1
|
Lee KS, Barbieri F, Casali E, Marris ET, Zanoni G, Schomaker JM. Elucidating the Mechanism of Electrooxidative Allene Dioxygenation: Dual Role of Tetramethylpiperidine N-Oxyl (TEMPO). J Am Chem Soc 2025; 147:318-330. [PMID: 39680575 DOI: 10.1021/jacs.4c10431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The cumulated π system of a nonsymmetric allene contains three distinct unsaturated carbons that imbue it with unique reactivity toward radicals as compared to its alkene and alkyne counterparts. Despite the synthetic potential of these versatile building blocks, electrochemical transformations of allenes have been historically underexplored. Myriad strategies for easy access to allenes, coupled with the resurgence of interest in sustainable oxidative transformations of hydrocarbons, prompted our efforts to conduct an in-depth investigation of a rare example of an electrochemical TEMPO-mediated allene dioxygenation. The resultant vinyl-TEMPO motif is readily postfunctionalized to install a heteroatom at each allene carbon. Mechanistic investigations, including cyclic voltammetry (CV) studies, computations, and monitoring by operando NMR (ReactNMR) were performed to lay the groundwork for future electrochemical allene functionalizations that deliver unique synthetic building blocks.
Collapse
Affiliation(s)
- Ken S Lee
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Federico Barbieri
- Department of Chemistry, University of Pavia, Via Torquato Taramelli, 12, 27100 Pavia, PV, Italy
| | - Emanuele Casali
- Department of Chemistry, University of Pavia, Via Torquato Taramelli, 12, 27100 Pavia, PV, Italy
| | - Elijah T Marris
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Via Torquato Taramelli, 12, 27100 Pavia, PV, Italy
| | - Jennifer M Schomaker
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Li JL, Yang Z, Shen S, Yang XL, Niu X. TEMPO-Mediated Interrupted 6π-Photocyclization of ortho-Biaryl-Appended 1,3-Dicarbonyl Compounds toward 10-Phenanthrenols. J Org Chem 2024; 89:44-56. [PMID: 38088910 DOI: 10.1021/acs.joc.3c01316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
In this paper, we present an example of a photoinduced catalyst, halogen-, and base-free TEMPO-mediated interrupted 6π-photocyclization/dehydrogenative aromatization of ortho-biaryl-appended 1,3-dicarbonyl compounds for the preparation of 10-phenanthrenols. The reaction involves rapid photocycloaddition via a 1,2-biradical of 1,3-dicarbonyl compounds, followed by subsequent dehydrogenative aromatization of 1,4-biradical intermediates using TEMPO as the commercially available oxidant rather than trapped by TEMPO to form an alkoxyamine product.
Collapse
Affiliation(s)
- Jun-Li Li
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province and College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Zhao Yang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province and College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Shigang Shen
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province and College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Xiu-Long Yang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province and College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Xiaoying Niu
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province and College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
- Postdoctoral Research Station of Chemistry Affiliated College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
3
|
Yamamoto A, Tanaka K, Hashimoto Y, Morita N, Tamura O. Intermolecular 1,3-Dipolar Cycloaddition Reaction of N-Carbamoyl Nitrones Generated by N-Selective Carbamoylation of Oximes with Isocyanates. Chemistry 2023:e202303790. [PMID: 38055213 DOI: 10.1002/chem.202303790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/07/2023]
Abstract
N-Selective carbamoylation reaction of oximes with isocyanates generates nitrones, which undergo 1,3-dipolar cycloaddition with various dipolarophiles to afford diverse isoxazolidines. Notably, combinations of highly electron-rich oxime and highly electron-deficient dipolarophile exhibited high reactivity, with product yields of up to 94 %. The substituent on the isoxazolidine-nitrogen atom could be successfully removed without loss of the cyclic structure. Computational studies have also elucidated the mechanism of the reaction and origin of stereoselectivity.
