)) and heterobimetallic rare-earth ethyl complexes LLn(Et)(μ2-η1:η2-Et)(μ2-η1-Et)(AlEt2) (Ln = Y(2-Y), Lu(2-Lu)) have been synthesized by the treatment of LLn(CH2C6H4NMe2-o)2 (L = (PhCH2)2NC(NC6H3iPr2-2,6)2) with different equivalents of AlEt3 in toluene at ambient temperature. Interestingly, the unprecedented rare-earth ethyne complex [LY(μ2-η1-Et)2(AlEt)]2(μ4-η1:η1:η2:η2-C2H2) (3-Y) containing a [C2H2]4- unit was afforded from 2-Y. The formation mechanism study on 3-Y was carried out by DFT calculations. Furthermore, the nature of the bonding of 3-Y was also revealed by NBO analysis. The reactions of LLn(CH2 C6H4NMe2-o)2 (Ln = Y, Lu) with AlEt3 (4 equiv.) in toluene at 50 °C produced firstly the non-Cp rare-earth ethylene complex LY(μ3-η1:η1:η2-C2H4)[(μ2-η1-Et)(AlEt2)(μ2-η1-Et)2(AlEt)] (4-Y), and the Y/Al ethyl complex LY[(μ2-η1-Et)2(AlEt2)]2 (5-Y) as an intermediate of 4-Y was isolated from the reaction of LY(CH2C6H4NMe2-o)2 with AlEt3 (4 equiv.) in toluene at -10 °C.
Collapse
Affiliation(s)
- Wen Jiang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2005 Songhu Road, Jiangwan Campus Shanghai 200438 P. R. China
| | | | - Mengyue Guo
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2005 Songhu Road, Jiangwan Campus Shanghai 200438 P. R. China
| | - Yuejian Lin
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2005 Songhu Road, Jiangwan Campus Shanghai 200438 P. R. China
| | | | - Lixin Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2005 Songhu Road, Jiangwan Campus Shanghai 200438 P. R. China
| |
Collapse
|
3
|
Jiang W, Kong F, Del Rosal I, Li M, Wang K, Maron L, Zhang L. A binuclear guanidinate yttrium carbyne complex: unique reactivity toward unsaturated C-N, C-O and C-S bonds. Chem Sci 2023; 14:9154-9160. [PMID: 37655032 PMCID: PMC10466373 DOI: 10.1039/d3sc03483f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Abstract
A guanidinato-stabilized binuclear yttrium carbyne complex [(PhCH2)2NC(NC6H3iPr2-2,6)2]2Y2(μ2-Me)(AlMe3)2(μ4-CH) (1) was synthesized via C-H bond activation and its versatile reactivities were investigated. Complex 1 underwent σ-bond metathesis with PhSSPh and nucleophilic addition with PhCN to form the corresponding yttrium thiolate complex 3 and aza-allyl complex 4 respectively. Additionally, the rare yttrium carbide complex 5 was also prepared by treatment of complex 1 with S8. Interestingly, in the reaction with PhNCS, the C[double bond, length as m-dash]S double bond was cleaved, followed by C-H bond activation to give the yttrium sulfide complex 7 with a ketenimine dianion ligand. Unexpectedly, the reaction of complex 1 with CO (1 atm) resulted in deoxygenative coupling of CO, to afford mono- or dioxo-yttrium complexes at different temperatures. The mechanism of the possible formation processes of complexes 3 and 9 was elucidated by DFT calculations.
Collapse
Affiliation(s)
- Wen Jiang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2005 Songhu Road, Jiangwan Campus Shanghai 200438 P. R. China
| | - Feng Kong
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2005 Songhu Road, Jiangwan Campus Shanghai 200438 P. R. China
| | | | - Meng Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2005 Songhu Road, Jiangwan Campus Shanghai 200438 P. R. China
| | - Kai Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2005 Songhu Road, Jiangwan Campus Shanghai 200438 P. R. China
| | | | - Lixin Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University 2005 Songhu Road, Jiangwan Campus Shanghai 200438 P. R. China
| |
Collapse
|
4
|
Evans MJ, Anker MD, McMullin CL, Neale SE, Rajabi NA, Coles MP. Carbon-chalcogen bond formation initiated by [Al(NON Dipp)(E)] - anions containing Al-E{16} (E{16} = S, Se) multiple bonds. Chem Sci 2022; 13:4635-4646. [PMID: 35656129 PMCID: PMC9020183 DOI: 10.1039/d2sc01064j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/27/2022] [Indexed: 01/01/2023] Open
Abstract
Multiply-bonded main group metal compounds are of interest as a new class of reactive species able to activate and functionalize a wide range of substrates. The aluminium sulfido compound K[Al(NONDipp)(S)] (NONDipp = [O(SiMe2NDipp)2]2-, Dipp = 2,6-iPr2C6H3), completing the series of [Al(NONDipp)(E)]- anions containing Al-E{16} multiple bonds (E{16} = O, S, Se, Te), was accessed via desulfurisation of K[Al(NONDipp)(S4)] using triphenylphosphane. The crystal structure showed a tetrameric aggregate joined by multiple K⋯S and K⋯π(arene) interactions that were disrupted by the addition of 2.2.2-cryptand to form the separated ion pair, [K(2.2.2-crypt)][Al(NONDipp)(S)]. Analysis of the anion using density functional theory (DFT) confirmed multiple-bond character in the Al-S group. The reaction of the sulfido and selenido anions K[Al(NONDipp)(E)] (E = S, Se) with CO2 afforded K[Al(NONDipp)(κ2 E,O-EC{O}O)] containing the thio- and seleno-carbonate groups respectively, consistent with a [2 + 2]-cycloaddition reaction and C-E bond formation. An analogous cycloaddition reaction took place with benzophenone affording compounds containing the diphenylsulfido- and diphenylselenido-methanolate ligands, [κ2 E,O-EC{O}Ph2]2-. In contrast, when K[Al(NONDipp)(E)] (E = S, Se) was reacted with benzaldehyde, two equivalents of substrate were incorporated into the product accompanied by formation of a second C-E bond and complete cleavage of the Al-E{16} bonds. The products contained the hitherto unknown κ2 O,O-thio- and κ2 O,O-seleno-bis(phenylmethanolate) ligands, which were exclusively isolated as the cis-stereoisomers. The mechanisms of these cycloaddition reactions were investigated using DFT methods.
