1
|
Morgan FC, Beeren IAO, Bauer J, Moroni L, Baker MB. Structure-Reactivity Relationships in a Small Library of Imine-Type Dynamic Covalent Materials: Determination of Rate and Equilibrium Constants Enables Model Prediction and Validation of a Unique Mechanical Softening in Dynamic Hydrogels. J Am Chem Soc 2024; 146:27499-27516. [PMID: 39350717 PMCID: PMC11467966 DOI: 10.1021/jacs.4c08099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
The development of next generation soft and recyclable materials prominently features dynamic (reversible) chemistries such as host-guest, supramolecular, and dynamic covalent. Dynamic systems enable injectability, reprocessability, and time-dependent mechanical properties. These properties arise from the inherent relationship between the rate and equilibrium constants (RECs) of molecular junctions (cross-links) and the resulting macroscopic behavior of dynamic networks. However, few examples explicitly measure RECs while exploring this connection between molecular and material properties, particularly for polymeric hydrogel systems. Here we use dynamic covalent imine formation to study how single-point compositional changes in NH2-terminated nucleophiles affect binding constants and resulting hydrogel mechanical properties. We explored both model small molecule studies and model polymeric macromers, and found >3-decade change in RECs. Leveraging established relationships in the literature, we then developed a simple model to describe the cross-linking equilibrium and predict changes in hydrogel mechanical properties. Interestingly, we observed that a narrow ≈2-decade range of Keq's determine the bound fraction of imines. Our model allowed us to uncover a regime where adding cross-linker before saturation can decrease the cross-link density of a hydrogel. We then demonstrated the veracity of this predicted behavior experimentally. Notably this emergent behavior is not accounted for in covalent hydrogel theory. This study expands upon structure-reactivity relationships for imine formation, highlighting how quantitative determination of RECs facilitates predicting macroscopic behavior. Furthermore, while the present study focuses on dynamic covalent imine formation, the underlying principles of this work are applicable to the general bottom-up design of soft and recyclable dynamic materials.
Collapse
Affiliation(s)
- Francis
L. C. Morgan
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department
of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ivo A. O. Beeren
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department
of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Jurica Bauer
- Department
of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Lorenzo Moroni
- Department
of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Matthew B. Baker
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department
of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
2
|
Hyziuk P, Flaibani M, Posocco P, Sashuk V. Creating a suprazyme: integrating a molecular enzyme mimic with a nanozyme for enhanced catalysis. Chem Sci 2024:d4sc04577g. [PMID: 39371455 PMCID: PMC11450938 DOI: 10.1039/d4sc04577g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024] Open
Abstract
Enzyme mimics, due to their limited complexity, traditionally display low catalytic efficiency. Herein we present a strategy that enables the transformation of a slow-acting catalyst into a highly active one by creating a non-covalent suprastructure, termed "suprazyme". We show that cucurbit[7]uril macrocycles, rudimentary molecular enzyme mimics, embedded within an anionic monolayer on the surface of gold nanoparticles, outperform individual cucurbit[7]urils as well as nanoparticles, which also exhibit catalytic enzyme-like activity and thus act as nanozymes, by over 50 times, showcasing a 1044-fold acceleration in a model oxime formation reaction. The superior performance of such a suprazyme is attributed to a synergistic interplay between the organic monolayer and macrocycles, which is accompanied by a decreased local polarity and pH that favors the acid-catalyzed condensation process. The proposed approach holds promise for developing diverse suprazymes, contingent upon achieving a complementary structure and mechanism of action between the molecular catalyst and nanoparticles.