Collapse
Affiliation(s)
- Ayaka Yamamoto
- Showa Pharmaceutical University, Higashi-Tamagawagakuen, 194-8543, Machida, Tokyo, Japan
| | - Kosaku Tanaka
- Showa Pharmaceutical University, Higashi-Tamagawagakuen, 194-8543, Machida, Tokyo, Japan
- Present Address: Research Foundation ITSUU Laboratory, C1232 Kanagawa Science Park R & D Building Sakado, Takatsu-ku, 213-0012, Kawasaki, Kanagawa, Japan
| | - Yoshimitsu Hashimoto
- Showa Pharmaceutical University, Higashi-Tamagawagakuen, 194-8543, Machida, Tokyo, Japan
| | - Nobuyoshi Morita
- Showa Pharmaceutical University, Higashi-Tamagawagakuen, 194-8543, Machida, Tokyo, Japan
| | - Osamu Tamura
- Showa Pharmaceutical University, Higashi-Tamagawagakuen, 194-8543, Machida, Tokyo, Japan
| |
Collapse
|
4
|
Mondal SL, Bhajammanavar V, Ramakrishna I, Baidya M. Brønsted acid-catalyzed annulation reaction of hydroxamic acids: synthesis of cyclopentane-fused isoxazolidines and their benzilic amide rearrangement. Chem Commun (Camb) 2023; 59:13211-13214. [PMID: 37853763 DOI: 10.1039/d3cc03810f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Readily available hydroxamic acids were leveraged to access challenging nitrones in the presence of H3PO4 as a Brønsted acid catalyst and engaged in an intramolecular (3+2) annulation reaction to make valuable cyclopentane-fused isoxazolidines with high yields and excellent diastereoselectivity. The products were further utilized in a unique base-promoted benzilic amide rearrangement to provide cyclopentane-fused γ-lactams bearing three contiguous stereocenters as a single diastereomer.
Collapse
Affiliation(s)
- Swati Lekha Mondal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| | - Vinod Bhajammanavar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| | - Isai Ramakrishna
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
| |
Collapse
|
5
|
Abstract
Nitroxides, also known as nitroxyl radicals, are long-lived or stable radicals with the general structure R1R2N-O•. The spin distribution over the nitroxide N and O atoms contributes to the thermodynamic stability of these radicals. The presence of bulky N-substituents R1 and R2 prevents nitroxide radical dimerization, ensuring their kinetic stability. Despite their reactivity toward various transient C radicals, some nitroxides can be easily stored under air at room temperature. Furthermore, nitroxides can be oxidized to oxoammonium salts (R1R2N═O+) or reduced to anions (R1R2N-O-), enabling them to act as valuable oxidants or reductants depending on their oxidation state. Therefore, they exhibit interesting reactivity across all three oxidation states. Due to these fascinating properties, nitroxides find extensive applications in diverse fields such as biochemistry, medicinal chemistry, materials science, and organic synthesis. This review focuses on the versatile applications of nitroxides in organic synthesis. For their use in other important fields, we will refer to several review articles. The introductory part provides a brief overview of the history of nitroxide chemistry. Subsequently, the key methods for preparing nitroxides are discussed, followed by an examination of their structural diversity and physical properties. The main portion of this review is dedicated to oxidation reactions, wherein parent nitroxides or their corresponding oxoammonium salts serve as active species. It will be demonstrated that various functional groups (such as alcohols, amines, enolates, and alkanes among others) can be efficiently oxidized. These oxidations can be carried out using nitroxides as catalysts in combination with various stoichiometric terminal oxidants. By reducing nitroxides to their corresponding anions, they become effective reducing reagents with intriguing applications in organic synthesis. Nitroxides possess the ability to selectively react with transient radicals, making them useful for terminating radical cascade reactions by forming alkoxyamines. Depending on their structure, alkoxyamines exhibit weak C-O bonds, allowing for the thermal generation of C radicals through reversible C-O bond cleavage. Such thermally generated C radicals can participate in various radical transformations, as discussed toward the end of this review. Furthermore, the application of this strategy in natural product synthesis will be presented.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