Collapse
Affiliation(s)
- Matthew J Evans
- School of Chemical and Physical Sciences, Victoria University of Wellington P.O. Box 600 Wellington New Zealand
| | - Mathew D Anker
- School of Chemical and Physical Sciences, Victoria University of Wellington P.O. Box 600 Wellington New Zealand
| | | | - Samuel E Neale
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Nasir A Rajabi
- Department of Chemistry, University of Bath Bath BA2 7AY UK
| | - Martyn P Coles
- School of Chemical and Physical Sciences, Victoria University of Wellington P.O. Box 600 Wellington New Zealand
| |
Collapse
|
5
|
Portwich FL, Carstensen Y, Dasgupta A, Kupfer S, Wyrwa R, Görls H, Eggeling C, Dietzek B, Gräfe S, Wächtler M, Kretschmer R. A Highly Fluorescent Dinuclear Aluminium Complex with Near-Unity Quantum Yield. Angew Chem Int Ed Engl 2022; 61:e202117499. [PMID: 35107199 PMCID: PMC9313782 DOI: 10.1002/anie.202117499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 11/06/2022]
Abstract
The high natural abundance of aluminium makes the respective fluorophores attractive for various optical applications, but photoluminescence quantum yields above 0.7 have yet not been reported for solutions of aluminium complexes. In this contribution, a dinuclear aluminium(III) complex featuring enhanced photoluminescence properties is described. Its facile one-pot synthesis originates from a readily available precursor and trimethyl aluminium. In solution, the complex exhibits an unprecedented photoluminescence quantum yield near unity (Φabsolute 1.0±0.1) and an excited-state lifetime of 2.3 ns. In the solid state, J-aggregation and aggregation-caused quenching are noted, but still quantum yields of 0.6 are observed. Embedding the complex in electrospun non-woven fabrics yields a highly fluorescent fleece possessing a quantum yield of 0.9±0.04.
Collapse
Affiliation(s)
- Flavio L. Portwich
- Institute of Inorganic and Analytical Chemistry (IAAC)Friedrich Schiller University JenaHumboldtstraße 807743JenaGermany
| | - Yves Carstensen
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Anindita Dasgupta
- Leibniz Institute of Photonic TechnologyAlbert-Einstein-Straße 907745JenaGermany
- Institute of Applied Optics and BiophysicsFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Stephan Kupfer
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Ralf Wyrwa
- INNOVENT e. V. Technologieentwicklung JenaPrüssingstraße 27 B07745JenaGermany
| | - Helmar Görls
- Institute of Inorganic and Analytical Chemistry (IAAC)Friedrich Schiller University JenaHumboldtstraße 807743JenaGermany
| | - Christian Eggeling
- Leibniz Institute of Photonic TechnologyAlbert-Einstein-Straße 907745JenaGermany
- Institute of Applied Optics and BiophysicsFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Abbe Center of PhotonicsFriedrich Schiller University JenaAlbert-Einstein-Straße 607745JenaGermany
- MRC Human Immunology UnitWeatherall Institute of Molecular MedicineUniversity of OxfordOxfordOX39DSUK
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaPhilosophenweg 707743JenaGermany
| | - Benjamin Dietzek
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic TechnologyAlbert-Einstein-Straße 907745JenaGermany
- Abbe Center of PhotonicsFriedrich Schiller University JenaAlbert-Einstein-Straße 607745JenaGermany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaPhilosophenweg 707743JenaGermany
| | - Stefanie Gräfe
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Abbe Center of PhotonicsFriedrich Schiller University JenaAlbert-Einstein-Straße 607745JenaGermany
- Fraunhofer Institute for Applied Optics and Precision Engineering (Fraunhofer IOF)Albert-Einstein-Str. 707745JenaGermany
| | - Maria Wächtler
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic TechnologyAlbert-Einstein-Straße 907745JenaGermany
- Abbe Center of PhotonicsFriedrich Schiller University JenaAlbert-Einstein-Straße 607745JenaGermany
| | - Robert Kretschmer
- Institute of Inorganic and Analytical Chemistry (IAAC)Friedrich Schiller University JenaHumboldtstraße 807743JenaGermany
