1
|
Hubbard CD, Chatterjee D, Oszajca M, Polaczek J, Impert O, Chrzanowska M, Katafias A, Puchta R, van Eldik R. Inorganic reaction mechanisms. A personal journey. Dalton Trans 2020; 49:4599-4659. [PMID: 32162632 DOI: 10.1039/c9dt04620h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This review covers highlights of the work performed in the van Eldik group on inorganic reaction mechanisms over the past two decades in the form of a personal journey. Topics that are covered include, from NO to HNO chemistry, peroxide activation in model porphyrin and enzymatic systems, the wonder-world of RuIII(edta) chemistry, redox chemistry of Ru(iii) complexes, Ru(ii) polypyridyl complexes and their application, relevant physicochemical properties and reaction mechanisms in ionic liquids, and mechanistic insight from computational chemistry. In each of these sections, typical examples of mechanistic studies are presented in reference to related work reported in the literature.
Collapse
Affiliation(s)
- Colin D Hubbard
- Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Egerlandstr. 1, 91058 Erlangen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Bach RD. Structure and Mechanism for Alkane Oxidation and Alkene Epoxidation with Hydroperoxides, α-Hydroxy Hydroperoxides, and Peroxyacids: A Theoretical Study. J Phys Chem A 2019; 123:9520-9530. [DOI: 10.1021/acs.jpca.9b06803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robert D. Bach
- Department of Chemistry and Biochemistry, University of Delaware, 210 South College Avenue, Newark, Delaware 19716, United States
| |
Collapse
|
3
|
Chen J, Draksharapu A, Angelone D, Unjaroen D, Padamati SK, Hage R, Swart M, Duboc C, Browne WR. H 2O 2 Oxidation by Fe III-OOH Intermediates and Its Effect on Catalytic Efficiency. ACS Catal 2018; 8:9665-9674. [PMID: 30319886 PMCID: PMC6179451 DOI: 10.1021/acscatal.8b02326] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/30/2018] [Indexed: 11/28/2022]
Abstract
![]()
The
oxidation of the C–H and C=C bonds of hydrocarbons with
H2O2 catalyzed by non-heme iron complexes with
pentadentate ligands is widely accepted as involving a reactive FeIV=O species such as [(N4Py)FeIV=O]2+ formed by homolytic cleavage of the O–O bond of an
FeIII–OOH intermediate (where N4Py is 1,1-bis(pyridin-2-yl)-N,N-bis(pyridin-2-ylmethyl)methanamine).
We show here that at low H2O2 concentrations
the FeIV=O species formed is detectable in methanol.
Furthermore, we show that the decomposition of H2O2 to water and O2 is an important competing pathway
that limits efficiency in the terminal oxidant and indeed dominates
reactivity except where only sub-/near-stoichiometric amounts of H2O2 are present. Although independently prepared
[(N4Py)FeIV=O]2+ oxidizes stoichiometric
H2O2 rapidly, the rate of formation of FeIV=O from the FeIII–OOH intermediate
is too low to account for the rate of H2O2 decomposition
observed under catalytic conditions. Indeed, with excess H2O2, disproportionation to O2 and H2O is due to reaction with the FeIII–OOH intermediate
and thereby prevents formation of the FeIV=O species.
These data rationalize that the activity of these catalysts with respect
to hydrocarbon/alkene oxidation is maximized by maintaining sub-/near-stoichiometric
steady-state concentrations of H2O2, which ensure
that the rate of the H2O2 oxidation by the FeIII–OOH intermediate is less than the rate of the O–O
bond homolysis and the subsequent reaction of the FeIV=O
species with a substrate.