6
|
Miller JL, Zhou L, Liu P, Floreancig PE. Mechanism-Based Approach to Reagent Selection for Oxidative Carbon-Hydrogen Bond Cleavage Reactions. Chemistry 2021; 28:e202103078. [PMID: 34822737 DOI: 10.1002/chem.202103078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 11/07/2022]
Abstract
Numerous hydride-abstracting agents generate the same cationic intermediate, but substrate features such as intermediate cation stability, oxidation potential, and steric environment can influence reaction rates in an oxidant-dependent manner. This manuscript provides experimental data to illustrate the role that structural features play in the kinetics of hydride abstraction reactions with commonly used quinone-, oxoammonium ion-, and carbocation- based oxidants. Computational studies of the transition state structures and energies explain these results and energy decomposition analysis calculations reveal unique sensitivities to electrostatic attraction and steric repulsions. Rigorous rate studies of select reactions validated the capacity of the calculations to predict reactivity trends. Additionally, kinetics studies demonstrate the potential for product inhibition in DDQ-mediated reactions. These studies provide a clear guide to select the optimal oxidant for structurally disparate substrates and lead to predictions of reactivity that were validated experimentally.
Collapse
Affiliation(s)
- Jenna L Miller
- Department of Chemistry, University of Pittsburgh Pittsburgh, Pennsylvania, 15260, United States
| | - Lin Zhou
- Department of Chemistry, University of Pittsburgh Pittsburgh, Pennsylvania, 15260, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh Pittsburgh, Pennsylvania, 15260, United States
| | - Paul E Floreancig
- Department of Chemistry, University of Pittsburgh Pittsburgh, Pennsylvania, 15260, United States
| |
Collapse
|
7
|
Xu J, Ding A, Zhang Y, Guo H. Photochemical Synthesis of 1,4-Dicarbonyl Bifluorene Compounds via Oxidative Radical Coupling Using TEMPO as the Oxygen Atom Donor. J Org Chem 2021; 86:3656-3666. [PMID: 33513019 DOI: 10.1021/acs.joc.0c02781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A visible-light-induced metal-free synthesis of 1,4-dicarbonyl compounds from alkyne-containing aryl iodides via photochemical C-I bond cleavage, intramolecular cyclization, oxidation, and intermolecular radical coupling sequence is reported. TEMPO was employed as the oxygen atom donor in this transformation. This protocol provided a new strategy for the synthesis of 1,4-dicarbonyl bifluorene compounds.
Collapse
Affiliation(s)
- Jincheng Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Aishun Ding
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Yanbin Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Hao Guo
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| |
Collapse
|
8
|
Liu Y, Liu J, Liu YY, Tang B, Lin H, Li Y, Zhang L. Synthesis of spirocyclic Δ 4-isoxazolines via [3 + 2] cycloaddition of indanone-derived ketonitrones with alkynes. RSC Adv 2021; 11:30415-30425. [PMID: 35480251 PMCID: PMC9041119 DOI: 10.1039/d1ra06063e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/05/2021] [Indexed: 11/30/2022] Open
Abstract
A [3 + 2] cycloaddition of indanone-derived nitrones and alkynes under mild conditions is developed, allowing facile synthesis of spirocyclicindenyl isoxazolines with structural diversity. The sequential protocol of generated in situ ketonitrone from unsaturated ketones and N-alkylhydroxylamines is also achieved successfully, affording the desired products in considerable yield with moderate to good diastereoselectivity. Moreover, the spirocyclic product can be conveniently transformed into indenyl-based allylic alcohol and enamide. A [3 + 2] cycloaddition of indanone-derived nitrones with alkynes under mild conditions has been developed. It is a highly efficient and straightforward method for the synthesis of diverse spirocyclicindenyl isoxazolines.![]()
Collapse
Affiliation(s)
- Yilin Liu
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University, Huaihua 418000, China
- CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiaxue Liu
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University, Huaihua 418000, China
| | - Yan-Yun Liu
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University, Huaihua 418000, China
| | - Boxiao Tang