- Jena Center for Soft Matter (JCSM)Friedrich Schiller University JenaPhilosophenweg 707743JenaGermany
| |
Collapse
|
6
|
Ein stark fluoreszierender zweikerniger Aluminiumkomplex mit nahezu 100 %iger Quantenausbeute**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Rieser TE, Thim-Spöring R, Schädle D, Sirsch P, Litlabø R, Törnroos KW, Maichle-Mössmer C, Anwander R. Open-Shell Early Lanthanide Terminal Imides. J Am Chem Soc 2022; 144:4102-4113. [PMID: 35212218 DOI: 10.1021/jacs.1c13142] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Group 3- and 4f-element organometallic chemistry and reactivity are decisively driven by the rare-earth-metal/lanthanide (Ln) ion size and associated electronegativity/ionicity/Lewis acidity criteria. For these reasons, the synthesis of terminal "unsupported" imides [Ln═NR] of the smaller, closed-shell Sc(III), Lu(III), Y(III), and increasingly covalent Ce(IV) has involved distinct reaction protocols while derivatives of the "early" large Ln(III) have remained elusive. Herein, we report such terminal imides of open-shell lanthanide cations Ce(III), Nd(III), and Sm(III) according to a new reaction protocol. Lewis-acid-stabilized methylidene complexes [TptBu,MeLn(μ3-CH2){(μ2-Me)MMe2}2] (Ln = Ce, Nd, Sm; M = Al, Ga) react with 2,6-diisopropylaniline (H2NAriPr) via methane elimination. The formation of arylimide complexes is governed by the Ln(III) size, the Lewis acidity of the group 13 metal alkyl, steric factors, the presence of a donor solvent, and the sterics and acidity (pKa) of the aromatic amine. Crucially, terminal arylimides [TptBu,MeLn(═NAriPr)(THF)2] (Ln = Ce, Nd, Sm) are formed only for M = Ga, and for M = Al, the Lewis-acid-stabilized imides [TptBu,MeLn(NAriPr)(AlMe3)] (Ln = Ce, Nd, Sm) are persistent. In stark contrast, the [GaMe3]-stabilized imide [TptBu,MeLn(NAriPr)(GaMe3)] (Ln = Nd, Sm) is reversibly formed in noncoordinating solvents.
Collapse
Affiliation(s)
- Theresa E Rieser
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Renita Thim-Spöring
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Dorothea Schädle
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Peter Sirsch
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Rannveig Litlabø
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - Karl W Törnroos
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - Cäcilia Maichle-Mössmer
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Reiner Anwander
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| |
Collapse
|
8
|
Mortis A, Maichle-Mössmer C, Anwander R. Yttrium tris(trimethylsilylmethyl) complexes grafted onto MCM-48 mesoporous silica nanoparticles. Dalton Trans 2021; 51:1070-1085. [PMID: 34939637 DOI: 10.1039/d1dt03876a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of tris(trimethylsilylmethyl) yttrium donor adduct complexes was synthesized and fully characterized by X-ray diffraction, 1H/13C/29Si/31P/89Y heteronuclear NMR and FTIR spectroscopies as well as elemental analyses. Treatment of Y(CH2SiMe3)3(thf)x with various donors Do led to complete (Do = TMEDA, DMAP) and partial displacement of THF (Do = NHCiPr, DMPE). Exceptionally large 89Y NMR shifts to low field were observed for the new complexes. Complexes Y(CH2SiMe3)3(tmeda) and Y(CH2SiMe3)3(dmpe)(thf) were chosen to perform surface organometallic chemistry, due to a comparatively higher thermal stability and the availability of the 31P nucleus as a spectroscopic probe, respectively. Mesoporous nanoparticles of the MCM-48-type were synthesized and used as a 3rd generation silica support. The parent and hybrid materials were characterized using X-ray powder diffraction, solid-state-NMR spectroscopy, DRIFTS, elemental analyses, N2-physisorption, and scanning electron microscopy (SEM). The presence of surface-bound yttrium alkyl moieties was further proven by the reaction with carbon dioxide. Quantification of the surface silanol population by means of HN(SiHMe2)2-promoted surface silylation is shown to be superior to titration with lithium alkyl LiCH2SiMe3.
