1
|
Lee CH, Soldatov DV, Tzeng CH, Lai LL, Lu KL. Design of a Peripheral Building Block for H-Bonded Dendritic Frameworks and Analysis of the Void Space in the Bulk Dendrimers. Sci Rep 2017; 7:3649. [PMID: 28623266 PMCID: PMC5473840 DOI: 10.1038/s41598-017-03684-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/03/2017] [Indexed: 01/27/2023] Open
Abstract
Three dendrimers, (t-Bu-G 2 N) 2 , CC(t-Bu-G 1 N) 3 and (t-Bu-G 1 N) 2 , with 3,5-di-tert-butyl amidobenzene as a common peripheral moiety were prepared in 64-83% yields and characterized. The bulk solids had high BET surface areas of 136-138 m2/g, which were similar for the three dendrimers in spite of their different molecular weight (ranging from 1791 to 2890). It was concluded that the peripheral amide groups do not imbed in the interstitial space of neighbouring dendrimer molecules but rather build a supramolecular architecture through strong intermolecular H-bonds. This mode of assembly generates voids in the bulk dendrimers responsible for sorption properties. The X-ray crystal structure analysis of a compound representing the peripheral moiety of the dendrimers and the FT-IR and powder-XRD data for (t-Bu-G 1 N) 2 suggest the proposed supramolecular structure. The isosteric heats of CO2 sorption (Q st) for (t-Bu-G 2 N) 2 were significantly higher than those for the other two dendrimers, which is consistent with the formation of a different type of voids within the interstitial space of the molecule. It is suggested that the interstitial void space can be designed and tuned to adjust its properties to a particular task, such as the separation of gases or a catalytic reaction facilitated by the dendrimer.
Collapse
Affiliation(s)
- Cheng-Hua Lee
- Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
- Department of Applied Chemistry, National Chi Nan University, 1 Daxue Rd., Puli, Nantou County, 545, Taiwan
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Dmitriy V Soldatov
- Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Chung-Hao Tzeng
- Department of Applied Chemistry, National Chi Nan University, 1 Daxue Rd., Puli, Nantou County, 545, Taiwan
| | - Long-Li Lai
- Department of Applied Chemistry, National Chi Nan University, 1 Daxue Rd., Puli, Nantou County, 545, Taiwan.
| | - Kuang-Lieh Lu
- Institute of Chemistry, Academia Sinica, Taipei, 115, Taiwan
| |
Collapse
|
2
|
Tsai MJ, Hsieh JW, Lai LL, Cheng KL, Liu SH, Lee JJ, Hsu HF. Converting Nonliquid Crystals into Liquid Crystals by N-Methylation in the Central Linker of Triazine-Based Dendrimers. J Org Chem 2016; 81:5007-13. [PMID: 27203100 DOI: 10.1021/acs.joc.6b00555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two triazine-based dendrimers were successfully prepared in 60-75% yields. These newly prepared dendrimers 2a and 2b containing the -NMe(CH2)2NMe- and the -NMe(CH2)4NMe- linkers between two G3 dendrons, respectively, exhibit columnar phases during the thermal process. However, the corresponding dendrimers 1a and 1b containing the -NH(CH2)2NH- and the -NH(CH2)4NH- linkers between two G3 dendrons, respectively, do not show any LC phases on thermal treatment. Computational investigations on molecular conformations reveal that N-methylation of the dendritic central linker leads dendrimers to possess more isomeric conformations and thus successfully converts non-LC dendrimers (1a and 1b) into LC dendrimers (2a and 2b).
Collapse
Affiliation(s)
- Meng-Jung Tsai
- Department of Applied Chemistry, National Chi Nan University , Puli, Nantou 545, Taiwan
| | - Jei-Way Hsieh
- Department of Applied Chemistry, National Chi Nan University , Puli, Nantou 545, Taiwan
| | - Long-Li Lai
- Department of Applied Chemistry, National Chi Nan University , Puli, Nantou 545, Taiwan
| | - Kung-Lung Cheng
- Material and Chemical Research Laboratories Industrial Research Institute , Hsinchu 300, Taiwan
| | - Shih-Hsien Liu
- Material and Chemical Research Laboratories Industrial Research Institute , Hsinchu 300, Taiwan
| | - Jey-Jau Lee
- National Synchrotron Radiation Research Center , HsinChu Science Park, Hsinchu 300, Taiwan
| | - Hsiu-Fu Hsu
- Department of Chemistry, Tamkang University , Tamsui 251, Taiwan
| |
Collapse
|