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University, Huaihua 418000, China
| | - Hongwei Lin
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University, Huaihua 418000, China
| | - Yuanxiang Li
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University, Huaihua 418000, China
| | - Lin Zhang
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol (PVA) Fiber Material, Institute of Organic Synthesis, Huaihua University, Huaihua 418000, China
| |
Collapse
|
9
|
Zhao E, Zhou F, Zhao Y. Lewis Acids Promoted 3 + 2 Cycloaddition of Oxaziridines and Cyclic Allylic Alcohols through Carbonyl Imine Intermediates. J Org Chem 2019; 84:4282-4293. [PMID: 30869515 DOI: 10.1021/acs.joc.9b00246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Syntheses of isoxazolidines through the carbonyl imine intermediates are currently limited to monosubstituted olefin substrates. Herein, we reported syntheses of novel bicyclic isoxazolidine-containing compounds through 1,3-dipolar cycloaddition reactions using cyclic allylic alcohols as substrates, which proved challenging in previous reports. Generally, the reaction yields range from good to high, and the reaction substrates tolerate various functional groups, including the cyclopropyl and amine groups. Mechanistic studies suggest that an allylic cation and a carbonyl imine intermediate are involved and responsible for the observed stereochemistry and diastereoselectivity.
Collapse
Affiliation(s)
- Erbao Zhao
- Nano Science and Technology Institute , University of Science and Technology of China , Suzhou , Jiangsu 215123 , China.,State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , China
| | - Feilong Zhou
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , China
| | - Yujun Zhao
- State Key Laboratory of Drug Research , Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road , Shanghai 201203 , China.,School of Pharmacy , Yancheng Teachers University , Yancheng , Jiangsu 224007 , China
| |
Collapse
|
10
|
Uygur M, García Mancheño O. Visible light-mediated organophotocatalyzed C-H bond functionalization reactions. Org Biomol Chem 2019; 17:5475-5489. [PMID: 31115431 DOI: 10.1039/c9ob00834a] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Over the last decade, a variety of methodologies for the direct functionalization of C-H bonds have been developed. Among others, visible light photoredox reactions have recently emerged as one of the most efficient and highly selective processes for the direct introduction of a functionality into organic molecules. Easy reaction setups, as well as mild reaction conditions, make this approach superior to other methodologies applying transition metals or strong oxidants, in terms of both costs and substrate and functional group tolerance. In this review, the recent developments in organophotocatalyzed C-H bond functionalization reactions are presented.
Collapse
Affiliation(s)
- Mustafa Uygur
- Organic Chemistry Institute, Münster University, Corrensstr. 40, 48149 Münster, Germany.
| | | |
Collapse
|
11
|
Planning chemical syntheses with deep neural networks and symbolic AI. Nature 2018; 555:604-610. [PMID: 29595767 DOI: 10.1038/nature25978] [Citation(s) in RCA: 816] [Impact Index Per Article: 116.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/31/2018] [Indexed: 11/09/2022]
Abstract
To plan the syntheses of small organic molecules, chemists use retrosynthesis, a problem-solving technique in which target molecules are recursively transformed into increasingly simpler precursors. Computer-aided retrosynthesis would be a valuable tool but at present it is slow and provides results of unsatisfactory quality. Here we use Monte Carlo tree search and symbolic artificial intelligence (AI) to discover retrosynthetic routes. We combined Monte Carlo tree search with an expansion policy network that guides the search, and a filter network to pre-select the most promising retrosynthetic steps. These deep neural networks were trained on essentially all reactions ever published in organic chemistry. Our system solves for almost twice as many molecules, thirty times faster than the traditional computer-aided search method, which is based on extracted rules and hand-designed heuristics. In a double-blind AB test, chemists on average considered our computer-generated routes to be equivalent to reported literature routes.