Collapse
Affiliation(s)
- Alexandros Mortis
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany.
| | - Cäcilia Maichle-Mössmer
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany.
| | - Reiner Anwander
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, D-72076 Tübingen, Germany.
| |
Collapse
|
9
|
Huang Z, Wang R, Sheng T, Zhong X, Wang S, Zhu X, Yuan Q, Wei Y, Zhou S. Transformation of the sp 2 Carbanion to Carbene with Subsequent 1,1-Migratory Insertion and Nucleophilic Substitution in Rare-Earth Metal Chemistry. Inorg Chem 2021; 60:18843-18853. [PMID: 34846129 DOI: 10.1021/acs.inorgchem.1c02589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of Fischer-type electrophilic carbene chemistry with early transition metals has been a great challenge due to the fact that such metals in their high oxidation states lack the d electrons to stabilize the electrophilic carbene. Herein, we disclose the first experimental and theoretical findings of in situ transformation of an sp2 carbanion to a Fischer-type electrophilic carbene with rare-earth metals in their high oxidation state with a d0 electron via electron transfer. The carbene may undergo 1,1-migratory insertion into an adjacent RE-C(sp3) bond, and an unprecedented ring opening of the indole ring of the ligand occurs when the carbenes undergo nucleophilic substitution with a special organolithium reagent o-Me2NC6H4CH2Li. The key to success is the uniquely tailored novel ligand systems featuring a suitable conjugate building block (-C═C-C═N) bearing an sp2 carbanion connected to the rare-earth metal center.
Collapse
Affiliation(s)
- Zeming Huang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Ruru Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Tian Sheng
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Xiangyang Zhong
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Shaowu Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China.,Anhui Laboratory of Clean Catalytic Engineering, Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Xiancui Zhu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Qingbing Yuan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Yun Wei
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| | - Shuangliu Zhou
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, P. R. China
| |
Collapse
|
10
|
Gómez-Pantoja M, González-Pérez JI, Martín A, Mena M, Santamaría C, Temprado M. Structural Diversity in the Reactions of Dimetallic Alkyl Titanium Oxides with Isonitriles and Nitriles. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Deng P, Shi X, Gong X, Cheng J. Trinuclear scandium methylidyne complexes stabilized by pentamethylcyclopentadienyl ligands. Chem Commun (Camb) 2021; 57:6436-6439. [PMID: 34095916 DOI: 10.1039/d1cc01645h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first examples of scandium methylidyne complexes [(Cp*)Sc(μ2-X)]3(μ3-CH) (Cp* = C5Me5; X = Br, Me, OMe), free of Lewis acids, can be achieved in high yields from [(Cp*)ScMe2]2 through a facile route. The chemical and geometrical flexibility to incorporate organic substrates indicates a rich chemistry of complex [(Cp*)Sc(μ2-OMe)]3(μ3-CH).
Collapse
Affiliation(s)
- Peng Deng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun 130022, China. and University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Xianghui Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun 130022, China.
| | - Xun Gong
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun 130022, China. and University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Jianhua Cheng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625, Renmin Street, Changchun 130022, China. and University of Science and Technology of China, Hefei, Anhui 230029, China
| |
Collapse
|
12
|
Zheng Y, Cao CS, Ma W, Chen T, Wu B, Yu C, Huang Z, Yin J, Hu HS, Li J, Zhang WX, Xi Z. 2-Butene Tetraanion Bridged Dinuclear Samarium(III) Complexes via Sm(II)-Mediated Reduction of Electron-Rich Olefins. J Am Chem Soc 2020; 142:10705-10714. [PMID: 32408744 DOI: 10.1021/jacs.0c01690] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
While reduction reactions are ubiquitous in chemistry, it is very challenging to further reduce electron-rich compounds, especially the anionic ones. In this work, the reduction of 1,3-butadienyl dianion, the anionic conjugated olefin, has been realized by divalent rare-earth metal compounds (SmI2), resulting in the formation of novel 2-butene tetraanion bridged disamarium(III) complexes. Density functional theory (DFT) analyses reveal two features: (i) the single electron transfer (SET) from 4f atomic orbitals (AOs) of each Sm center to the antibonding π*-orbitals of 1,3-butadienyl dianion is feasible and the new HOMO formed by the bonding interaction between Sm 5d orbitals (AOs) and the π*-orbitals of 1,3-butadienyl dianion can accept favorably 2e- from 4f AOs of Sm(II); (ii) the 2-butene tetraanionic ligand serves as a unique 10e- donating system, in which 4e- act as two σ-donation bonding interactions while the rest 6e- as three π-donation bonding interactions. The disamarium(III) complexes represent a unique class of the bridged bis-alkylidene rare-earth organometallic complexes. The ligand-based reductive reactivity of 2-butene tetraanion bridged disamarium(III) complexes demonstrates that 2-butene tetraanionic ligand serves as a 3e- reductant toward cyclooctatetraene (COT) to provide doubly COT-supported disamarabutadiene complexes. The reaction of the disamarium(III) complexes with Cp*Li produces the doubly Cp*-coordinated Sm(III) complexes via salt metathesis. In addition, the reaction with Mo(CO)6 affords the oxycyclopentadienyl dinuclear complex via CO insertion.