Collapse
Affiliation(s)
- Pavlo Hyziuk
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Matteo Flaibani
- Department of Engineering and Architecture, University of Trieste Via Alfonso Valerio, n. 6/A 34127 Trieste Italy
| | - Paola Posocco
- Department of Engineering and Architecture, University of Trieste Via Alfonso Valerio, n. 6/A 34127 Trieste Italy
| | - Volodymyr Sashuk
- Institute of Physical Chemistry, Polish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
3
|
Fan P, Li S, Yang J, Yang K, Wu P, Dong Q, Zhou Y. Injectable, self-healing hyaluronic acid-based hydrogels for spinal cord injury repair. Int J Biol Macromol 2024; 263:130333. [PMID: 38408580 DOI: 10.1016/j.ijbiomac.2024.130333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 02/28/2024]
Abstract
The cystic cavity that develops following spinal cord injury is a major obstacle for repairing spinal cord injury (SCI). The injectable self-healing biomaterials treatment is a promising strategy to enhance tissue repair after traumatic spinal cord injury. Herein, a natural extracellular matrix (ECM) biopolymer hyaluronic acid-based hydrogel was developed based on multiple dynamic covalent bonds. The hydrogels exhibited excellent injectable and self-healing properties, could be effectively injected into the injury site, and filled the lesion cavity to accelerate the tissue repair of traumatic SCI. Moreover, the hydrogels were compatible with cells and various tissues and possessed proper stiffness matched with nervous tissue. Additionally, when implanted into the injured spinal cord site, the hyaluronic acid-based hydrogel promoted axonal regeneration and functional recovery by accelerating remyelination, axon regeneration, and angiogenesis. Overall, the injectable self-healing hyaluronic acid-based hydrogels are ideal biomaterials for treating traumatic SCI.
Collapse
Affiliation(s)
- Penghui Fan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430073 Wuhan, China
| | - Shangzhi Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430073 Wuhan, China
| | - Junfeng Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430073 Wuhan, China
| | - Kaidan Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430073 Wuhan, China
| | - Ping Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Qi Dong
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430073 Wuhan, China.
| | - Yingshan Zhou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430073 Wuhan, China.
| |
Collapse
|
4
|
Huang H, Dong Z, Ren X, Jia B, Li G, Zhou S, Zhao X, Wang W. High-strength hydrogels: Fabrication, reinforcement mechanisms, and applications. NANO RESEARCH 2023; 16:3475-3515. [DOI: 10.1007/s12274-022-5129-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 01/06/2025]
|
5
|
Xu S, Zheng J, Xiao H, Wu R. Simultaneously Identifying and Distinguishing Glycoproteins with O-GlcNAc and O-GalNAc (the Tn Antigen) in Human Cancer Cells. Anal Chem 2022; 94:3343-3351. [PMID: 35132862 DOI: 10.1021/acs.analchem.1c05438] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycoproteins with diverse glycans are essential to human cells, and subtle differences in glycan structures may result in entirely different functions. One typical example is proteins modified with O-linked β-N-acetylglucosamine (O-GlcNAc) and O-linked α-N-acetylgalactosamine (O-GalNAc) (the Tn antigen), in which the two glycans have very similar structures and identical chemical compositions, making them extraordinarily challenging to be distinguished. Here, we developed an effective method benefiting from selective enrichment and the enzymatic specificity to simultaneously identify and distinguish glycoproteins with O-GlcNAc and O-GalNAc. Metabolic labeling was combined with bioorthogonal chemistry for enriching glycoproteins modified with O-GlcNAc and O-GalNAc. Then, the enzymatic reaction with galactose oxidase was utilized to specifically oxidize O-GalNAc, but not O-GlcNAc, generating the different tags between glycopeptides with O-GlcNAc and O-GalNAc that can be easily distinguishable by mass spectrometry (MS). Among O-GlcNAcylated proteins commonly identified in three types of human cells, those related to transcription and RNA binding are highly enriched. Cell-specific features are also revealed. Among glycoproteins exclusively in Jurkat cells, those involved in human T-lymphotropic virus type 1 (HTLV-1) infection are overrepresented, which is consistent with the cell line source and suggests that protein O-GlcNAcylation participated in the response to the virus infection. Furthermore, glycoproteins with the Tn antigen have different subcellular distributions in different cells, which may be attributed to the distinct mechanisms for the formation of protein O-GalNAcylation.
Collapse
Affiliation(s)
- Senhan Xu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jiangnan Zheng
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
6
|
Ontivero MC, Kaufman TS, Cortés I, Bracca ABJ. Eco-friendly methoximation of aromatic aldehydes and ketones using MnCl 2.4H 2O as an easily accessible and efficient catalyst. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210142. [PMID: 34350014 PMCID: PMC8316819 DOI: 10.1098/rsos.210142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Methoximes are important as a class of intermediates and products, among fine chemicals and specialties. The development of a new, facile and efficient method for their synthesis is reported. The methoximes were properly accessed from the corresponding aromatic aldehydes and ketones in good to excellent yields, under mild conditions, employing the inexpensive and environmentally friendly MnCl2.4H2O as a catalyst (at low loading and without the addition of ligand), in EtOH at 50°C. The scope of the process was systematically assessed.