Collapse
|
12
|
Kong Y, Wumaier K, Liu Y, Jiang C, Wang S, Liu L, Chang W, Li J. Cu(OAc) 2 /TEMPO Cooperative Promoted Hydroamination Cyclization and Oxidative Dehydrogenation Cascade Reaction of Homopropargylic Amines. Chem Asian J 2018; 13:46-54. [PMID: 29178594 DOI: 10.1002/asia.201701386] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/23/2017] [Indexed: 12/15/2022]
Abstract
A novel and efficient Cu(OAc)2 -catalyzed hydroamination cyclization and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidative dehydrogenation cascade reaction of homopropargylic amines has been developed. A library of 1,2-disubstituted pyrrole derivatives were obtained in good-to-high yields in one pot with no step-by-step feeding process. This reaction involved TEMPO playing dual roles as both an oxidative dehydrogenation reagent and a ligand. An insight into the reaction mechanism was obtained by using several analytical determination methods.
Collapse
Affiliation(s)
- Yuanfang Kong
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Kediliya Wumaier
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yingze Liu
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Chunhui Jiang
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Shuai Wang
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Lingyan Liu
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Weixing Chang
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jing Li
- The State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Weijin Road 94#, Nankai District, Tianjin, 300071, China
| |
Collapse
|
13
|
Liao H, Peng X, Hu D, Xu X, Huang P, Liu Q, Liu L. CoCl2-promoted TEMPO oxidative homocoupling of indoles: access to tryptanthrin derivatives. Org Biomol Chem 2018; 16:5699-5706. [DOI: 10.1039/c8ob01216d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first example of one-step synthesis of tryptanthrin derivatives using indoles as the only substratesviadirect C–H transformation.
Collapse
Affiliation(s)
- Huiwu Liao
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Xiangjun Peng
- School of Pharmaceutical Science
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Dan Hu
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Xianyun Xu
- School of Pharmaceutical Science
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Panpan Huang
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| | - Qian Liu
- School of Pharmaceutical Science
- Gannan Medical University
- Ganzhou
- P. R. China
| | - Liangxian Liu
- Department of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- P. R. China
| |
Collapse
|
14
|
Moriyama K. Recent advances in oxidative C–C coupling reaction of amides with carbon nucleophiles. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.10.081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Jang GS, Lee J, Seo J, Woo SK. Synthesis of 4-Isoxazolines via Visible-Light Photoredox-Catalyzed [3 + 2] Cycloaddition of Oxaziridines with Alkynes. Org Lett 2017; 19:6448-6451. [DOI: 10.1021/acs.orglett.7b03369] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Gwang Seok Jang
- Department of Chemistry, University of Ulsan, 93 Daehak-Ro, Nam-Gu, Ulsan 44610, Korea
| | - Junggeun Lee
- Department of Chemistry, University of Ulsan, 93 Daehak-Ro, Nam-Gu, Ulsan 44610, Korea
| | - Jungseok Seo
- Department of Chemistry, University of Ulsan, 93 Daehak-Ro, Nam-Gu, Ulsan 44610, Korea
| | - Sang Kook Woo
- Department of Chemistry, University of Ulsan, 93 Daehak-Ro, Nam-Gu, Ulsan 44610, Korea
| |
Collapse
|
16
|
Bering L, Manna S, Antonchick AP. Sustainable, Oxidative, and Metal-Free Annulation. Chemistry 2017; 23:10936-10946. [DOI: 10.1002/chem.201702063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Luis Bering
- Abteilung für Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Otto-Hahn-Straße 11 44227 Dortmund Germany
- Fakultät Chemie und Chemische Biologie; Technische Universität Dortmund; Otto-Hahn-Straße 4a 44221 Dortmund Germany
| | - Srimanta Manna