Collapse
Affiliation(s)
- Yu Zheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Chang-Su Cao
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Wangyang Ma
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Tianyang Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Botao Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Chao Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhe Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Jianhao Yin
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Han-Shi Hu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jun Li
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China.,Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhenfeng Xi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
Zatsepin P, Lee E, Gu J, Gau MR, Carroll PJ, Baik MH, Mindiola DJ. Tebbe-like and Phosphonioalkylidene and -alkylidyne Complexes of Scandium. J Am Chem Soc 2020; 142:10143-10152. [DOI: 10.1021/jacs.0c02742] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pavel Zatsepin
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Eunji Lee
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), and Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jun Gu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michael R. Gau
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J. Carroll
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Mu-Hyun Baik
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), and Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Daniel J. Mindiola
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
14
|
Bayer U, Anwander R. Carbonyl group and carbon dioxide activation by rare-earth-metal complexes. Dalton Trans 2020; 49:17472-17493. [PMID: 33232414 DOI: 10.1039/d0dt03578e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The rare-earth elements (Ln = Sc, Y, La-Lu) are widely used in stoichiometric and catalytic carbonyl group transformations. Sufficient availability, non-toxicity, high oxophilicity, tunable ion size/Lewis acidity and enhanced ligand exchangeability have been major driving factors for their successful implementation. Routinely employed reagents for stoichiometric carbonyl group transformations are divalent ytterbium and samarium compounds (e.g., ketone reduction), bimetallic CeCl3/LiR (C-C coupling), or ceric ammonium nitrate CAN (cyclic ketone oxidation). Rare-earth-metal triflates, and in particular Sc(OTf)3, are prominent examples of Lewis acid catalysts for versatile use in organic synthesis (e.g., Aldol and Michael reactions). Moreover, Ln(ii) and Ln(iii) complexes efficiently catalyze the (co)polymerization of carbonyl group-containing monomers including lactones, lactides, acrylates, and carbon dioxide. Featuring the most notorious greenhouse gas, CO2 is currently assessed as a cheap, abundant, and non-toxic C1 building block. Ln(iii) complexes are not only capable of efficient CO2 capture via reversible insertion but also of CO2 activation for catalytic conversions (copolymerization/cycloaddition with epoxides). This perspective focuses on structurally elucidated Ln complexes resulting from ketone or carbonyl derivative activation/insertion as well as carbon dioxide insertion products. The respective compounds will be sorted by structural motifs and, if applicable, details on reactivity and feasibility of catalytic reactions are presented. The article is subdivided in three parts: (i) donor and insertion products of ketones and aldehydes, (ii) redox-enhanced activation of carbonyl derivatives, and (iii) CO2 insertion/redox products and homogeneous catalytic conversion.
Collapse
Affiliation(s)
- Uwe Bayer
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen (EKUT), Auf der Morgenstelle 18, 72076 Tübingen, Germany.
| | | |
Collapse
|
15
|
Birkelbach VM, Thim R, Stuhl C, Maichle‐Mössmer C, Anwander R. Potential Precursors for Terminal Methylidene Rare-Earth-Metal Complexes Supported by a Superbulky Tris(pyrazolyl)borato Ligand. Chemistry 2019; 25:14711-14720. [PMID: 31490590 PMCID: PMC7687121 DOI: 10.1002/chem.201903606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Indexed: 12/23/2022]
Abstract
A series of solvent-free heteroleptic terminal rare-earth-metal alkyl complexes stabilized by a superbulky tris(pyrazolyl)borato ligand with the general formula [TptBu,Me LnMeR] have been synthesized and fully characterized. Treatment of the heterobimetallic mixed methyl/tetramethylaluminate compounds [TptBu,Me LnMe(AlMe4 )] (Ln=Y, Lu) with two equivalents of the mild halogenido transfer reagents SiMe3 X (X=Cl, I) gave [TptBu,Me LnX2 ] in high yields. The addition of only one equivalent of SiMe3 Cl to [TptBu,Me LuMe(AlMe4 )] selectively afforded the desired mixed methyl/chloride complex [TptBu,Me LuMeCl]. Further reactivity studies of [TptBu,Me LuMeCl] with LiR or KR (R=CH2 Ph, CH2 SiMe3 ) through salt metathesis led to the monomeric mixed-alkyl derivatives [TptBu,Me LuMe(CH2 SiMe3 )] and [TptBu,Me LuMe(CH2 Ph)], respectively, in good yields. The SiMe4 elimination protocols were also applicable when using SiMe3 X featuring more weakly coordinating moieties (here X=OTf, NTf2 ). X-ray structure analyses of this diverse set of new [TptBu,Me LnMeR/X] compounds were performed to reveal any electronic and steric effects of the varying monoanionic ligands R and X, including exact cone-angle calculations of the tridentate tris(pyrazolyl)borato ligand. Deeper insights into the reactivity of these potential precursors for terminal alkylidene rare-earth-metal complexes were gained through NMR spectroscopic studies.