Collapse
Affiliation(s)
- Melina C. Ontivero
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Santa Fe, Argentina
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Suipacha 531, S2002LRK Rosario, Santa Fe, Argentina
| | - Teodoro S. Kaufman
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Santa Fe, Argentina
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Suipacha 531, S2002LRK Rosario, Santa Fe, Argentina
| | - Iván Cortés
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Santa Fe, Argentina
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Suipacha 531, S2002LRK Rosario, Santa Fe, Argentina
| | - Andrea B. J. Bracca
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Santa Fe, Argentina
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Suipacha 531, S2002LRK Rosario, Santa Fe, Argentina
| |
Collapse
|
7
|
Zhou Y, Piergentili I, Hong J, van der Helm MP, Macchione M, Li Y, Eelkema R, Luo S. Indoline Catalyzed Acylhydrazone/Oxime Condensation under Neutral Aqueous Conditions. Org Lett 2020; 22:6035-6040. [PMID: 32790427 DOI: 10.1021/acs.orglett.0c02128] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Acylhydrazones formation has been widely applied in materials science and biolabeling. However, their sluggish condensation rate under neutral conditions limits its application. Herein, indolines with electron-donating groups are reported as a new catalyst scaffold, which can catalyze acylhydrazone, hydrazone, and oxime formation via an iminium ion intermediate. This new type of catalyst showed up to 15-fold rate enhancement over the traditional aniline-catalyzed reaction at neutral conditions. The identified indoline catalyst was successfully applied in hydrogel formation.
Collapse
Affiliation(s)
- Yuntao Zhou
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Irene Piergentili
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Jennifer Hong
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Michelle P van der Helm
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Mariano Macchione
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Yao Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Rienk Eelkema
- Department of Chemical Engineering, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Sanzhong Luo
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Vargas EL, Velázquez JA, Rodrigo E, Reinecke H, Rodríguez-Hernández J, Fernández-Mayoralas A, Gallardo A, Cid MB. p Ka Modulation of Pyrrolidine-Based Catalytic Polymers Used for the Preparation of Glycosyl Hydrazides at Physiological pH and Temperature. ACS APPLIED BIO MATERIALS 2020; 3:1955-1967. [PMID: 35025318 DOI: 10.1021/acsabm.9b01123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inspired by the ability of enzymes to use the surrounding hydrophobic and/or polarizable groups to modulate the pKa of a given amino acid, we designed a series of soluble polymers able to decrease the basicity of pyrrolidine (from 11.2 to 8.6 pKa units), which clearly increases its aminocatalytic activity at physiological pH in C═N bond formation reactions via ion iminium activation. Other parameters such as charge density, hydrophobic/hydrophilic balance, and aggregation state have been studied as important factors in the catalytic activity of the polymers for a given substrate. To demonstrate the utility of our approach, an optimal pyrrolidine-based catalytic polymer has been used for the formation of C-N bonds between hydrazides and free sugars as the model system for the preparation of glycoconjugates.