- Abteilung für Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Otto-Hahn-Straße 11 44227 Dortmund Germany
- Fakultät Chemie und Chemische Biologie; Technische Universität Dortmund; Otto-Hahn-Straße 4a 44221 Dortmund Germany
| | - Andrey P. Antonchick
- Abteilung für Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Otto-Hahn-Straße 11 44227 Dortmund Germany
- Fakultät Chemie und Chemische Biologie; Technische Universität Dortmund; Otto-Hahn-Straße 4a 44221 Dortmund Germany
- Faculty of Science; Peoples' Friendship University of Russia; 6 Miklukho-Maklaya Street 117198 Moscow Russia
| |
Collapse
|
17
|
Segler MHS, Waller MP. Modelling Chemical Reasoning to Predict and Invent Reactions. Chemistry 2017; 23:6118-6128. [DOI: 10.1002/chem.201604556] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Indexed: 01/30/2023]
Affiliation(s)
- Marwin H. S. Segler
- Institute of Organic Chemistry and Center for Multiscale Theory and Computation; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
| | - Mark P. Waller
- Institute of Organic Chemistry and Center for Multiscale Theory and Computation; Westfälische Wilhelms-Universität Münster; Corrensstraße 40 48149 Münster Germany
- Department of Physics and International Centre for Quantum and Molecular Structures; Shanghai University; Shangda Road 99 200444 Shanghai P.R. China
| |
Collapse
|
18
|
Gini A, Brandhofer T, Mancheño OG. Recent progress in mild Csp3–H bond dehydrogenative or (mono-) oxidative functionalization. Org Biomol Chem 2017; 15:1294-1312. [DOI: 10.1039/c6ob02474b] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This review summarizes recent advances in mild and green dehydrogenative and mono-oxidative Csp3–H bond functionalization reactions, considering both new approaches and the re-elaboration of known methodologies.
Collapse
Affiliation(s)
- Andrea Gini
- Institute for Organic Chemistry
- University of Regensburg
- 93053 Regensburg
- Germany
- Straubing Center of Science for Renewable Resources
| | - Tobias Brandhofer
- Institute for Organic Chemistry
- University of Regensburg
- 93053 Regensburg
- Germany
- Straubing Center of Science for Renewable Resources
| | - Olga García Mancheño
- Institute for Organic Chemistry
- University of Regensburg
- 93053 Regensburg
- Germany
- Straubing Center of Science for Renewable Resources
| |
Collapse
|
19
|
Záborský O, Malatinský T, Marek J, Moncol J, Fischer R. Unusually Stable Isoxazolidinyl Epoxides: Synthesis and Reactivity in Nucleophilic Substitutions. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ondrej Záborský
- Institute of Organic Chemistry, Catalysis, and Petrochemistry; Slovak University of Technology; Radlinského 9 81237 Bratislava Slovak Republic
| | - Tomáš Malatinský
- Institute of Organic Chemistry, Catalysis, and Petrochemistry; Slovak University of Technology; Radlinského 9 81237 Bratislava Slovak Republic
| | - Jaromír Marek
- Central European Institute of Technology; Masaryk University; Kamenice 753/5 62500 Brno Czech Republic
| | - Ján Moncol
- Institute of Inorganic Chemistry, Technology, and Materials; Slovak University of Technology; Radlinského 9 81237 Bratislava Slovak Republic
| | - Róbert Fischer
- Institute of Organic Chemistry, Catalysis, and Petrochemistry; Slovak University of Technology; Radlinského 9 81237 Bratislava Slovak Republic
| |
Collapse
|
20
|
Yang XL, Peng XX, Chen F, Han B. TEMPO-Mediated Aza-Diels–Alder Reaction: Synthesis of Tetrahydropyridazines Using Ketohydrazones and Olefins. Org Lett 2016; 18:2070-3. [DOI: 10.1021/acs.orglett.6b00702] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiu-Long Yang
- State Key Laboratory of Applied
Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 P. R. China
| | - Xie-Xue Peng
- State Key Laboratory of Applied
Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 P. R. China
| | - Fei Chen
- State Key Laboratory of Applied
Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 P. R. China
| | - Bing Han
- State Key Laboratory of Applied
Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 P. R. China
| |
Collapse
|