Collapse
Affiliation(s)
- Verena M. Birkelbach
- Institut für Anorganische ChemieEberhard Karls Universität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Renita Thim
- Institut für Anorganische ChemieEberhard Karls Universität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Christoph Stuhl
- Institut für Anorganische ChemieEberhard Karls Universität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Cäcilia Maichle‐Mössmer
- Institut für Anorganische ChemieEberhard Karls Universität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Reiner Anwander
- Institut für Anorganische ChemieEberhard Karls Universität TübingenAuf der Morgenstelle 1872076TübingenGermany
| |
Collapse
|
16
|
Yan F, Li S, Li L, Zhang W, Cui D, Wang M, Dou Y. Lutetium‐Methanediide‐Alkyl Complexes: Unique Reactivity toward Carbodiimide and Pyridine. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fangbin Yan
- Key Laboratory of Automobile Materials of Ministry of Education Department of Materials Science and Engineering Jilin University Changchun 130025 P. R. China
| | - Shihui Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Lei Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Wanxi Zhang
- Key Laboratory of Automobile Materials of Ministry of Education Department of Materials Science and Engineering Jilin University Changchun 130025 P. R. China
| | - Dongmei Cui
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Meiyan Wang
- Institute of Theoretical Chemistry Jilin University Changchun 130021 P. R. China
| | - Yanli Dou
- Key Laboratory of Automobile Materials of Ministry of Education Department of Materials Science and Engineering Jilin University Changchun 130025 P. R. China
| |
Collapse
|
17
|
Liu D, Zhou D, Yang H, Li J, Cui C. Yttrium dialkyl supported by a silaamidinate ligand: synthesis, structure and catalysis on cyclotrimerization of isocyanates. Chem Commun (Camb) 2019; 55:12324-12327. [DOI: 10.1039/c9cc06282c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A four-coordinate yttrium dialkyl complex with a sterically demanding silaamidinate ligand exhibited high activity and excellent functional group tolerance for the catalysis of isocyanate cyclotrimerization.
Collapse
Affiliation(s)
- Deshuai Liu
- State Key Laboratory of Elemento-organic Chemistry and College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Dahai Zhou
- State Key Laboratory of Elemento-organic Chemistry and College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Hao Yang
- State Key Laboratory of Elemento-organic Chemistry and College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Jianfeng Li
- State Key Laboratory of Elemento-organic Chemistry and College of Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Chunming Cui
- State Key Laboratory of Elemento-organic Chemistry and College of Chemistry
- Nankai University
- Tianjin 300071
- China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| |
Collapse
|
18
|
Wang C, Mao W, Xiang L, Yang Y, Fang J, Maron L, Leng X, Chen Y. Monomeric Rare-Earth Metal Silyl-Thiophosphinoyl-Alkylidene Complexes: Synthesis, Structure, and Reactivity. Chemistry 2018; 24:13903-13917. [DOI: 10.1002/chem.201802791] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Chen Wang
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 P.R. China
| | - Weiqing Mao
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 P.R. China
| | - Li Xiang
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 P.R. China
| | - Yan Yang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization; Gansu Province School of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 P.R. China
| | - Jian Fang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization; Gansu Province School of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 P.R. China
| | - Laurent Maron
- LPCNO, CNRS, & INSA; Université Paul Sabatier; 135 Avenue de Rangueil 31077 Toulouse France
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 P.R. China
| | - Yaofeng Chen
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; University of Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 P.R. China
| |
Collapse
|
19
|
Mao W, Xiang L, Lamsfus CA, Maron L, Leng X, Chen Y. Are Sc-C and Sc-P Bonds Reactive in Scandium Phosphinoalkylidene Complex? Insights on a Versatile Reactivity. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Weiqing Mao
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road; Shanghai 200032 China
| | - Li Xiang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road; Shanghai 200032 China
| | - Carlos Alvarez Lamsfus
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil; 31077 Toulouse France
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil; 31077 Toulouse France
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road; Shanghai 200032 China
| | - Yaofeng Chen
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road; Shanghai 200032 China
| |
Collapse
|
20
|
Dianionic Carbon-Bridged Scandium-Copper/Silver Heterobimetallic Complexes: Synthesis, Bonding, and Reactivity. Chemistry 2018; 24:5637-5643. [DOI: 10.1002/chem.201706147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Indexed: 11/07/2022]
|
21
|
Beattie RJ, Sutton AD, Scott BL, Clark DL, Kiplinger JL, Gordon JC. Lutetium functionalities supported by a sterically encumbered β-diketiminate ligand. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2017.12.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Mao W, Xiang L, Maron L, Leng X, Chen Y. Nonchelated Phosphoniomethylidene Complexes of Scandium and Lutetium. J Am Chem Soc 2017; 139:17759-17762. [DOI: 10.1021/jacs.7b11097] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Weiqing Mao
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Li Xiang
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Xuebing Leng
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Yaofeng Chen
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
23
|
Ma W, Yu C, Chi Y, Chen T, Wang L, Yin J, Wei B, Xu L, Zhang WX, Xi Z. Formation and ligand-based reductive chemistry of bridged bis-alkylidene scandium(iii) complexes. Chem Sci 2017; 8:6852-6856. [PMID: 29147510 PMCID: PMC5632790 DOI: 10.1039/c7sc02018j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/26/2017] [Indexed: 11/21/2022] Open
Abstract
Bridged bis-alkylidene Sc(iii) complexes featuring a 2-butene-1,1,4,4-tetraanion are synthesized and show unexpected ligand-based two-electron or four-electron reduction reactivity towards different oxidants.