Collapse
Affiliation(s)
- Emily L Vargas
- Department of Organic Chemistry, Universidad Autónoma de Madrid Cantoblanco, 28049 Madrid, Spain
| | - J Antonio Velázquez
- Department of Organic Chemistry, Universidad Autónoma de Madrid Cantoblanco, 28049 Madrid, Spain
| | - Eduardo Rodrigo
- Department of Organic Chemistry, Universidad Autónoma de Madrid Cantoblanco, 28049 Madrid, Spain
| | - Helmut Reinecke
- Instituto de Ciencia y Tecnologı́a de Polı́meros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Juan Rodríguez-Hernández
- Instituto de Ciencia y Tecnologı́a de Polı́meros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | | | - Alberto Gallardo
- Instituto de Ciencia y Tecnologı́a de Polı́meros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - María Belén Cid
- Department of Organic Chemistry, Universidad Autónoma de Madrid Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
9
|
He M, Lehn JM. Time-Dependent Switching of Constitutional Dynamic Libraries and Networks from Kinetic to Thermodynamic Distributions. J Am Chem Soc 2019; 141:18560-18569. [DOI: 10.1021/jacs.9b09395] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Meixia He
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d’Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d’Ingénierie Supramoléculaires (ISIS), Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
10
|
Blomkvist B, Dinér P. Mild and Rapid Aniline/HBF
4
•DEE‐Catalysed Formation of Sulfinyl Imines. ChemistrySelect 2019. [DOI: 10.1002/slct.201901218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Björn Blomkvist
- Division of Organic ChemistryDepartment of ChemistrySchool of Engineering Sciences in Chemistry, Biology and Health, KTH – Royal Institute of Technology Teknikringen 30 10044 Stockholm Sweden
| | - Peter Dinér
- Division of Organic ChemistryDepartment of ChemistrySchool of Engineering Sciences in Chemistry, Biology and Health, KTH – Royal Institute of Technology Teknikringen 30 10044 Stockholm Sweden
| |
Collapse
|
11
|
Blanc A, Todorovic M, Perrin DM. Solid-phase synthesis of a novel phalloidin analog with on-bead and off-bead actin-binding activity. Chem Commun (Camb) 2019; 55:385-388. [PMID: 30540302 DOI: 10.1039/c8cc08379g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Specific effectors of actin polymerization have found use as dynamic probes of cellular morphology that may be used to gauge cellular response to stimuli and drugs. Of various natural products that target actin, phalloidin is one of the most potent and selective inhibitors of actin depolymerization. Phalloidin and related members of the phallotoxin family are macrocyclic heptapeptides bearing a characteristic and rigidifying transannular tryptathionine bridge. Here we describe a solid-phase synthesis of a new phalloidin analog as a prototype for library development with the potential for on- and off-bead screening. To validate our method, we labelled the phalloidin derivative with a fluorescent dye which stained actin in CHO cells. Furthermore, a bioassay was developed allowing actin polymerization on beads carrying a phalloidin derivative.
Collapse
Affiliation(s)
- Antoine Blanc
- Chemistry Department, UBC, 2036 Main Mall, Vancouver, V6T-1Z1, Canada.
| | | | | |
Collapse
|
12
|
Wang S, Nawale GN, Oommen OP, Hilborn J, Varghese OP. Influence of ions to modulate hydrazone and oxime reaction kinetics to obtain dynamically cross-linked hyaluronic acid hydrogels. Polym Chem 2019. [DOI: 10.1039/c9py00862d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Simple monovalent and divalent salts are presented as a novel catalyst for performing hydrazone and oxime coupling chemistry at physiological pH with excellent yields.
Collapse
Affiliation(s)
- Shujiang Wang
- Maisonneuve-Rosemont Hospital Research Centre & Dept. of Ophthalmology
- University of Montreal
- Montreal
- Canada
- Translational Chemical Biology Laboratory
| | - Ganesh N. Nawale
- Translational Chemical Biology Laboratory
- Department of Chemistry
- Ångström Laboratory
- Uppsala University
- Uppsala
| | - Oommen P. Oommen
- Bioengineering and Nanomedicine Lab
- Faculty of Medicine and Health Technologies and BioMediTech Institute
- Tampere University
- Tampere-33720
- Finland
| | - Jöns Hilborn
- Translational Chemical Biology Laboratory
- Department of Chemistry
- Ångström Laboratory
- Uppsala University
- Uppsala
| | - Oommen P. Varghese
- Translational Chemical Biology Laboratory
- Department of Chemistry
- Ångström Laboratory
- Uppsala University
- Uppsala
| |
Collapse
|
13
|
Blanc A, Dietrich DJ, Perrin DM. Solid-phase synthesis of amanitin derivatives and preliminary evaluation of cellular uptake and toxicity. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Antoine Blanc
- Department of Chemistry; University of British Columbia; Vancouver V6T 1Z1 Canada
| | - David J. Dietrich