Collapse
Affiliation(s)
- Juan Chen
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Apparao Draksharapu
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Davide Angelone
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Campus Montilivi, E17003 Girona, Catalonia, Spain
| | - Duenpen Unjaroen
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Sandeep K. Padamati
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Ronald Hage
- Catexel BV, BioPartner Center, Galileiweg 8, 2333BD Leiden, The Netherlands
| | - Marcel Swart
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Campus Montilivi, E17003 Girona, Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Carole Duboc
- Departement de Chimie Moleculaire, Univ. Grenoble Alpes/CNRS, UMR-5250, BP-53, 38041 Grenoble Cedex 9, France
| | - Wesley R. Browne
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| |
Collapse
|
4
|
Coleman T, Wong SH, Podgorski MN, Bruning JB, De Voss JJ, Bell SG. Cytochrome P450 CYP199A4 from Rhodopseudomonas palustris Catalyzes Heteroatom Dealkylations, Sulfoxidation, and Amide and Cyclic Hemiacetal Formation. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00909] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Tom Coleman
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Siew Hoon Wong
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld 4072, Australia
| | | | - John B. Bruning
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - James J. De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld 4072, Australia
| | - Stephen G. Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
5
|
Erdogan H, Vandemeulebroucke A, Nauser T, Bounds PL, Koppenol WH. Jumpstarting the cytochrome P450 catalytic cycle with a hydrated electron. J Biol Chem 2017; 292:21481-21489. [PMID: 29109145 DOI: 10.1074/jbc.m117.813683] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/25/2017] [Indexed: 01/08/2023] Open
Abstract
Cytochrome P450cam (CYP101Fe3+) regioselectively hydroxylates camphor. Possible hydroxylating intermediates in the catalytic cycle of this well-characterized enzyme have been proposed on the basis of experiments carried out at very low temperatures and shunt reactions, but their presence has not yet been validated at temperatures above 0 °C during a normal catalytic cycle. Here, we demonstrate that it is possible to mimic the natural catalytic cycle of CYP101Fe3+ by using pulse radiolysis to rapidly supply the second electron of the catalytic cycle to camphor-bound CYP101[FeO2]2+ Judging by the appearance of an absorbance maximum at 440 nm, we conclude that CYP101[FeOOH]2+ (compound 0) accumulates within 5 μs and decays rapidly to CYP101Fe3+, with a k440 nm of 9.6 × 104 s-1 All processes are complete within 40 μs at 4 °C. Importantly, no transient absorbance bands could be assigned to CYP101[FeO2+por•+] (compound 1) or CYP101[FeO2+] (compound 2). However, indirect evidence for the involvement of compound 1 was obtained from the kinetics of formation and decay of a tyrosyl radical. 5-Hydroxycamphor was formed quantitatively, and the catalytic activity of the enzyme was not impaired by exposure to radiation during the pulse radiolysis experiment. The rapid decay of compound 0 enabled calculation of the limits for the Gibbs activation energies for the conversions of compound 0 → compound 1 → compound 2 → CYP101Fe3+, yielding a ΔG‡ of 45, 39, and 39 kJ/mol, respectively. At 37 °C, the steps from compound 0 to the iron(III) state would take only 4 μs. Our kinetics studies at 4 °C complement the canonical mechanism by adding the dimension of time.
Collapse
Affiliation(s)
| | - An Vandemeulebroucke
- Organic Chemistry, Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
6
|
Oszajca M, Brindell M, Orzeł Ł, Dąbrowski JM, Śpiewak K, Łabuz P, Pacia M, Stochel-Gaudyn A, Macyk W, van Eldik R, Stochel G. Mechanistic studies on versatile metal-assisted hydrogen peroxide activation processes for biomedical and environmental incentives. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.05.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
7
|
Lu J, Shen Y, Liu S. Enhanced light-driven catalytic performance of cytochrome P450 confined in macroporous silica. Chem Commun (Camb) 2016; 52:7703-6. [DOI: 10.1039/c6cc03867k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A light-driven approach combined with a macroporous reactor for the enzymatic biocatalytic reaction has been developed by confining the enzyme/photosensitizer nanohybrids in a macroporous material, which exhibits high bio-conversion efficiency due to the fast diffusion and collision between the enzyme/photosensitizer nanohybrid and the substrate in the reactor.
Collapse
Affiliation(s)
- Jusheng Lu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- P. R. China
| | - Yanfei Shen
- Medical School
- Southeast University
- Nanjing 210009
- P. R. China
| | - Songqin Liu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research
- School of Chemistry and Chemical Engineering
- Southeast University
- Nanjing 211189
- P. R. China
| |
Collapse
|