The chemistry of rare-earth carbene and alkylidene complexes including their synthesis, structure and reaction is a challenging issue because of their high reactivity (or instability) and the lack of synthetic methods. In this work, we report the first synthesis of the bridged bis-alkylidene complexes which feature a 2-butene-1,1,4,4-tetraanion and four Sc–C(sp3) bonds by the reaction of 1,4-dilithio-1,3-butadienes with ScCl3. This reaction proceeds via two key intermediates: an isolable scandacyclopentadiene and a proposed scandacyclopropene. The scandacyclopentadiene undergoes β,β′-C–C bond cleavage to generate the scandacyclopropene, which then dimerizes to afford the bridged bis-alkylidene complex via a cooperative double metathesis reaction. Reaction chemistry study of the bridged bis-alkylidene complex reveals their ligand-based reduction reactivity towards different oxidants such as hexachloroethane, disulfide and cyclooctatetraene.
Collapse
Affiliation(s)
- Wangyang Ma
- Beijing National Laboratory for Molecular Sciences , MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering , College of Chemistry , Peking University , Beijing 100871 , China .
| | - Chao Yu
- Beijing National Laboratory for Molecular Sciences , MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering , College of Chemistry , Peking University , Beijing 100871 , China .
| | - Yue Chi
- Beijing National Laboratory for Molecular Sciences , MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering , College of Chemistry , Peking University , Beijing 100871 , China .
| | - Tianyang Chen
- Beijing National Laboratory for Molecular Sciences , MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering , College of Chemistry , Peking University , Beijing 100871 , China .
| | - Lianjun Wang
- Beijing National Laboratory for Molecular Sciences , MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering , College of Chemistry , Peking University , Beijing 100871 , China . .,School of Chemistry and Chemical Engineering , Hunan Institute of Engineering , Xiangtan , 411104 , China
| | - Jianhao Yin
- Beijing National Laboratory for Molecular Sciences , MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering , College of Chemistry , Peking University , Beijing 100871 , China .
| | - Baosheng Wei
- Beijing National Laboratory for Molecular Sciences , MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering , College of Chemistry , Peking University , Beijing 100871 , China .
| | - Ling Xu
- Beijing National Laboratory for Molecular Sciences , MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering , College of Chemistry , Peking University , Beijing 100871 , China .
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences , MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering , College of Chemistry , Peking University , Beijing 100871 , China . .,State Key Laboratory of Elemento-Organic Chemistry , Nankai University , Tianjin , 300071 , China
| | - Zhenfeng Xi
- Beijing National Laboratory for Molecular Sciences , MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering , College of Chemistry , Peking University , Beijing 100871 , China .
| |
Collapse
|
24
|
Mao W, Xiang L, Alvarez Lamsfus C, Maron L, Leng X, Chen Y. Highly Reactive Scandium Phosphinoalkylidene Complex: C-H and H-H Bonds Activation. J Am Chem Soc 2017; 139:1081-1084. [PMID: 28068074 DOI: 10.1021/jacs.6b13081] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first scandium phosphinoalkylidene complex was synthesized and structurally characterized. The complex has the shortest Sc-C bond lengths reported to date (2.089(3) Å). DFT calculations reveal the presence of a three center π interaction in the complex. This scandium phosphinoalkylidene complex undergoes intermolecular C-H bond activation of pyridine, 4-dimethylamino pyridine and 1,3-dimethylpyrazole at room temperature. Furthermore, the complex rapidly activates H2 under mild conditions. DFT calculations also demonstrate that the C-H activation of 1,3-dimethylpyrazole is selective for thermodynamic reasons and the relatively slow reaction is due to the need of fully breaking the chelating effect of the phosphino group to undergo the reaction whereas this is not the case for H2.