- Department of Chemistry; University of British Columbia; Vancouver V6T 1Z1 Canada
| | - David M. Perrin
- Department of Chemistry; University of British Columbia; Vancouver V6T 1Z1 Canada
| |
Collapse
|
14
|
Yan HJ, Casalini T, Hulsart-Billström G, Wang S, Oommen OP, Salvalaglio M, Larsson S, Hilborn J, Varghese OP. Synthetic design of growth factor sequestering extracellular matrix mimetic hydrogel for promoting in vivo bone formation. Biomaterials 2018; 161:190-202. [PMID: 29421555 DOI: 10.1016/j.biomaterials.2018.01.041] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/25/2018] [Accepted: 01/25/2018] [Indexed: 01/31/2023]
Abstract
Synthetic scaffolds that possess an intrinsic capability to protect and sequester sensitive growth factors is a primary requisite for developing successful tissue engineering strategies. Growth factors such as recombinant human bone morphogenetic protein-2 (rhBMP-2) is highly susceptible to premature degradation and to provide a meaningful clinical outcome require high doses that can cause serious side effects. We discovered a unique strategy to stabilize and sequester rhBMP-2 by enhancing its molecular interactions with hyaluronic acid (HA), an extracellular matrix (ECM) component. We found that by tuning the initial protonation state of carboxylic acid residues of HA in a covalently crosslinked hydrogel modulate BMP-2 release at physiological pH by minimizing the electrostatic repulsion and maximizing the Van der Waals interactions. At neutral pH, BMP-2 release is primarily governed by Fickian diffusion, whereas at acidic pH both diffusion and electrostatic interactions between HA and BMP-2 become important as confirmed by molecular dynamics simulations. Our results were also validated in an in vivo rat ectopic model with rhBMP-2 loaded hydrogels, which demonstrated superior bone formation with acidic hydrogel as compared to the neutral counterpart. We believe this study provides new insight on growth factor stabilization and highlights the therapeutic potential of engineered matrices for rhBMP-2 delivery and may help to curtail the adverse side effects associated with the high dose of the growth factor.
Collapse
Affiliation(s)
- Hong Ji Yan
- Department of Chemistry, The Ångström Laboratory, Uppsala University, SE-751 21, Uppsala, Sweden
| | - Tommaso Casalini
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland; Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland; Institute of Mechanical Engineering and Material Technology, Department of Innovative Technologies, SUPSI, 6928, Manno, Switzerland
| | | | - Shujiang Wang
- Department of Chemistry, The Ångström Laboratory, Uppsala University, SE-751 21, Uppsala, Sweden
| | - Oommen P Oommen
- Bioengineering and Nanomedicine Lab, Faculty of Biomedical Sciences and Engineering & Biomeditech Institute, Tampere University of Technology, Tampere, 33720, Finland
| | - Matteo Salvalaglio
- Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Sune Larsson
- Department of Orthopedics, Uppsala University, Uppsala, Sweden
| | - Jöns Hilborn
- Department of Chemistry, The Ångström Laboratory, Uppsala University, SE-751 21, Uppsala, Sweden
| | - Oommen P Varghese
- Department of Chemistry, The Ångström Laboratory, Uppsala University, SE-751 21, Uppsala, Sweden.
| |
Collapse
|
15
|
Saline Accelerates Oxime Reaction with Aldehyde and Keto Substrates at Physiological pH. Sci Rep 2018; 8:2193. [PMID: 29391582 PMCID: PMC5794741 DOI: 10.1038/s41598-018-20735-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/23/2018] [Indexed: 12/29/2022] Open
Abstract
We have discovered a simple and versatile reaction condition for oxime mediated bioconjugation reaction that could be adapted for both aldehyde and keto substrates. We found that saline accelerated the oxime kinetics in a concentration-dependent manner under physiological conditions. The reaction mechanism is validated by computational studies, and the versatility of the reaction is demonstrated by cell-surface labeling experiments. Saline offers an efficient and non-toxic catalytic option for performing the bioorthogonal-coupling reaction of biomolecules at the physiological pH. This saline mediated bioconjugation reaction represents the most biofriendly, mild and versatile approach for conjugating sensitive biomolecules and does not require any extensive purification step.
Collapse
|
16
|
Bermejo-Velasco D, Nawale GN, Oommen OP, Hilborn J, Varghese OP. Thiazolidine chemistry revisited: a fast, efficient and stable click-type reaction at physiological pH. Chem Commun (Camb) 2018; 54:12507-12510. [DOI: 10.1039/c8cc05405c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We describe the fast reaction kinetics between 1,2-aminothiols and aldehydes that afforded a stable thiazolidine product under physiological pH. This efficient and biocompatible reaction offers enormous potential for the coupling of biomolecules.
Collapse
Affiliation(s)
- Daniel Bermejo-Velasco
- Translational Chemical Biology Laboratory
- Division of Polymer Chemistry
- Department of Chemistry-Ångstrom
- Uppsala University
- Uppsala
| | - Ganesh N. Nawale
- Translational Chemical Biology Laboratory
- Division of Polymer Chemistry
- Department of Chemistry-Ångstrom
- Uppsala University
- Uppsala
| | - Oommen P. Oommen
- Bioengineering and Nanomedicine Lab
- Faculty of Biomedical Sciences and Engineering
- Tampere University of Technology, and BioMediTech Institute
- Tampere
- Finland
| | - Jöns Hilborn
- Translational Chemical Biology Laboratory
- Division of Polymer Chemistry
- Department of Chemistry-Ångstrom
- Uppsala University
- Uppsala
| | - Oommen P. Varghese
- Translational Chemical Biology Laboratory
- Division of Polymer Chemistry
- Department of Chemistry-Ångstrom
- Uppsala University
- Uppsala
| |
Collapse
|
17
|
Godoy CA. New Strategy for the Immobilization of Lipases on Glyoxyl-Agarose Supports: Production of Robust Biocatalysts for Natural Oil Transformation. Int J Mol Sci 2017; 18:ijms18102130. [PMID: 29023423 PMCID: PMC5666812 DOI: 10.3390/ijms18102130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 01/18/2023] Open
Abstract
Immobilization on Glyoxyl–agarose support (Gx) is one of the best strategies to stabilize enzymes. However, the strategy is difficult to apply at neutral pH when most enzymes are stable and, even when possible, produces labile derivatives. This work contributes to overcoming this hurdle through a strategy that combines solid-phase amination, presence of key additives, and derivative basification. To this end, aminated industrial lipases from Candida artarctica (CAL), Thermomyces lunuginosus (TLL), and the recombinant Geobacillus thermocatenulatus (BTL2) were immobilized on Gx for the first time at neutral pH using anthranilic acid (AA) or DTT as additives (immobilization yields >70%; recovered activities 37.5–76.7%). The spectroscopic evidence suggests nucleophilic catalysis and/or adsorption as the initial lipase immobilization events. Subsequent basification drastically increases the stability of BTL2–glyoxyl derivatives under harsh conditions (t1/2, from 2.1–54.5 h at 70 °C; from 10.2 h–140 h in 80% dioxane). The novel BTL2-derivatives were active and selective in fish oil hydrolysis (1.0–1.8 μmol of polyunsaturated fatty acids (PUFAs) min−1·g−1) whereas the selected TLL-derivative was as active and stable in biodiesel production (fatty ethyl esters, EE) as the commercial Novozyme®-435 after ten reaction cycles (~70% EE). Therefore, the potential of the proposed strategy in producing suitable biocatalysts for industrial processes was demonstrated.
Collapse
Affiliation(s)
- César A Godoy
- Departamento de Química (LIBB), Grupo de Investigación en Ingeniería de los Procesos Agroalimentarios y Biotecnológicos (GIPAB), Universidad del Valle, C.P. 76001 Cali, Colombia.
| |
Collapse
|
18
|
Abstract
The formation of oximes and hydrazones is employed in numerous scientific fields as a simple and versatile conjugation strategy. This imine-forming reaction is applied in fields as diverse as polymer chemistry, biomaterials and hydrogels, dynamic combinatorial chemistry, organic synthesis, and chemical biology. Here we outline chemical developments in this field, with special focus on the past ∼10 years of developments. Recent strategies for installing reactive carbonyl groups and α-nucleophiles into biomolecules are described. The basic chemical properties of reactants and products in this reaction are then reviewed, with an eye to understanding the reaction's mechanism and how reactant structure controls rates and equilibria in the process. Recent work that has uncovered structural features and new mechanisms for speeding the reaction, sometimes by orders of magnitude, is discussed. We describe recent studies that have identified especially fast reacting aldehyde/ketone substrates and structural effects that lead to rapid-reacting α-nucleophiles as well. Among the most effective new strategies has been the development of substituents near the reactive aldehyde group that either transfer protons at the transition state or trap the initially formed tetrahedral intermediates. In addition, the recent development of efficient nucleophilic catalysts for the reaction is outlined, improving greatly upon aniline, the classical catalyst for imine formation. A number of uses of such second- and third-generation catalysts in bioconjugation and in cellular applications are highlighted. While formation of hydrazone and oxime has been traditionally regarded as being limited by slow rates, developments in the past 5 years have resulted in completely overturning this limitation; indeed, the reaction is now one of the fastest and most versatile reactions available for conjugations of biomolecules and biomaterials.