Collapse
Affiliation(s)
- Weiqing Mao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, P. R. China
| | - Li Xiang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, P. R. China
| | - Carlos Alvarez Lamsfus
- LPCNO, CNRS & INSA, Université Paul Sabatier , 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier , 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, P. R. China
| | - Yaofeng Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
25
|
Chiu HC, Pearce AJ, Dunn PL, Cramer CJ, Tonks IA. β-Oxo-δ-diimine Nickel Complexes: A Comparison of Tautomeric Active Species in Ethylene Polymerization Catalysis. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00256] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hsin-Chun Chiu
- Department
of Chemistry, University of Minnesota−Twin Cities, 207 Pleasant
Street SE, Minneapolis, Minnesota 55455, United States
| | - Adam J. Pearce
- Department
of Chemistry, University of Minnesota−Twin Cities, 207 Pleasant
Street SE, Minneapolis, Minnesota 55455, United States
| | - Peter L. Dunn
- Department
of Chemistry, University of Minnesota−Twin Cities, 207 Pleasant
Street SE, Minneapolis, Minnesota 55455, United States
| | - Christopher J. Cramer
- Department
of Chemistry, University of Minnesota−Twin Cities, 207 Pleasant
Street SE, Minneapolis, Minnesota 55455, United States
| | - Ian A. Tonks
- Department
of Chemistry, University of Minnesota−Twin Cities, 207 Pleasant
Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
26
|
Li T, Zhang G, Guo J, Wang S, Leng X, Chen Y. Tris(pyrazolyl)methanide Complexes of Trivalent Rare-Earth Metals. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00166] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tengfei Li
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Guangchao Zhang
- Key
Laboratory of Functional Molecular Solids, Ministry of Education,
Anhui Laboratory of Molecule-Based Materials, College of Chemistry
and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People’s Republic of China
| | - Jingjing Guo
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Shaowu Wang
- Key
Laboratory of Functional Molecular Solids, Ministry of Education,
Anhui Laboratory of Molecule-Based Materials, College of Chemistry
and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People’s Republic of China
| | - Xuebing Leng
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Yaofeng Chen
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|
27
|
Wang C, Zhou J, Zhao X, Maron L, Leng X, Chen Y. Non-Pincer-Type Mononuclear Scandium Alkylidene Complexes: Synthesis, Bonding, and Reactivity. Chemistry 2015; 22:1258-61. [DOI: 10.1002/chem.201504725] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Chen Wang
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 P. R. China
| | - Jiliang Zhou
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 P. R. China
| | - Xuefei Zhao
- LPCNO, CNRS & INSA; Université Paul Sabatier; 135 Avenue de Rangueil 31077 Toulouse France
| | - Laurent Maron
- LPCNO, CNRS & INSA; Université Paul Sabatier; 135 Avenue de Rangueil 31077 Toulouse France
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 P. R. China
| | - Yaofeng Chen
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
28
|
Guo JY, Chan YC, Li Y, Ganguly R, So CW. Oxo-Bridged Bis(group 4 metal unsymmetric phosphonium-stabilized carbene) Complexes. Organometallics 2015. [DOI: 10.1021/om5012962] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jia-Yi Guo
- Division
of Chemistry and
Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Yuk-Chi Chan
- Division
of Chemistry and
Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Yongxin Li
- Division
of Chemistry and
Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Rakesh Ganguly
- Division
of Chemistry and
Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Cheuk-Wai So
- Division
of Chemistry and
Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| |
Collapse
|
29
|
Li J, Huang H, Wang F, Cui C. Cyclopentadienyl Yttrium Ene-Diamido Complexes: Coupling of the Ene-Diamido Ligand with Isocyanate. Organometallics 2015. [DOI: 10.1021/om501257r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jianfeng Li
- State Key Laboratory of Elemento-Organic
Chemistry, Collaborative Innovation Center of Chemical Science and
Engineering, Nankai University, Tianjin 300071, People’s Republic of China
| | - Hanmin Huang
- State Key Laboratory of Elemento-Organic
Chemistry, Collaborative Innovation Center of Chemical Science and
Engineering, Nankai University, Tianjin 300071, People’s Republic of China
| | - Fengxin Wang
- State Key Laboratory of Elemento-Organic
Chemistry, Collaborative Innovation Center of Chemical Science and
Engineering, Nankai University, Tianjin 300071, People’s Republic of China
| | - Chunming Cui
- State Key Laboratory of Elemento-Organic
Chemistry, Collaborative Innovation Center of Chemical Science and
Engineering, Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
30
|
Zhou J, Li T, Maron L, Leng X, Chen Y. A Scandium Complex Bearing Both Methylidene and Phosphinidene Ligands: Synthesis, Structure, and Reactivity. Organometallics 2015. [DOI: 10.1021/om500997j] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jiliang Zhou
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Tengfei Li
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Xuebing Leng
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Yaofeng Chen
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
31
|
Yang YX, Li Y, Ganguly R, So CW. Instability of metal 1,3-benzodi(thiophosphinoyl)methandiide complexes: formation of hafnium, tin and zirconium complexes of 1,3-benzodi(thiophosphinoyl)thioketone dianionic ligand [1,3-C 6H 4(PhPS) 2CS] 2−. Dalton Trans 2015; 44:12633-9. [DOI: 10.1039/c5dt01212k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The reaction illustrates that the metal centre and ligand substituents are crucial for the stabilization of a CmethandiideHf bond.
Collapse
Affiliation(s)
- Ya-Xiu Yang
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- 637371 Singapore
- Singapore
| | - Yongxin Li
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- 637371 Singapore
- Singapore
| | - Rakesh Ganguly
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- 637371 Singapore
- Singapore
| | - Cheuk-Wai So
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- 637371 Singapore
- Singapore
| |
Collapse
|