Collapse
Affiliation(s)
- Dominik K Kölmel
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Eric T Kool
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
19
|
Morales S, Aceña JL, García Ruano JL, Cid MB. Sustainable Synthesis of Oximes, Hydrazones, and Thiosemicarbazones under Mild Organocatalyzed Reaction Conditions. J Org Chem 2016; 81:10016-10022. [PMID: 27668816 DOI: 10.1021/acs.joc.6b01912] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pyrrolidine catalyzes very efficiently, presumably via iminium activation, the formation of acyloximes, acylhydrazones, and thiosemicarbazones derived from aromatic and aliphatic aldehydes using equimolar amounts of reagents and green solvents. Experimental simplicity and excellent yields after a simple filtration are the main advantages of the method, being an alternative to those currently available especially for the acyl derivatives, which do not work under uncatalyzed conditions. Its application to the synthesis of acyloximes by direct condensation between aldehydes and acylhydroxylamines is unprecedented.
Collapse
Affiliation(s)
- Sara Morales
- Department of Organic Chemistry, Universidad Autónoma de Madrid , Cantoblanco, 28049 Madrid, Spain
| | - José Luis Aceña
- Department of Organic Chemistry, Universidad Autónoma de Madrid , Cantoblanco, 28049 Madrid, Spain
| | - José Luis García Ruano
- Department of Organic Chemistry, Universidad Autónoma de Madrid , Cantoblanco, 28049 Madrid, Spain
| | - M Belén Cid
- Department of Organic Chemistry, Universidad Autónoma de Madrid , Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
20
|
Um IH, Han JY. Kinetic Study on Nucleophilic Substitution Reactions of Aryl Diphenylphosphinates with Butane-2,3-dione Monoximate and Aryloxide Anions: Reaction Mechanism and Origin of the α-Effect. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ik-Hwan Um
- Department of Chemistry and Nano Science; Ewha Womans University; Seoul 120-750 Korea
| | | |
Collapse
|
21
|
AminoxyTMT: A novel multi-functional reagent for characterization of protein carbonylation. Biotechniques 2016; 60:186-8, 190, 192-6. [DOI: 10.2144/000114402] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 01/19/2016] [Indexed: 11/23/2022] Open
Abstract
Protein carbonylation is a common oxidative stress (OS)—driven post-translational modification (PTM). Proteome-wide carbonylation events can best be characterized using a combination of analytical approaches. Immunoblotting of carbonylated proteins provides data on the extent of modifications within complex samples, as well as a broad comparison of carbonylation profiles between different biological states (e.g., disease versus control), while mass spectrometry (MS)—based analysis provides information on proteins susceptible to carbonylation, as well as the potential for quantitative characterization of specific sites of amino acid modification. Here, we present a novel use for aminoxyTMT, a derivative of the Tandem Mass Tag (TMT) isobaric labeling reagent, which utilizes an aminooxy functional group for covalent labeling of reactive carbonyls in proteins. When coupled with anti-TMT antibody, we demonstrate the use of aminoxyTMT for immunoblot profiling of protein carbonylation in complex mixtures, as well as enrichment of modified peptides from these mixtures. Proof-of-principle experiments also show the amenability of aminoxyTMT-labeled carbonylated peptides enriched from complex mixtures to identification using tandem MS (MS/MS) and database searching, as well as quantitative analysis using TMT-based reporter ion intensity measurements.
Collapse
|
22
|
Abstract
The synthesis and chemical and physicochemical properties as well as biological and medical applications of various hydroxylamine-functionalized carbohydrate derivatives are summarized.
Collapse
Affiliation(s)
- N. Chen
- PPSM
- ENS Cachan
- CNRS
- Alembert Institute
- Université Paris-Saclay
| | - J. Xie
- PPSM
- ENS Cachan
- CNRS
- Alembert Institute
- Université Paris-Saclay
| |
Collapse
|
23
|
Tailoring Stimuli Responsiveness using Dynamic Covalent Cross-Linking of Poly(vinyl alcohol)-Heparin Hydrogels for Controlled Cell and Growth Factor Delivery. ACS Biomater Sci Eng 2015; 1:1267-1277. [DOI: 10.1021/acsbiomaterials.5b00321] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|